Yagi H, Nakagawa N, Saito T, Kiyonari H, Abe T, Toda T, Wu SW, Khoo KH, Oka S, Kato K. AGO61-dependent GlcNAc modification primes the formation of functional glycans on α-dystroglycan.
Sci Rep 2013;
3:3288. [PMID:
24256719 PMCID:
PMC3836086 DOI:
10.1038/srep03288]
[Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/05/2013] [Indexed: 12/27/2022] Open
Abstract
Dystroglycanopathy is a major class of congenital muscular dystrophy that is caused by a deficiency of functional glycans on α-dystroglycan (α-DG) with laminin-binding activity. A product of a recently identified causative gene for dystroglycanopathy, AGO61, acted in vitro as a protein O-mannose β-1, 4-N-acetylglucosaminyltransferase, although it was not functionally characterized. Here we show the phenotypes of AGO61-knockout mice and demonstrate that AGO61 is indispensable for the formation of laminin-binding glycans of α-DG. AGO61-knockout mouse brain exhibited abnormal basal lamina formation and a neuronal migration defect due to a lack of laminin-binding glycans. Furthermore, our results indicate that functional α-DG glycosylation was primed by AGO61-dependent GlcNAc modifications of specific threonine-linked mannosyl moieties of α-DG. These findings provide a key missing link for understanding how the physiologically critical glycan motif is displayed on α-DG and provides new insights on the pathological mechanisms of dystroglycanopathy.
Collapse