Fukuda H, Takahashi J, Watanabe K, Hayashi H, Morizane A, Koyanagi M, Sasai Y, Hashimoto N. Fluorescence-activated cell sorting-based purification of embryonic stem cell-derived neural precursors averts tumor formation after transplantation.
Stem Cells 2005;
24:763-71. [PMID:
16223855 DOI:
10.1634/stemcells.2005-0137]
[Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The differentiation of dopaminergic (DA) neurons from mouse embryonic stem cells (ESCs) can be efficiently induced, making these neurons a potential source for transplantation as a treatment for Parkinson's disease, a condition characterized by the gradual loss of midbrain DA neurons. One of the major persistent obstacles to the successful implementation of therapeutic ESC transplantation is the propensity of ESC-derived grafts to form tumors in vivo. To address this problem, we used fluorescence-activated cell sorting to purify mouse ESC-derived neural precursors expressing the neural precursor marker Sox1. ESC-derived, Sox1+ cells began to express neuronal cell markers and differentiated into DA neurons upon transplantation into mouse brains but did not generate tumors in this site. In contrast, Sox1- cells that expressed ESC markers frequently formed tumors in vivo. These results indicate that Sox1-based cell sorting of neural precursors prevents graft-derived tumor formation after transplantation, providing a promising strategy for cell transplantation therapy of neurodegenerative disorders.
Collapse