1
|
Li S, Couet J, Lisanti MP. Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem 1996; 271:29182-29190. [PMID: 8910575 PMCID: PMC6687395 DOI: 10.1074/jbc.271.46.29182] [Citation(s) in RCA: 612] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] [Imported: 08/15/2023] Open
Abstract
Caveolae are plasma membrane specializations present in most cell types. Caveolin, a 22-kDa integral membrane protein, is a principal structural and regulatory component of caveolae membranes. Previous studies have demonstrated that caveolin co-purifies with lipid modified signaling molecules, including Galpha subunits, H-Ras, c-Src, and other related Src family tyrosine kinases. In addition, it has been shown that caveolin interacts directly with Galpha subunits and H-Ras, preferentially recognizing the inactive conformation of these molecules. However, it is not known whether caveolin interacts directly or indirectly with Src family tyrosine kinases. Here, we examine the structural and functional interaction of caveolin with Src family tyrosine kinases. Caveolin was recombinantly expressed as a glutathione S-transferase fusion. Using an established in vitro binding assay, we find that caveolin interacts with wild-type Src (c-Src) but does not form a stable complex with mutationally activated Src (v-Src). Thus, it appears that caveolin prefers the inactive conformation of Src. Deletion mutagenesis indicates that the Src-interacting domain of caveolin is located within residues 82-101, a cytosolic membrane-proximal region of caveolin. A caveolin peptide derived from this region (residues 82-101) functionally suppressed the auto-activation of purified recombinant c-Src tyrosine kinase and Fyn, a related Src family tyrosine kinase. We further analyzed the effect of caveolin on c-Src activity in vivo by transiently co-expressing full-length caveolin and c-Src tyrosine kinase in 293T cells. Co-expression with caveolin dramatically suppressed the tyrosine kinase activity of c-Src as measured via an immune complex kinase assay. Thus, it appears that caveolin structurally and functionally interacts with wild-type c-Src via caveolin residues 82-101. Besides interacting with Src family kinases, this cytosolic caveolin domain (residues 82-101) has the following unique features. First, it is required to form multivalent homo-oligomers of caveolin. Second, it interacts with G-protein alpha-subunits and down-regulates their GTPase activity. Third, it binds to wild-type H-Ras. Fourth, it is membrane-proximal, suggesting that it may be involved in other potential protein-protein interactions. Thus, we have termed this 20-amino acid stretch of caveolin residues the caveolin scaffolding domain.
Collapse
|
research-article |
29 |
612 |
2
|
Li S, Okamoto T, Chun M, Sargiacomo M, Casanova JE, Hansen SH, Nishimoto I, Lisanti MP. Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J Biol Chem 1995; 270:15693-15701. [PMID: 7797570 DOI: 10.1074/jbc.270.26.15693] [Citation(s) in RCA: 492] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] [Imported: 08/15/2023] Open
Abstract
Caveolae are flask-shaped plasma membrane specializations. A 22-kDa protein, caveolin, is a principal component of caveolar membranes in vivo. As recent evidence suggests that caveolae may participate in G protein-coupled signaling events, we have investigated the potential interaction of caveolin with heterotrimeric G proteins. Using cell fractionation techniques, we found that mutational or pharmacologic activation of Gs alpha prevents its cofractionation with caveolin. In a second independent approach, we directly examined the interaction of G proteins with caveolin. For this purpose, we recombinantly expressed caveolin as a glutathione S-transferase fusion protein. Using an in vitro binding assay, we found that caveolin interacts with G protein alpha subunits (Gs, Go, and Gi). Mutational or pharmacologic activation (with guanosine 5'-O-(thiotriphosphate)) of G alpha subunits prevents this interaction, indicating that the inactive GDP-bound form of G alpha subunits preferentially interacts with caveolin. This G protein binding activity is located within a 41-amino acid region of caveolin's cytoplasmic N-terminal domain (residues 61-101). Further functional analysis shows that a polypeptide derived from this region of caveolin (residues 82-101) effectively suppresses the basal activity of purified G proteins, apparently by inhibiting GDP/GTP exchange. This caveolin sequence is homologous to a region of the Rab GDP dissociation inhibitor, a known inhibitor of GDP/GTP exchange for Rab proteins. These data suggest that caveolin could function to negatively regulate the activation state of heterotrimeric G proteins.
Collapse
|
|
30 |
492 |
3
|
Li S, Seitz R, Lisanti MP. Phosphorylation of caveolin by src tyrosine kinases. The alpha-isoform of caveolin is selectively phosphorylated by v-Src in vivo. J Biol Chem 1996; 271:3863-3868. [PMID: 8632005 DOI: 10.1074/jbc.271.7.3863] [Citation(s) in RCA: 279] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] [Imported: 08/15/2023] Open
Abstract
Caveolae are flask-shaped plasma membrane specializations that are thought to exist in most cell types. A 22-kDa protein, caveolin, is an integral membrane component of caveolae membranes in vivo. Previous studies have demonstrated that caveolin is phosphorylated on tyrosine by oncogenic viral Src (v-Src) and that caveolin is physically associated as a hetero-oligomeric complex with normal cellular Src (c-Src) and other Src family tyrosine kinases. Caveolin contains eight conserved tyrosine residues that may serve as potential substrates for Src. Here, we have begun to study the phosphorylation of caveolin by Src family tyrosine kinases both in vitro and in vivo. Using purified recombinant components, we first reconstituted the phosphorylation of caveolin by Src kinase in vitro. Microsequencing of Src-phosphorylated caveolin revealed that phosphorylation occurs within the extreme N-terminal region of full-length caveolin between residues 6 and 26. This region contains three tyrosine residues at positions 6, 14, and 25. Deletion mutagenesis demonstrates that caveolin residues 1-21 are sufficient to support this phosphorylation event, implicating tyrosine 6 and/or 14. In vitro phosphorylation of caveolin-derived synthetic peptides and site-directed mutagenesis directly show that tyrosine 14 is the principal substrate for Src kinase. In support of these observations, tyrosine 14 is the only tyrosine residue within caveolin that bears any resemblance to the known recognition motifs for Src family tyrosine kinases. In order to confirm or refute the relevance of these in vitro studies, we next analyzed the tyrosine phosphorylation of endogenous caveolin in v-Src transformed NIH 3T3 cells. In vivo, two isoforms of caveolin are known to exist: alpha-caveolin contains residues 1-178 and beta-caveolin contains residues 32-178. Only alpha-caveolin underwent tyrosine phosphorylation in v-Src transformed NIH 3T3 cells, although beta-caveolin is well expressed in these cells. As beta-caveolin lacks residues 1-31 (and therefore tyrosine 14), these in vivo studies directly demonstrate the validity of our in vitro studies. Because alpha- and beta-caveolin are known to assume a distinct but overlapping subcellular distribution within a single cell, v-Src phosphorylation of alpha-caveolin may only affect a subpopulation of caveolae that contain alpha-caveolin.
