Marban C, Suzanne S, Dequiedt F, de Walque S, Redel L, Van Lint C, Aunis D, Rohr O. Recruitment of chromatin-modifying enzymes by CTIP2 promotes HIV-1 transcriptional silencing.
EMBO J 2007;
26:412-23. [PMID:
17245431 PMCID:
PMC1783449 DOI:
10.1038/sj.emboj.7601516]
[Citation(s) in RCA: 298] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 11/29/2006] [Indexed: 11/08/2022] Open
Abstract
Following entry and reverse transcription, the HIV-1 genome is integrated into the host genome. In contrast to productively infected cells, latently infected cells frequently harbor HIV-1 genomes integrated in heterochromatic structures, allowing persistence of transcriptionally silent proviruses. Microglial cells are the main HIV-1 target cells in the central nervous system and constitute an important reservoir for viral pathogenesis. In the present work, we show that, in microglial cells, the co-repressor COUP-TF interacting protein 2 (CTIP2) recruits a multienzymatic chromatin-modifying complex and establishes a heterochromatic environment at the HIV-1 promoter. We report that CTIP2 recruits histone deacetylase (HDAC)1 and HDAC2 to promote local histone H3 deacetylation at the HIV-1 promoter region. In addition, DNA-bound CTIP2 also associates with the histone methyltransferase SUV39H1, which increases local histone H3 lysine 9 methylation. This allows concomitant recruitment of HP1 proteins to the viral promoter and formation of local heterochromatin, leading to HIV-1 silencing. Altogether, our findings uncover new therapeutic opportunities for purging latent HIV-1 viruses from their cellular reservoirs.
Collapse