Surface markers for chondrogenic determination: a highlight of synovium-derived stem cells.
Cells 2012;
1:1107-20. [PMID:
24710545 PMCID:
PMC3901147 DOI:
10.3390/cells1041107]
[Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 10/31/2012] [Accepted: 11/12/2012] [Indexed: 02/06/2023] Open
Abstract
Cartilage tissue engineering is a promising field in regenerative medicine that can provide substantial relief to people suffering from degenerative cartilage disease. Current research shows the greatest chondrogenic potential for healthy articular cartilage growth with minimal hypertrophic differentiation to be from mesenchymal stem cells (MSCs) of synovial origin. These stem cells have the capacity for differentiation into multiple cell lineages related to mesenchymal tissue; however, evidence exists for cell surface markers that specify a greater potential for chondrogenesis than other differentiation fates. This review will examine relevant literature to summarize the chondrogenic differentiation capacities of tested synovium-derived stem cell (SDSC) surface markers, along with a discussion about various other markers that may hold potential, yet require further investigation. With this information, a potential clinical benefit exists to develop a screening system for SDSCs that will produce the healthiest articular cartilage possible.
Collapse