Collapse
|
Comparative Study |
29 |
279 |
4
|
Li S, Song KS, Lisanti MP. Expression and characterization of recombinant caveolin. Purification by polyhistidine tagging and cholesterol-dependent incorporation into defined lipid membranes. J Biol Chem 1996; 271:568-573. [PMID: 8550621 DOI: 10.1074/jbc.271.1.568] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] [Imported: 08/15/2023] Open
Abstract
Caveolin, a 22-24-kDa integral membrane protein, is a principal component of caveolar membranes in vivo. Caveolin has been proposed to function as a scaffolding protein to organize and concentrate signaling molecules within caveolae. Because of its unusual membrane topology, both the N- and C-terminal domains of caveolin remain entirely cytoplasmic and are not subject to luminal modifications that are accessible to other integral membrane proteins. Under certain conditions, caveolin also exists in a soluble form as a cytosolic protein in vivo. These properties make caveolin an attractive candidate for recombinant expression in Escherichia coli. Here, we successfully expressed recombinant full-length caveolin in E.coli. A polyhistidine tag was placed at its extreme C terminus for purification by Ni(2+)-nitrilotriacetic acid affinity chromatography. Specific antibody probes demonstrated that recombinant caveolin contained a complete N and C terminus. Recombinant caveolin remained soluble in solutions containing the detergent octyl glucoside and formed high molecular mass oligomers like endogenous caveolin. By electron microscopy, recombinant caveolin homo-oligomers appeared as individual spherical particles that were indistinguishable from endogenous caveolin homo-oligomers visualized by the same technique. As recombinant caveolin behaved as expected for endogenous caveolin, this provides an indication that recombinant caveolin can be used to dissect the structural and functional interaction of caveolin with other protein and lipid molecules in vitro. Recombinant caveolin was efficiently incorporated into lipid membranes as assessed by floatation in sucrose density gradients. This allowed us to use defined lipid components to assess the possible requirements for insertion of caveolin into membranes. Using a purified synthetic form of phosphatidylcholine (1,2-dioleoylphosphorylcholine), we observed that incorporation of caveolin into membranes was cholesterol-dependent; the addition of cholesterol dramatically increased the incorporation of caveolin into these phosphatidylcholine-based membranes by approximately 25-30-fold. This fits well with in vivo studies demonstrating that cholesterol plays an essential role in maintaining the structure and function of caveolae. Further functional analysis of these reconstituted caveolin-containing membranes showed that they were capable of recruiting a soluble recombinant form of G(i)2 alpha. This is in accordance with previous studies demonstrating that caveolin specifically interacts directly with multiple G protein alpha-subunits. Thus, recombinant caveolin incorporated into defined lipid membranes provides an experimental system in which the structure, function, and biogenesis of caveolin-rich membrane domains can be dissected in vitro.
Collapse
|
|
29 |
173 |
5
|
Li S, Song KS, Koh SS, Kikuchi A, Lisanti MP. Baculovirus-based expression of mammalian caveolin in Sf21 insect cells. A model system for the biochemical and morphological study of caveolae biogenesis. J Biol Chem 1996; 271:28647-28654. [PMID: 8910498 DOI: 10.1074/jbc.271.45.28647] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] [Imported: 08/15/2023] Open
Abstract
Caveolae were originally defined morphologically as 50-100 nm noncoated vesicular organelles located at or near the plasma membrane. Caveolin, a vesicular integral membrane protein of 21 kDa, is a principal protein component of caveolae membranes in vivo. Caveolin interacts with itself to form high molecular mass oligomers, suggesting that it might play a structural role in the formation of caveolae membranes. However, it remains controversial whether recombinant expression of caveolin is necessary or sufficient to generate caveolae membranes in vivo. To directly address this issue, we have taken a different experimental approach by exploiting a heterologous expression system. Here, we have recombinantly expressed mammalian caveolin in Sf21 insect cells using baculovirus-based vectors. Two isoforms of caveolin have been identified that differ at their extreme N terminus; alpha-caveolin contains residues 1-178, and beta-caveolin contains residues 32-178. After recombinant expression in Sf21 insect cells, both alpha- and beta-caveolin formed SDS-resistant high molecular mass oligomers of the same size as native caveolin. Morphologically, expression of either caveolin isoform resulted in the intracellular accumulation of a homogeneous population of caveolae-sized vesicles with a diameter between 50 and 120 nm (80.3 +/- 14.8 nm). This indicates that each caveolin isoform can independently generate these structures and that caveolin residues 1-31 are not required for this process. Using caveolin as a marker protein and a detergent-free procedure to purify caveolae from mammalian cells, we purified these recombinant caveolin-induced vesicles from insect cells. These purified recombinant vesicles: (i) have the same buoyant density as mammalian caveolae; (ii) appear as approximately 50-100 nm membranous structures by whole-mount electron microscopy; and (iii) contain approximately 95% of the recombinantly expressed caveolin protein by Western blotting. Immuno-labeling of these structures with anti-caveolin IgG confirmed that they contain caveolin. Thus, ectopic overexpression of caveolin in this heterologous system is sufficient to drive the formation of caveolae-like vesicles. Further functional analysis demonstrated that caveolin was capable of interacting with a known caveolin-interacting protein, Ha-Ras, when coexpressed in insect cells by co-infection with two recombinant baculoviruses. Taken together, our results demonstrate that baculovirus-based expression of caveolin in insect cells provides an attractive experimental system for studying the biogenesis of caveolae.
