Rozema J, Dankert S, Iribarren R, Lanca C, Saw SM. Axial Growth and Lens Power Loss at Myopia Onset in Singaporean Children.
Invest Ophthalmol Vis Sci 2019;
60:3091-3099. [PMID:
31323091 DOI:
10.1167/iovs.18-26247]
[Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Purpose
We studied biometry changes before and after myopia onset in a cohort of Singaporean children.
Methods
All data were taken from the Singapore Cohort Study of the Risk Factors for Myopia (SCORM). Participants underwent refraction and biometry measurements with a follow-up of 3 to 6 years. The longitudinal ocular biometry (spherical equivalent refraction, axial length, and lens power) changes were compared between children who suffered myopia during the study (N = 303), emmetropic children (N = 490), and children myopic at baseline (N = 509).
Results
At myopia onset, the myopic shift increased to 0.50 diopters (D)/y or more in new myopes compared to the minor changes in emmetropes of the same age. New myopes had higher axial growth rates than emmetropes, even years before myopia onset (0.37 and 0.14 mm/y, respectively; ANOVA with Bonferroni post hoc test, P < 0.001). After onset, the change in both parameters slowed down gradually, but significantly (P < 0.05). In new myopes, lens power loss (-0.71 D/y) was significantly higher up to 1 year before myopia onset compared to emmetropes (-0.46 D/y), after which lens power loss slows down rapidly. At age 7 years, (future) new myopes had lens power values close to those of emmetropes (25.12 and 25.23 D, respectively), while later these values approached those of children who were myopic at baseline (23.06 and 22.79 D, respectively, compared to 23.71 D for emmetropes; P < 0.001).
Conclusions
New myopes have higher axial growth rates and lens power loss before myopia onset than persistent emmetropes.
Collapse