Siggins MK, Lynskey NN, Lamb LE, Johnson LA, Huse KK, Pearson M, Banerji S, Turner CE, Woollard K, Jackson DG, Sriskandan S. Extracellular bacterial lymphatic metastasis drives Streptococcus pyogenes systemic infection.
Nat Commun 2020;
11:4697. [PMID:
32943639 PMCID:
PMC7498588 DOI:
10.1038/s41467-020-18454-0]
[Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Unassisted metastasis through the lymphatic system is a mechanism of dissemination thus far ascribed only to cancer cells. Here, we report that Streptococcus pyogenes also hijack lymphatic vessels to escape a local infection site, transiting through sequential lymph nodes and efferent lymphatic vessels to enter the bloodstream. Contrasting with previously reported mechanisms of intracellular pathogen carriage by phagocytes, we show S. pyogenes remain extracellular during transit, first in afferent and then efferent lymphatics that carry the bacteria through successive draining lymph nodes. We identify streptococcal virulence mechanisms important for bacterial lymphatic dissemination and show that metastatic streptococci within infected lymph nodes resist and subvert clearance by phagocytes, enabling replication that can seed intense bloodstream infection. The findings establish the lymphatic system as both a survival niche and conduit to the bloodstream for S. pyogenes, explaining the phenomenon of occult bacteraemia. This work provides new perspectives in streptococcal pathogenesis with implications for immunity.
Pathogenic agents can spread from an initial to a secondary site via the lymphatics. Here, using a mouse model of infection, the authors show that S. pyogenes readily transit through sequential lymph nodes within efferent lymphatics to reach the bloodstream and drive systemic infection, while remaining extracellular.
Collapse