Bengal E, Perdiguero E, Serrano AL, Muñoz-Cánoves P. Rejuvenating stem cells to restore muscle regeneration in aging.
F1000Res 2017;
6:76. [PMID:
28163911 PMCID:
PMC5271918 DOI:
10.12688/f1000research.9846.1]
[Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/24/2017] [Indexed: 12/15/2022] Open
Abstract
Adult muscle stem cells, originally called satellite cells, are essential for
muscle repair and regeneration throughout life. Besides a gradual loss of mass
and function, muscle aging is characterized by a decline in the repair capacity,
which blunts muscle recovery after injury in elderly individuals. A major effort
has been dedicated in recent years to deciphering the causes of satellite cell
dysfunction in aging animals, with the ultimate goal of rejuvenating old
satellite cells and improving muscle function in elderly people. This review
focuses on the recently identified network of cell-intrinsic and -extrinsic
factors and processes contributing to the decline of satellite cells in old
animals. Some studies suggest that aging-related satellite-cell decay is mostly
caused by age-associated extrinsic environmental changes that could be reversed
by a “youthful environment”. Others propose a central role for
cell-intrinsic mechanisms, some of which are not reversed by environmental
changes. We believe that these proposals, far from being antagonistic, are
complementary and that both extrinsic and intrinsic factors contribute to muscle
stem cell dysfunction during aging-related regenerative decline. The low
regenerative potential of old satellite cells may reflect the accumulation of
deleterious changes during the life of the cell; some of these changes may be
inherent (intrinsic) while others result from the systemic and local environment
(extrinsic). The present challenge is to rejuvenate aged satellite cells that
have undergone reversible changes to provide a possible approach to improving
muscle repair in the elderly.
Collapse