Collapse
|
|
29 |
111 |
6
|
Li S, Galbiati F, Volonte D, Sargiacomo M, Engelman JA, Das K, Scherer PE, Lisanti MP. Mutational analysis of caveolin-induced vesicle formation. Expression of caveolin-1 recruits caveolin-2 to caveolae membranes. FEBS Lett 1998; 434:127-134. [PMID: 9738464 DOI: 10.1016/s0014-5793(98)00945-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] [Imported: 08/15/2023]
Abstract
Caveolae are vesicular organelles with a characteristic uniform diameter in the range of 50-100 nm. Although recombinant expression of caveolin-1 is sufficient to drive caveolae formation, it remains unknown what controls the uniform diameter of these organelles. One hypothesis is that specific caveolin-caveolin interactions regulate the size of caveolae, as caveolin-1 undergoes two stages of self-oligomerization. To test this hypothesis directly, we have created two caveolin-1 deletion mutants that lack regions of caveolin-1 that are involved in directing the self-assembly of caveolin-1 oligomers. More specifically, Cav-1 delta61-100 lacks a region of the N-terminal domain that directs the formation of high molecular mass caveolin-1 homo-oligomers, while Cav-1 deltaC lacks a complete C-terminal domain that is required to allow caveolin homo-oligomers to interact with each other, forming a caveolin network. It is important to note that these two mutants retain an intact transmembrane domain. Our current results show that although Cav-1 delta61-100 and Cav-1 deltaC are competent to drive vesicle formation, these vesicles vary widely in their size and shape with diameters up to 500-1000 nm. In addition, caveolin-induced vesicle formation appears to be isoform-specific. Recombinant expression of caveolin-2 under the same conditions failed to drive the formation of vesicles, while caveolin-3 expression yielded caveolae-sized vesicles. These results are consistent with the previous observation that in transformed NIH 3T3 cells that lack caveolin-1 expression, but continue to express caveolin-2, no morphologically distinguishable caveolae are observed. In addition, as caveolin-2 alone exists mainly as a monomer or homo-dimer, while caveolins 1 and 3 exist as high molecular mass homo-oligomers, our results are consistent with the idea that the formation of high molecular mass oligomers of caveolin are required to regulate the formation of uniform caveolae-sized vesicles. In direct support of this notion, regulated induction of caveolin-1 expression in transformed NIH 3T3 cells was sufficient to recruit caveolin-2 to caveolae membranes. The ability of caveolin-1 to recruit caveolin-2 most likely occurs through a direct interaction between caveolins 1 and 2, as caveolins 1 and 2 are normally co-expressed and interact with each other to form high molecular mass hetero-oligomers containing both caveolins 1 and 2.
Collapse
|
|
27 |
103 |
7
|
Li SC, Tachiki LML, Luo J, Dethlefs BA, Chen Z, Loudon WG. A biological global positioning system: considerations for tracking stem cell behaviors in the whole body. Stem Cell Rev Rep 2010; 6:317-333. [PMID: 20237964 PMCID: PMC2887536 DOI: 10.1007/s12015-010-9130-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] [Imported: 08/15/2023]
Abstract
Many recent research studies have proposed stem cell therapy as a treatment for cancer, spinal cord injuries, brain damage, cardiovascular disease, and other conditions. Some of these experimental therapies have been tested in small animals and, in rare cases, in humans. Medical researchers anticipate extensive clinical applications of stem cell therapy in the future. The lack of basic knowledge concerning basic stem cell biology-survival, migration, differentiation, integration in a real time manner when transplanted into damaged CNS remains an absolute bottleneck for attempt to design stem cell therapies for CNS diseases. A major challenge to the development of clinical applied stem cell therapy in medical practice remains the lack of efficient stem cell tracking methods. As a result, the fate of the vast majority of stem cells transplanted in the human central nervous system (CNS), particularly in the detrimental effects, remains unknown. The paucity of knowledge concerning basic stem cell biology--survival, migration, differentiation, integration in real-time when transplanted into damaged CNS remains a bottleneck in the attempt to design stem cell therapies for CNS diseases. Even though excellent histological techniques remain as the gold standard, no good in vivo techniques are currently available to assess the transplanted graft for migration, differentiation, or survival. To address these issues, herein we propose strategies to investigate the lineage fate determination of derived human embryonic stem cells (hESC) transplanted in vivo into the CNS. Here, we describe a comprehensive biological Global Positioning System (bGPS) to track transplanted stem cells. But, first, we review, four currently used standard methods for tracking stem cells in vivo: magnetic resonance imaging (MRI), bioluminescence imaging (BLI), positron emission tomography (PET) imaging and fluorescence imaging (FLI) with quantum dots. We summarize these modalities and propose criteria that can be employed to rank the practical usefulness for specific applications. Based on the results of this review, we argue that additional qualities are still needed to advance these modalities toward clinical applications. We then discuss an ideal procedure for labeling and tracking stem cells in vivo, finally, we present a novel imaging system based on our experiments.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
50 |
8
|
Li SC, Wang L, Jiang H, Acevedo J, Chang AC, Loudon WG. Stem cell engineering for treatment of heart diseases: potentials and challenges. Cell Biol Int 2009; 33:255-267. [PMID: 19084605 DOI: 10.1016/j.cellbi.2008.11.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 11/18/2008] [Indexed: 12/14/2022] [Imported: 08/15/2023]
Abstract
Heart disorders are a major health concern worldwide responsible for millions of deaths every year. Among the many disorders of the heart, myocardial infarction, which can lead to the development of congestive heart failure, arrhythmias, or even death, has the most severe social and economic ramifications. Lack of sufficient available donor hearts for heart transplantation, the only currently viable treatment for heart failure other than medical management options (ACE inhibition, beta blockade, use of AICDs, etc.) that improve the survival of patients with heart failure emphasises the need for alternative therapies. One promising alternative replaces cardiac muscle damaged by myocardial infarction with new contractile cardiomyocytes and vessels obtained through stem cell-based regeneration. We report on the state of the art of recovery of cardiac functions by using stem cell engineering. Current research focuses on (a) inducing stem cells into becoming cardiac cells before or after injection into a host, (b) growing replacement heart tissue in vitro, and (c) stimulating the proliferation of the post-mitotic cardiomyocytes in situ. The most promising treatment option for patients is the engineering of new heart tissue that can be implanted into damaged areas. Engineering of cardiac tissue currently employs the use of co-culture of stem cells with scaffold microenvironments engineered to improve tissue survival and enhance differentiation. Growth of heart tissue in vitro using scaffolds, soluble collagen, and cell sheets has unique advantages. To compensate for the loss of ventricular mass and contractility of the injured cardiomyocytes, different stem cell populations have been extensively studied as potential sources of new cells to ameliorate the injured myocardium and eventually restore cardiac function. Unresolved issues including insufficient cell generation survival, growth, and differentiation have led to mixed results in preclinical and clinical studies. Addressing these limitations should ensure the successful production of replacement heart tissue to benefit cardiac patients.
