Honjo H, Watanabe T, Arai Y, Kamata K, Minaga K, Komeda Y, Yamashita K, Kudo M. ATG16L1 negatively regulates RICK/RIP2-mediated innate immune responses.
Int Immunol 2020;
33:91-105. [PMID:
32909611 DOI:
10.1093/intimm/dxaa062]
[Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
Polymorphisms in the autophagy-related protein 16 like 1 (ATG16L1) and nucleotide-binding oligomerization domain 2 (NOD2) genes are associated with Crohn's disease (CD). Impaired interaction between ATG16L1 and NOD2 underlies CD immunopathogenesis. Although activation of the receptor-interacting serine/threonine kinase (RICK, also known as RIP2), a downstream signaling molecule for NOD2 and multiple toll-like receptors (TLRs), plays a pathogenic role in the development of inflammatory bowel disease, the molecular interaction between ATG16L1 and RICK/RIP2 remains poorly understood. In this study, we examined the physical interaction between ATG16L1 and RICK/RIP2 in human embryonic kidney 293 (HEK293) cells and human monocyte-derived dendritic cells (DCs) expressing excessive and endogenous levels of these proteins, respectively. We established that ATG16L1 binds to RICK/RIP2 kinase domain and negatively regulates TLR2-mediated nuclear factor-kappa B (NF-κB) activation and proinflammatory cytokine responses by inhibiting the interaction between TLR2 and RICK/RIP2. Binding of ATG16L1 to RICK/RIP2 suppressed NF-κB activation by downregulating RICK/RIP2 polyubiquitination. Notably, the percentage of colonic DCs expressing ATG16L1 inversely correlated with IL-6 and TNF-α expression levels in the colon of CD patients. These data suggest that the interaction between ATG16L1 and RICK/RIP2 maintains intestinal homeostasis via the downregulation of TLR-mediated proinflammatory cytokine responses.
Collapse