Reppert S, Boross I, Koslowski M, Türeci Ö, Koch S, Lehr HA, Finotto S. A role for T-bet-mediated tumour immune surveillance in anti-IL-17A treatment of lung cancer.
Nat Commun 2011;
2:600. [PMID:
22186896 DOI:
10.1038/ncomms1609]
[Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 11/23/2011] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide. The cytokine interleukin-17A supports tumour vascularization and growth, however, its role in lung cancer is unknown. Here we show, in the lungs of patients with lung adenocarcinoma, an increase in interleukin-17A that is inversely correlated with the expression of T-bet and correlated with the T regulatory cell transcription factor Foxp3. Local targeting of interleukin-17A in experimental lung adenocarcinoma results in a reduction in tumour load, local expansion of interferon-γ-producing CD4(+) T cells and a reduction in lung CD4(+)CD25(+)Foxp3(+) regulatory T cells. T-bet((-/-)) mice have a significantly higher tumour load compared with wild-type mice. This is associated with the local upregulation of interleukin-23 and induction of interleukin-17A/interleukin-17R-expressing T cells infiltrating the tumour. Local anti-interleukin-17A antibody treatment partially improves the survival of T-bet((-/-)) mice. These results suggest that local anti-interleukin-17A antibody therapy could be considered for the treatment of lung tumours.
Collapse