Collapse
|
Review |
16 |
45 |
9
|
Li SC, Tachiki LML, Kabeer MH, Dethlefs BA, Anthony MJ, Loudon WG. Cancer genomic research at the crossroads: realizing the changing genetic landscape as intratumoral spatial and temporal heterogeneity becomes a confounding factor. Cancer Cell Int 2014; 14:115. [PMID: 25411563 PMCID: PMC4236490 DOI: 10.1186/s12935-014-0115-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/24/2014] [Indexed: 02/06/2023] [Imported: 08/15/2023] Open
Abstract
The US National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI) created the Cancer Genome Atlas (TCGA) Project in 2006. The TCGA's goal was to sequence the genomes of 10,000 tumors to identify common genetic changes among different types of tumors for developing genetic-based treatments. TCGA offered great potential for cancer patients, but in reality has little impact on clinical applications. Recent reports place the past TCGA approach of testing a small tumor mass at a single time-point at a crossroads. This crossroads presents us with the conundrum of whether we should sequence more tumors or obtain multiple biopsies from each individual tumor at different time points. Sequencing more tumors with the past TCGA approach of single time-point sampling can neither capture the heterogeneity between different parts of the same tumor nor catch the heterogeneity that occurs as a function of time, error rates, and random drift. Obtaining multiple biopsies from each individual tumor presents multiple logistical and financial challenges. Here, we review current literature and rethink the utility and application of the TCGA approach. We discuss that the TCGA-led catalogue may provide insights into studying the functional significance of oncogenic genes in reference to non-cancer genetic background. Different methods to enhance identifying cancer targets, such as single cell technology, real time imaging of cancer cells with a biological global positioning system, and cross-referencing big data sets, are offered as ways to address sampling discrepancies in the face of tumor heterogeneity. We predict that TCGA landmarks may prove far more useful for cancer prevention than for cancer diagnosis and treatment when considering the effect of non-cancer genes and the normal genetic background on tumor microenvironment. Cancer prevention can be better realized once we understand how therapy affects the genetic makeup of cancer over time in a clinical setting. This may help create novel therapies for gene mutations that arise during a tumor's evolution from the selection pressure of treatment.
Collapse
|
research-article |
11 |
33 |
10
|
Li SC, Vu LT, Ho HW, Yin HZ, Keschrumrus V, Lu Q, Wang J, Zhang H, Ma Z, Stover A, Weiss JH, Schwartz PH, Loudon WG. Cancer stem cells from a rare form of glioblastoma multiforme involving the neurogenic ventricular wall. Cancer Cell Int 2012; 12:41. [PMID: 22995409 PMCID: PMC3546918 DOI: 10.1186/1475-2867-12-41] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 08/10/2012] [Indexed: 12/17/2022] [Imported: 08/15/2023] Open
Abstract
BACKGROUND The cancer stem cell (CSC) hypothesis posits that deregulated neural stem cells (NSCs) form the basis of brain tumors such as glioblastoma multiforme (GBM). GBM, however, usually forms in the cerebral white matter while normal NSCs reside in subventricular and hippocampal regions. We attempted to characterize CSCs from a rare form of glioblastoma multiforme involving the neurogenic ventricular wall. METHODS We described isolating CSCs from a GBM involving the lateral ventricles and characterized these cells with in vitro molecular biomarker profiling, cellular behavior, ex vivo and in vivo techniques. RESULTS The patient's MRI revealed a heterogeneous mass with associated edema, involving the left subventricular zone. Histological examination of the tumor established it as being a high-grade glial neoplasm, characterized by polygonal and fusiform cells with marked nuclear atypia, amphophilic cytoplasm, prominent nucleoli, frequent mitotic figures, irregular zones of necrosis and vascular hyperplasia. Recurrence of the tumor occurred shortly after the surgical resection. CD133-positive cells, isolated from the tumor, expressed stem cell markers including nestin, CD133, Ki67, Sox2, EFNB1, EFNB2, EFNB3, Cav-1, Musashi, Nucleostemin, Notch 2, Notch 4, and Pax6. Biomarkers expressed in differentiated cells included Cathepsin L, Cathepsin B, Mucin18, Mucin24, c-Myc, NSE, and TIMP1. Expression of unique cancer-related transcripts in these CD133-positive cells, such as caveolin-1 and -2, do not appear to have been previously reported in the literature. Ex vivo organotypic brain slice co-culture showed that the CD133+ cells behaved like tumor cells. The CD133-positive cells also induced tumor formation when they were stereotactically transplanted into the brains of the immune-deficient NOD/SCID mice. CONCLUSIONS This brain tumor involving the neurogenic lateral ventricular wall was comprised of tumor-forming, CD133-positive cancer stem cells, which are likely the driving force for the rapid recurrence of the tumor in the patient.
