Jusakul A, Loilome W, Namwat N, Techasen A, Kuver R, Ioannou G, Savard C, Haigh WG, Yongvanit P. Anti-apoptotic phenotypes of cholestan-3β,5α,6β-triol-resistant human cholangiocytes: characteristics contributing to the genesis of cholangiocarcinoma.
J Steroid Biochem Mol Biol 2013;
138:368-75. [PMID:
23959098 PMCID:
PMC3825754 DOI:
10.1016/j.jsbmb.2013.08.004]
[Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 07/29/2013] [Accepted: 08/06/2013] [Indexed: 12/30/2022]
Abstract
The oxysterols cholestan-3β,5α,6β-triol (Triol) and 3-keto-cholest-4-ene (3K4) are increased in Opisthorchis viverrini-associated hamster cholangiocarcinoma and induce DNA damage and apoptosis via a mitochondria-dependent mechanism in MMNK-1 human cholangiocytes. Based on these observations, we hypothesized that chronic exposure of cholangiocytes to these pathogenic oxysterols may allow a growth advantage to a subset of these cells through selection for resistance to apoptosis, thereby contributing to cholangiocarcinogenesis. To test this hypothesis, we cultured MMNK-1 cells long-term in the presence of Triol. Alteration in survival and apoptotic factors of Triol-exposed cells were examined. Cells cultured long-term in the presence of Triol were resistant to H2O2-induced apoptosis, and demonstrated an increase in the phosphorylation of p38-α, CREB, ERK1/2 and c-Jun. Elevations in the ratio of Bcl-2/Bax and in the protein levels of anti-apoptotic factors including cIAP2, clusterin, and survivin were detected. These results show that long-term exposure of MNNK-1 cells to low doses of Triol selects for kinase-signaling molecules which regulate resistance to apoptosis and thereby enhance cell survival. Clonal expansion of such apoptosis-resistant cells may contribute to the genesis of cholangiocarcinoma.
Collapse