Franco LM, Gadkari M, Howe KN, Sun J, Kardava L, Kumar P, Kumari S, Hu Z, Fraser IDC, Moir S, Tsang JS, Germain RN. Immune regulation by glucocorticoids can be linked to cell type-dependent transcriptional responses.
J Exp Med 2019;
216:384-406. [PMID:
30674564 PMCID:
PMC6363437 DOI:
10.1084/jem.20180595]
[Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/22/2018] [Accepted: 01/04/2019] [Indexed: 12/13/2022] Open
Abstract
A functional genomics approach uncovers previously undescribed cell type–dependent responses that can be linked to the immunoregulatory actions of glucocorticoids in humans.
Glucocorticoids remain the most widely used immunosuppressive and anti-inflammatory drugs, yet substantial gaps exist in our understanding of glucocorticoid-mediated immunoregulation. To address this, we generated a pathway-level map of the transcriptional effects of glucocorticoids on nine primary human cell types. This analysis revealed that the response to glucocorticoids is highly cell type dependent, in terms of the individual genes and pathways affected, as well as the magnitude and direction of transcriptional regulation. Based on these data and given their importance in autoimmunity, we conducted functional studies with B cells. We found that glucocorticoids impair upstream B cell receptor and Toll-like receptor 7 signaling, reduce transcriptional output from the three immunoglobulin loci, and promote significant up-regulation of the genes encoding the immunomodulatory cytokine IL-10 and the terminal-differentiation factor BLIMP-1. These findings provide new mechanistic understanding of glucocorticoid action and emphasize the multifactorial, cell-specific effects of these drugs, with potential implications for designing more selective immunoregulatory therapies.
Collapse