Collapse
|
research-article |
13 |
23 |
11
|
Li SC, Lee KL, Luo J. Control dominating subclones for managing cancer progression and posttreatment recurrence by subclonal switchboard signal: implication for new therapies. Stem Cells Dev 2012; 21:503-506. [PMID: 21933025 PMCID: PMC6916525 DOI: 10.1089/scd.2011.0267] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 09/20/2011] [Indexed: 12/17/2022] [Imported: 08/15/2023] Open
Abstract
In contrast to hematological malignancies, meaningful improvements in survival statistics for patients with malignant brain tumors have not been realized in >40 years of clinical research. Clearly, a new medical approach to brain cancers is needed. Recent research has led to a new concept that needs to destroy all cancer subclones to control the cancer progression. However, this new concept fails to distinguish the difference between dominating subclones and dormant subclones. Here, we address the issue of clonal switch and emphasize that there may be one or more than one dominant clones within the tumor mass at any time. Destructing one dominant clone triggers activating other dormant subclones to become dominating subclones, causing cancer progress and post-treatment cancer recurrence. We postulate the concept of subclonal switchboard signaling and the pathway that involved in this process. In the context of stem cell and development, there is a parallel with the concept of quiescent/dormant cancer stem cells (CSC) and their progeny, the differentiated cancer cells; these 2 populations communicate and co-exist. The mechanism with which determines to extend self-renewal and expansion of CSC is needed to elucidate. We suggest eliminating the "dominating subclonal switchboard signals" that shift the dormant subclones to dominating subclones as a new strategy.
Collapse
|
Letter |
13 |
19 |
12
|
Li SC, Jin Y, Loudon WG, Song Y, Ma Z, Weiner LP, Zhong JF. Increase developmental plasticity of human keratinocytes with gene suppression. Proc Natl Acad Sci U S A 2011; 108:12793-12798. [PMID: 21768375 PMCID: PMC3150912 DOI: 10.1073/pnas.1100509108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] [Imported: 08/15/2023] Open
Abstract
Recent evidence indicates that p53 suppression increased the efficiency of induced pluripotent stem cell (iPSC) generation. This occurred even with the enforced expression of as few as two canonical transcription factors, Oct4 and Sox2. In this study, primary human keratinocytes were successfully induced into a stage of plasticity by transient inactivation of p53, without enforced expression of any of the transcription factors previously used in iPSC generation. These cells were later redifferentiated into neural lineages. The gene suppression plastic cells were morphologically indistinguishable from human ES cells. Gene suppression plastic cells were alkaline phosphatase-positive, had normal karyotypes, and expressed p53. Together with the accumulating evidence of similarities and overlapping mechanisms between iPSC generation and cancer formation, this finding sheds light on the emerging picture of p53 sitting at the crossroads between two intricate cellular potentials: stem cell vs. cancer cell generation. This finding further supports the crucial role played by p53 in cellular reprogramming and suggests an alternative method to switch the lineage identity of human cells. This reported method offers the potential for directed lineage switching with the goal of generating autologous cell populations for novel clinical applications for neurodegenerative diseases.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
19 |
13
|
Li SC, Vu LT, Luo JJ, Zhong JF, Li Z, Dethlefs BA, Loudon WG, Kabeer MH. Tissue Elasticity Bridges Cancer Stem Cells to the Tumor Microenvironment Through microRNAs: Implications for a "Watch-and-Wait" Approach to Cancer. Curr Stem Cell Res Ther 2017; 12:455-470. [PMID: 28270089 PMCID: PMC5587377 DOI: 10.2174/1574888x12666170307105941] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 02/01/2017] [Accepted: 03/01/2017] [Indexed: 12/16/2022] [Imported: 08/15/2023]
Abstract
BACKGROUND Targeting the tumor microenvironment (TME) through which cancer stem cells (CSCs) crosstalk for cancer initiation and progression, may open new treatments different from those centered on the original hallmarks of cancer genetics thereby implying a new approach for suppression of TME driven activation of CSCs. Cancer is dynamic, heterogeneous, evolving with the TME and can be influenced by tissue-specific elasticity. One of the mediators and modulators of the crosstalk between CSCs and mechanical forces is miRNA, which can be developmentally regulated, in a tissue- and cellspecific manner. OBJECTIVE Here, based on our previous data, we provide a framework through which such gene expression changes in response to external mechanical forces can be understood during cancer progression. Recognizing the ways mechanical forces regulate and affect intracellular signals with applications in cancer stem cell biology. Such TME-targeted pathways shed new light on strategies for attacking cancer stem cells with fewer side effects than traditional gene-based treatments for cancer, requiring a "watchand- wait" approach. We attempt to address both normal brain microenvironment and tumor microenvironment as both works together, intertwining in pathology and physiology - a balance that needs to be maintained for the "watch-and-wait" approach to cancer. CONCLUSION This review connected the subjects of tissue elasticity, tumor microenvironment, epigenetic of miRNAs, and stem-cell biology that are very relevant in cancer research and therapy. It attempts to unify apparently separate entities in a complex biological web, network, and system in a realistic and practical manner, i.e., to bridge basic research with clinical application.
Collapse
|
Review |
8 |
14 |
14
|
Li SC, Loudon WG. A novel and generalizable organotypic slice platform to evaluate stem cell potential for targeting pediatric brain tumors. Cancer Cell Int 2008; 8:9. [PMID: 18498656 PMCID: PMC2474582 DOI: 10.1186/1475-2867-8-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 05/22/2008] [Indexed: 12/17/2022] [Imported: 08/15/2023] Open
Abstract
Brain tumors are now the leading cause of cancer-related deaths in children under age 15. Malignant gliomas are, for all practical purposes, incurable and new therapeutic approaches are desperately needed. One emerging strategy is to use the tumor tracking capacity inherent in many stem cell populations to deliver therapeutic agents to the brain cancer cells. Current limitations of the stem cell therapy strategy include that stem cells are treated as a single entity and lack of uniform technology is adopted for selection of clinically relevant sub-populations of stem cells. Specifically, therapeutic success relies on the selection of a clinically competent stem cell population based on their capacity of targeting brain tumors. A novel and generalizable organotypic slice platform to evaluate stem cell potential for targeting pediatric brain tumors is proposed to fill the gap in the current work flow of stem cell-based therapy. The organotypic slice platform has advantages of being mimic in vivo model, easier to manipulate to optimize parameters than in vivo models such as rodents and primates. This model serves as a framework to address the discrepancy between anticipated in vivo results and actual in vivo results, a critical barrier to timely progress in the field of the use of stem cells for the treatment of neurological disorders.
