Won JE, Byeon Y, Wi TI, Lee CM, Lee JH, Kang TH, Lee JW, Lee Y, Park YM, Han HD. Immune checkpoint silencing using RNAi-incorporated nanoparticles enhances antitumor immunity and therapeutic efficacy compared with antibody-based approaches.
J Immunother Cancer 2022;
10:jitc-2021-003928. [PMID:
35228265 PMCID:
PMC8886443 DOI:
10.1136/jitc-2021-003928]
[Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND
Cytotoxic CD8+ T cell-based cancer immunotherapy has been extensively studied and applied, however, tumor cells are known to evade immune responses through the expression of immune checkpoints, such as programmed death ligand 1 (PD-L1). To overcome these issues, antibody-based immune checkpoint blockades (eg, antiprogrammed cell death 1 (anti-PD-1) and anti-PD-L1) have been revolutionized to improve immune responses. However, their therapeutic efficacy is limited to 15%-20% of the overall objective response rate. Moreover, PD-L1 is secreted from tumor cells, which can interrupt antibody-mediated immune reactions in the tumor microenvironment.
METHODS
We developed poly(lactic-co-glycolic acid) nanoparticles (PLGA-NPs) encapsulating PD-L1 small interfering RNA (siRNA) and PD-1 siRNA, as a delivery platform to silence immune checkpoints. This study used the TC-1 and EG7 tumor models to determine the potential therapeutic efficacy of the PLGA (PD-L1 siRNA+PD-1 siRNA)-NPs, on administration twice per week for 4 weeks. Moreover, we observed combination effect of PLGA (PD-L1 siRNA+PD-1 siRNA)-NPs and PLGA (antigen+adjuvant)-NPs using TC-1 and EG7 tumor-bearing mouse models.
RESULTS
PLGA (PD-L1 siRNA+PD-1 siRNA)-NPs boosted the host immune reaction by restoring CD8+ T cell function and promoting cytotoxic CD8+ T cell responses. We demonstrated that the combination of NP-based therapeutic vaccine and PLGA (siRNA)-NPs resulted in significant inhibition of tumor growth compared with the control and antibody-based treatments (p<0.001). The proposed system significantly inhibited tumor growth compared with the antibody-based approaches.
CONCLUSION
Our findings suggest a potential combination approach for cancer immunotherapy using PLGA (PD-L1 siRNA+PD-1 siRNA)-NPs and PLGA (antigen+adjuvant)-NPs as novel immune checkpoint silencing agents.
Collapse