1
|
Jin W, Wang H, Ji Y, Zhu L, Yan W, Qiao L, Yin H. Genetic Ablation of Nrf2 Enhances Susceptibility to Acute Lung Injury After Traumatic Brain Injury in Mice. Exp Biol Med (Maywood) 2009; 234:181-9. [PMID: 19176347 DOI: 10.3181/0807-rm-232] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Previous studies have shown that nuclear factor erythroid 2-related factor 2 (Nrf2) plays a unique role in many physiological stress processes. The present study investigated the role of Nrf2 in the regulation of traumatic brain injury (TBI)-induced acute lung injury (ALI). Wild-type Nrf2 (+/+) and Nrf2 (−/−)-deficient mice were subjected to a moderately severe weight-drop impact head injury. Pulmonary capillary permeability (PCP), wet/dry weight ratio, apoptosis, inflammatory cytokines and antioxidant/detoxifying enzymes were measured at 24 h after TBI. Mice lacking Nrf2 were found to be more susceptible to TBI-induced ALI, as characterized by the higher increase in PCP, wet/dry weight ratio and alveolar cells apoptosis after TBI. This exacerbation of lung injury in Nrf2-deficient mice was associated with increased pulmonary mRNA and protein expression of inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6); and with decreased pulmonary mRNA expression and enzymatic activities of antioxidant and detoxifying enzymes including NAD(P)H:quinone oxidoreductase 1 (NQO1) and glutathione S-transferase α1 (GST-α1)—as compared with their wild-type Nrf2 (+/+) counterparts after TBI. The results of the present study suggest that Nrf2 reduces TBI-induced acute lung injury, possibly by decreasing pulmonary inflammation and inducing antioxidant and detoxifying enzymes.
Collapse
|
|
16 |
24 |