Collapse
|
research-article |
17 |
13 |
15
|
Li SC, Kabeer MH. Spatiotemporal switching signals for cancer stem cell activation in pediatric origins of adulthood cancer: Towards a watch-and-wait lifetime strategy for cancer treatment. World J Stem Cells 2018; 10:15-22. [PMID: 29531638 PMCID: PMC5840533 DOI: 10.4252/wjsc.v10.i2.15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/25/2018] [Accepted: 02/24/2018] [Indexed: 02/06/2023] [Imported: 08/15/2023] Open
Abstract
Pediatric origin of cancer stem cell hypothesis holds great promise and potential in adult cancer treatment, however; the road to innovation is full of obstacles as there are plenty of questions left unanswered. First, the key question is to characterize the nature of such stem cells (concept). Second, the quantitative imaging of pediatric stem cells should be implemented (technology). Conceptually, pediatric stem cell origins of adult cancer are based on the notion that plasticity in early life developmental programming evolves local environments to cancer. Technologically, such imaging in children is lacking as all imaging is designed for adult patients. We postulate that the need for quantitative imaging to measure space-time changes of plasticity in early life developmental programming in children may trigger research and development of the imaging technology. Such quantitative imaging of pediatric origin of adulthood cancer will help develop a spatiotemporal monitoring system to determine cancer initiation and progression. Clinical validation of such speculative hypothesis-that cancer originates in a pediatric environment-will help implement a wait-and-watch strategy for cancer treatment.
Collapse
|
Review |
7 |
11 |
16
|
Li SC, Acevedo J, Wang L, Jiang H, Luo J, Pestell RG, Loudon WG, Chang AC. Mechanisms for progenitor cell-mediated repair for ischemic heart injury. Curr Stem Cell Res Ther 2012; 7:2-14. [PMID: 21466480 PMCID: PMC6544365 DOI: 10.2174/157488812798483449] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 03/04/2011] [Accepted: 03/14/2011] [Indexed: 11/22/2022] [Imported: 08/15/2023]
Abstract
Recent studies have shown that treatments involving injection of stem cells into animals with damaged cardiac tissue result in improved cardiac functionality. Clinical trials have reported conflicting results concerning the recellularization of post-infarct collagen scars. No clear mechanism has so far emerged to fully explain how injected stem cells, specifically the commonly used mesenchymal stem cells (MSC) and endothelial precursor cells (EPC), help heal a damaged heart. Clearly, these injected stem cells must survive and thrive in the hypoxic environment that results after injury for any significant repair to occur. Here we discuss how ischemic preconditioning may lead to increased tolerance of stem cells to these harsh conditions and increase their survival and clinical potential after injection. As injected cells must reach the site in numbers large enough for repair to be functionally significant, homing mechanisms involved in stem cell migration are also discussed. We review the mechanisms of action stem cells may employ once they arrive at their target destination. These possible mechanisms include that the injected stem cells (1) secrete growth factors, (2) differentiate into cardiomyocytes to recellularize damaged tissue and strengthen the post-infarct scar, (3) transdifferentiate the host cells into cardiomyocytes, and (4) induce neovascularization. Finally, we discuss that tissue engineering may provide a standardized platform technology to produce clinically applicable stem cell products with these desired mechanistic capacities.
Collapse
|
Review |
13 |
11 |
17
|
Li SC, Stucky A, Chen X, Kabeer MH, Loudon WG, Plant AS, Torno L, Nangia CS, Cai J, Zhang G, Zhong JF. Single-cell transcriptomes reveal the mechanism for a breast cancer prognostic gene panel. Oncotarget 2018; 9:33290-33301. [PMID: 30279960 PMCID: PMC6161791 DOI: 10.18632/oncotarget.26044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022] [Imported: 08/15/2023] Open
Abstract
The clinical benefits of the MammaPrint® signature for breast cancer is well documented; however, how these genes are related to cell cycle perturbation have not been well determined. Our single-cell transcriptome mapping (algorithm) provides details into the fine perturbation of all individual genes during a cell cycle, providing a view of the cell-cycle-phase specific landscape of any given human genes. Specifically, we identified that 38 out of the 70 (54%) MammaPrint® signature genes are perturbated to a specific phase of the cell cycle. The MammaPrint® signature panel derived its clinical prognosis power from measuring the cell cycle activity of specific breast cancer samples. Such cell cycle phase index of the MammaPrint® signature suggested that measurement of the cell cycle index from tumors could be developed into a prognosis tool for various types of cancer beyond breast cancer, potentially improving therapy through targeting a specific phase of the cell cycle of cancer cells.
Collapse
|
research-article |
7 |
10 |
18
|
Li SC, Rangel AD, Kabeer MH. Precision Technique for Splenectomy Limits Mouse Stress Responses for Accurate and Realistic Measurements for Investigating Inflammation and Immunity. Bio Protoc 2019; 9:e3317. [PMID: 31497622 PMCID: PMC6730662 DOI: 10.21769/bioprotoc.3317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/24/2019] [Accepted: 07/28/2019] [Indexed: 12/21/2022] [Imported: 08/15/2023] Open
Abstract
Splenectomy in an animal model requires a standardized technique utilizing best practice to avoid variability which can result in adverse impact to the animal resulting in flawed physiologic responses simply due to technique rather than to the studied variables. In the case of the spleen, often investigators are analyzing the animal immune or inflammatory responses. Surgical splenectomy involves many variables from the training and expertise of the surgeon, which directly correlates to surgical technique to the length of operation and ease of the procedure. This operation, in turn, impacts blood loss and insensible fluid losses, sterile technique, unintended trauma to the spleen and surrounding organs, the length of the incision and the duration of the operation with more prolonged exposure to anesthetic agents. All these variables ultimately play a significant role in the experiment since they directly affect the response of the model in terms of inflammation, immune activation, or even suppression. Undesired variables such as these go unnoticed and lead to inaccurate and misleading data.
