Azar MM, Shin JJ, Kang I, Landry M. Diagnosis of SARS-CoV-2 infection in the setting of the cytokine release syndrome.
Expert Rev Mol Diagn 2020;
20:1087-1097. [PMID:
32990479 DOI:
10.1080/14737159.2020.1830760]
[Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION
Coronavirus disease (COVID-19) can trigger a cytokine response storm (CRS) that is associated with high mortality but for which the underlying pathophysiology and diagnostics are not yet well characterized. This review provides an overview of the underlying immune profile of COVID-19-related CRS as well as laboratory markers for acute diagnosis and chronic follow-up of patients with SARS-CoV-2 and CRS.
AREAS COVERED
Innate and acquired immune profiles in COVID-19-CRS, RNA-detection methods for SARS-CoV-2 in the setting of CRS including factors that affect assay performance, serology for SARS-CoV-2 in the setting of CRS, and other biomarkers for COVID-19 will be discussed.
EXPERT OPINION
Studies support the implication of CRS in the pathogenesis, clinical severity and outcome of COVID-19 through the production of multiple inflammatory cytokines and chemokines from activated innate and adaptive immune cells. Although these inflammatory molecules, including IL-6, IL-2 R, IL-10, IP-10 and MCP-1, often correlate with disease severity as possible biomarkers, the pathogenic contributions of individual molecules and the therapeutic benefits of targeting them are yet to be demonstrated. Detection of SARS-CoV-2 RNA is the gold standard method for diagnosis of COVID-19 in the context of CRS but assay performance varies and is susceptible to false-negative results even as patients clinically deteriorate due to decreased viral shedding in the setting of CRS. Biomarkers including CRP, ferritin, D-dimer and procalcitonin may provide early clues about progression to CRS and help identify thrombotic and infectious complications of COVID-19.
Collapse