Collapse
|
methods-article |
6 |
6 |
19
|
Li SC, Kabeer MH. Autologous Splenocyte Reinfusion Improves Antibody-Mediated Immune Response to the 23-Valent Pneumococcal Polysaccharide-Based Vaccine in Splenectomized Mice. Biomolecules 2020; 10:704. [PMID: 32369978 PMCID: PMC7277809 DOI: 10.3390/biom10050704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] [Imported: 08/15/2023] Open
Abstract
Common clinical options, currently, for necessary splenectomy are vaccinations and antibiotic prophylaxis. However, despite these two adjuncts, there still occur numerous cases of overwhelming post-splenectomy infection. To examine whether reperfusion of critical splenic lymphocytes could boost immune response, we harvested splenic lymphocytes, reperfused the autologous lymphocytes, and then administered a pneumococcal vaccine (PNEUMOVAX®23, i.e., PPSV23) in splenectomized mice. We found that splenectomy impaired the immune response in the splenectomized group compared to the non-splenectomized group; the splenectomized group with lymphocyte reinfusion had a higher response to polysaccharide vaccination based on antibody titer than the splenectomized group without lymphocyte reinfusion. The sham group with the native spleen had the most elevated antibody titer against the PPSV23 polysaccharide antigen. This may be additive, resulting from contributions of the splenic structure, along with the phagocytic function of the spleen and its constituent cells affecting the antibody response. Reinfusion of splenic lymphocytes may enhance immunity without the complications associated with splenic fragment autotransplantation, which never gained acceptance. This technique is safe and simple since the splenic lymphocytes are autologous and, therefore, not self-reactive, and very similar to autologous blood transfusion. This concept may be beneficial in cases of unavoidable splenectomy, especially in pediatric cases.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
5 |
20
|
Li SC, Han YP, Dethlefs BA, Loudon WG. Therapeutic window, a critical developmental stage for stem cell therapies. Curr Stem Cell Res Ther 2010; 5:297-293. [PMID: 20528752 DOI: 10.2174/157488810793351730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 07/10/2009] [Indexed: 12/24/2022] [Imported: 08/15/2023]
Abstract
In children, cancers are the deadliest of diseases and second only to accidents as the leading cause of death. The deadliest of the brain cancers are the malignant gliomas. Approximately two-thirds of children can survive less malignant types of brain cancers, however, in ~67% of these survivors recurs under the current regimes of surgery followed by administration of high doses toxic drugs and exposure to high doses of radiation. Even more distressing is that fortunate survivors are generally left with life-long cognitive disabilities. A new medical approach is desperately needed. Stem cells, with their natural ability to seek out brain tumors, could be used to accurately deliver therapy directly to the cancer sparing normal tissues for suppression of tumor growth. Despite exciting initial reports, clinical potency of stem cell therapy in animal brain tumor models has to date proven disappointing. Attempts to extrapolate the animal study results to humans are stymied by the fact that stem cells are heterogeneous, resulting in differences in their efficacy. Indeed, therapeutic success relies on an effective strategy to select for a stem cell sub-population within some particular stage of the development at which they are competitive and capable of targeting brain tumors. To improve this during developmental path, concept of a 'therapeutic window' is proposed. The "therapeutic window" for stem cells or more specifically a "biochemical therapeutic window" can be determined from biochemical assays and a "biological therapeutic window" from biological assays or even a molecular window for genetic description. Taken together, we can use selective processes to generate more effective stem cells to treat cancers as is clearly needed today.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
1 |
21
|
Calvin Li S, Han YP, Dethlefs BA, Günter Loudon W. Retraction. Therapeutic window of stem cell potential for targeting pediatric malignant brain tumors: an opportunity for stem cell therapy. Stem Cell Rev Rep 2009; 5:446. [PMID: 19590989 DOI: 10.1007/s12015-009-9066-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] [Imported: 08/15/2023]
|
Retraction Notice |
16 |
1 |
22
|
Li SC. Mastering the craft: Creating an insightful and widely-cited literature review. World J Stem Cells 2023; 15:781-786. [PMID: 37700820 PMCID: PMC10494571 DOI: 10.4252/wjsc.v15.i8.781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/25/2023] [Imported: 01/11/2025] Open
Abstract
The art of constructing an insightful literature review manuscript has witnessed an exemplar in the work of Oz et al (2023), wherein concept progression harmoniously merges with figures and tables. Reflecting on retrospective data science, it is evident that well-cited articles can wield a transformative influence on the Journal Citation Reports Impact Factor score, as exemplified by Robert Weinberg's landmark on cancer (Hanahan and Weinberg, 2011). Here, we aim to spotlight a commendable contribution by Tuba Oz, Ajeet Kaushik, and Małgorzata Kujawska in this issue while pivoting towards identifying the hallmarks of a subpar literature review-elements that hinder rather than promote advancement. The hurdles and roadblocks encountered within subpar literature reviews are multifold. Anticipation of emerging trends, identification of challenges, and exploration of solutions remain conspicuously absent. Original Contributions fail to surface amidst the vast sea of pre-existing literature, with noticeable gaps amplified by the lack of illustrative figures and tables. The manuscript, at times, assumes a skeletal form, reflecting an attempt to accommodate an excess of references, leading to convoluted sentences laden with citations. In contrast, a potent solution lies in adopting a comprehensive approach. A nuanced and critical evaluation of sources can culminate in a robust discussion, surpassing the mere summarization of conclusions drawn by others. This approach, often dismissed, holds the potential to elevate clarity, coherence, and logical flow, ultimately inviting engaged readership and coveted citations. The critical necessity of integrating visionary insights is underscored and achieved through a rigorous analysis of pivotal concepts and innovative ideas. Examples can be harnessed to elucidate the application of these solutions. We advocate a paradigm shift, urging literature review writers to embrace the readers' perspective. A literature review's purpose extends beyond providing a comprehensive panorama; it should illuminate avenues for concept development within a specific field of interest. By achieving this balance, literature reviews stand to captivate a devoted readership, paving the way for manuscripts that are both widely read and frequently cited. The pathway forward requires a fusion of astute analysis and visionary insights, shaping the future of literature review composition.
Collapse
|
Editorial |
2 |
|
23
|
Li SC, He JG. A generalizable and tunable engineered ecosystem provides a clear route to prosperity and well-being to harness the world's aquatic "blue" food systems to help end hunger: A perspective. FRONTIERS IN FOOD SCIENCE AND TECHNOLOGY 2022; 2:886808. [PMID: 36312446 PMCID: PMC9617584 DOI: 10.3389/frfst.2022.886808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] [Imported: 01/11/2025]
Abstract
Seafood security is essential in modern society. In 2013, Bush and colleagues stated, 'Aquaculture, farming aquatic organisms, provides close to 50% of the world's supply of seafood, with a value of United States $125 billion. It makes up 13% of the world's animal-source protein (excluding eggs and dairy) and employs an estimated 24 million people'. With the increase in the human population and reducing fishing resources, humans increasingly rely on aquacultural products as the primary protein sources for many countries. Aquacultural productivity has been improving in recent years, and in certain countries, the aquaculture output is more than the fishing output. For example, Chinese aquaculture production is more than fishing output, which provides one-third of animal protein. Thus, intensive aquaculture has become the main supply with global aquatic products (FAO). In recent years, it is estimated that each person consumption of aquaculture products is 130 kg in some countries (Iceland). Here, we illustrate the road blocker in farmed shrimp production and provide our resolution. The global pandemic of white spot syndrome (WSS), caused by the white spot syndrome virus (WSSV), bears a devastating economic loss in farmed shrimp production, thereby jeopardizing seafood security. Currently, there is no effective control for WSS. Conventional single-species intensive farming removes the spatiotemporal interaction between different species. We hypothesize that establishing the spatiotemporal interface of a predator-prey may control WSS outbreak. We search for the pathways for the mechanisms by which predator-prey species interact and compete across spatial scales to characterize WSSV dispersal at regional scales for the local spatiotemporal structure of viral transmission. Thus, we create a generalizable and tunable engineered ecosystem that provides a clear route to prosperity and well-being to harness the world's aquatic "blue" food systems to help end hunger.
Collapse
|
research-article |
3 |
|
24
|
Li SC, Kabeer MH. Caveolae-Mediated Extracellular Vesicle (CMEV) Signaling of Polyvalent Polysaccharide Vaccination: A Host-Pathogen Interface Hypothesis. Pharmaceutics 2022; 14:2653. [PMID: 36559147 PMCID: PMC9784826 DOI: 10.3390/pharmaceutics14122653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/22/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] [Imported: 08/15/2023] Open
Abstract
We published a study showing that improvement in response to splenectomy associated defective, in regards to the antibody response to Pneumovax® 23 (23-valent polysaccharides, PPSV23), can be achieved by splenocyte reinfusion. This study triggered a debate on whether and how primary and secondary immune responses occur based on humoral antibody responses to the initial vaccination and revaccination. The anti-SARS-CoV-2 vaccine sheds new light on the interpretation of our previous data. Here, we offer an opinion on the administration of the polyvalent polysaccharide vaccine (PPSV23), which appears to be highly relevant to the primary vaccine against SARS-CoV-2 and its booster dose. Thus, we do not insist this is a secondary immune response but an antibody response, nonetheless, as measured through IgG titers after revaccination. However, we contend that we are not sure if these lower but present IgG levels against pneumococcal antigens are clinically protective or are equally common in all groups because of the phenomenon of "hyporesponsiveness" seen after repeated polysaccharide vaccine challenge. We review the literature and propose a new mechanism-caveolae memory extracellular vesicles (CMEVs)-by which polysaccharides mediate prolonged and sustained immune response post-vaccination. We further delineate and explain the data sets to suggest that the dual targets on both Cav-1 and SARS-CoV-2 spike proteins may block the viral entrance and neutralize viral load, which minimizes the immune reaction against viral attacks and inflammatory responses. Thus, while presenting our immunological opinion, we answer queries and responses made by readers to our original statements published in our previous work and propose a hypothesis for all vaccination strategies, i.e., caveolae-mediated extracellular vesicle-mediated vaccine memory.
Collapse
|
Review |
3 |
|
25
|
Li SC, Sparks KJ, Sender LS. Implementation and Validation of the Roche Light Cycler 480 96-Well Plate Platform as a Real-Time PCR Assay for the Quantitative Detection of Cytomegalovirus (CMV) in Clinical Specimens Using the Luminex MultiCode ASRs System. Med Sci (Basel) 2020; 8:14. [PMID: 32168800 PMCID: PMC7151591 DOI: 10.3390/medsci8010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 11/16/2022] [Imported: 08/15/2023] Open
Abstract
Allogenic stem-cell therapies benefit patients in the treatment of multiple diseases; however, the side effects of stem-cell therapies (SCT) derived from the concomitant use of immune suppression agents often include triggering infection diseases. Thus, analysis is required to improve the detection of pathogen infections in SCT. We develop a polymerase chain reaction (PCR)-based methodology for the qualitative real-time DNA detection of cytomegalovirus (CMV), with reference to herpes simplex virus types 1 (HSVI), Epstein-Barr virus (EBV), and varicella-zoster virus (VZV) in blood, urine, solid tissues, and cerebrospinal fluid. This real-time PCR of 96-well plate format provides a rapid framework as required by the Food and Drug Administration (FDA) for clinical settings, including the processing of specimens, reagent handling, special safety precautions, quality control criteria and analytical accuracy, precisely reportable range (analyst measurement range), reference range, limit of detection (LOD), analytical specificity established by interference study, and analyte stability. Specifically, we determined the reportable range (analyst measurement range) with the following criteria: CMV copies ≥200 copies/mL; report copy/mL value; CMV copies ≤199 copies/mL; report detected but below quantitative range; CMV copies = 0 with report <200 copies/mL. That is, with reference range, copy numbers (CN) per milliliter (mL) of the LOD were determined by standard curves that correlated Ct value and calibrated standard DNA panels. The three repeats determined that the measuring range was 1E2~1E6 copies/mL. The standard curves show the slopes were within the range -2.99 to -3.65 with R2 ≥ 0.98. High copy (HC) controls were within 0.17-0.18 log differences of DNA copy numbers; (2) low copy (LC) controls were within 0.17-0.18 log differences; (3) LOD was within 0.14-0.15 log differences. As such, we set up a fast, simple, inexpensive, sensitive, and reliable molecular approach for the qualitative detection of CMV pathogens. Conclusion: This real-time PCR of the 96-well plate format provides a rapid framework as required by the FDA for clinical settings.
Collapse
|
other |
5 |
|