1
|
Chai C, Sui K, Tang J, Yu H, Yang C, Zhang H, Li SC, Zhong JF, Wang Z, Zhang X. BCR-ABL1-driven exosome-miR130b-3p-mediated gap-junction Cx43 MSC intercellular communications imply therapies of leukemic subclonal evolution. Theranostics 2023; 13:3943-3963. [PMID: 37554265 PMCID: PMC10405834 DOI: 10.7150/thno.83178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/12/2023] [Indexed: 08/10/2023] [Imported: 08/15/2023] Open
Abstract
Rationale: In the bone marrow microenvironment (BMME), mesenchymal stem/stromal cells (MSCs) control the self-renewal of both healthy and cancerous hematopoietic stem/progenitor cells (HSPCs). We previously showed that in vivo leukemia-derived MSCs change neighbor MSCs into leukemia-permissive states and boost leukemia cell proliferation, survival, and chemotherapy resistance. But the mechanisms behind how the state changes are still not fully understood. Methods: Here, we took a reverse engineering approach to determine BCR-ABL1+ leukemia cells activated transcriptional factor C/EBPβ, resulting in miR130a/b-3p production. Then, we back-tracked from clinical specimen transcriptome sequencing to cell co-culture, molecular and cellular assays, flow cytometry, single-cell transcriptome, and transcriptional regulation to determine the molecular mechanisms of BCR-ABL1-driven exosome-miR130b-3p-mediated gap-junction Cx43 MSC intercellular communications. Results: BCR-ABL1-driven exosome-miR130a/b-3p mediated gap-junction Cx43 (a.k.a., GJA1) BMSC intercellular communications for subclonal evolution in leukemic microenvironment by targeting BMSCs-expressed HLAs, thereby potentially maintaining BMSCs with self-renewal properties and reduced BMSC immunogenicity. The Cx43low and miR-130a/bhigh subclonal MSCs subsets of differentiation state could be reversed to Cx43high and miR-130a/blow subclones of the higher stemness state in Cx43-overexpressed subclonal MSCs. Both miR-130a and miR-130b might only inhibit Cx43 translation or degrade Cx43 proteins and did not affect Cx43 mRNA stability. The subclonal evolution was further confirmed by single-cell transcriptome profiling of MSCs, which suggested that Cx43 regulated their stemness and played normal roles in immunomodulation antigen processing. Thus, upregulated miR-130a/b promoted osteogenesis and adipogenesis from BMSCs, thereby decreasing cancer progression. Our clinical data validated that the expression of many genes in human major histocompatibility was negatively associated with the stemness of MSCs, and several immune checkpoint proteins contributing to immune escape in tumors were overexpressed after either miR-130a or miR-130b overexpression, such as CD274, LAG3, PDCD1, and TNFRSF4. Not only did immune response-related cytokine-cytokine receptor interactions and PI3K-AKT pathways, including EGR3, TNFRSF1B, but also NDRG2 leukemic-associated inflammatory factors, such as IFNB1, CXCL1, CXCL10, and CCL7 manifest upon miR-130a/b overexpression. Either BCR siRNAs or ABL1 siRNAs assay showed significantly decreased miR-130a and miR-130b expression, and chromatin immunoprecipitation sequencing confirmed that the regulation of miR-130a and miR-130b expression is BCR-ABL1-dependent. BCR-ABL1 induces miR-130a/b expression through the upregulation of transcriptional factor C/EBPβ. C/EBPβ could bind directly to the promoter region of miR-130b-3p, not miR-130a-3p. BCR-ABL1-driven exosome-miR130a-3p could interact with Cx43, and further impact GJIC in TME. Conclusion: Our findings shed light on how leukemia BCR-ABL1-driven exosome-miR130b-3p could interact with gap-junction Cx43, and further impact GJIC in TME, implications for leukemic therapies of subclonal evolution.
Collapse
Affiliation(s)
- Chengyan Chai
- Medical Center of Hematology, Second Affiliated Hospital, Army Medical University, Chongqing,400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Ke Sui
- Medical Center of Hematology, Second Affiliated Hospital, Army Medical University, Chongqing,400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Jun Tang
- Medical Center of Hematology, Second Affiliated Hospital, Army Medical University, Chongqing,400037, China
| | - Hao Yu
- Medical Center of Hematology, Second Affiliated Hospital, Army Medical University, Chongqing,400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
| | - Chao Yang
- Medical Center of Hematology, Second Affiliated Hospital, Army Medical University, Chongqing,400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
| | - Hongyang Zhang
- Medical Center of Hematology, Second Affiliated Hospital, Army Medical University, Chongqing,400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
| | - Shengwen Calvin Li
- Neuro-Oncology and Stem Cell Research Laboratory, Center for Neuroscience Research, CHOC Children's Research Institute, Children's Hospital of Orange County (CHOC), 1201 La Veta Ave., Orange, CA 92868-3874, United States of America
- Department of Neurology, University of California-Irvine School of Medicine, 200 S. Manchester Ave. Ste. 206, Orange, CA 92868, United States of America
| | - Jiang F. Zhong
- Department of Basic Sciences, Loma Linda University, Loma Linda, California, 92354, United States of America
| | - Zheng Wang
- Medical Center of Hematology, Second Affiliated Hospital, Army Medical University, Chongqing,400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Xi Zhang
- Medical Center of Hematology, Second Affiliated Hospital, Army Medical University, Chongqing,400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| |
Collapse
|
2
|
Zhang J, Su Q, Li SC. Qigong Exercise Balances Oxygen Supply and Acid-Base to Modulate Hypoxia: A Perspective Platform toward Preemptive Health & Medicine. Med Sci (Basel) 2023; 11:medsci11010021. [PMID: 36976529 PMCID: PMC10057714 DOI: 10.3390/medsci11010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/14/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] [Imported: 08/15/2023] Open
Abstract
Qigong is a meditative movement with therapeutic effects and is commonly practiced in Eastern medicine. A growing body of evidence validates its health benefits, leading to mechanistic questions about how it works. We propose a novel mechanism by which the “acid” caused by hypoxia affects metabolism, and the way it is neutralized through Qigong practice involves the body’s blood flow and vasculature modifications. Specifically, Qigong exercise generates an oxygen supply and acid-base balance against the hypoxic effects of underlying pathological conditions. We also propose that Qigong exercise mediated and focused on the local hypoxia environment of tissues might normalize the circulation of metabolic and inflammation accumulation in the tumor tissue and restore the normal metabolism of tissues and cells through calm, relaxation, and extreme Zen-style breathing that gravitates toward preemptive health and medicine. Thus, we propose the mechanisms of action related to Qigong, intending to unify Eastern and Western exercise theory.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Physical Training and Physical Therapy, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Qingning Su
- Center of Bioengineering, School of Medicine, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Shengwen Calvin Li
- Neuro-Oncology and Stem Cell Research Laboratory (NSCL), CHOC Children’s Research Institute (CCRI), Children’s Hospital of Orange County (CHOC), 1201 W. La Veta Ave., Orange, CA 92868-3874, USA
- Department of Neurology, School of Medicine, University of California-Irvine (UCI), 200 S Manchester Ave Ste 206, Orange, CA 92868, USA
- Correspondence: ; Tel.: +1-714-509-4964; Fax: +1-714-509-4318
| |
Collapse
|
3
|
Wang J, Li X, Zhou J, Qiu D, Zhang M, Sun L, Li SC. Long-term survival with anlotinib as a front-line treatment in an elderly NSCLC patient: A case report. Front Oncol 2023; 13:1043244. [PMID: 37091182 PMCID: PMC10117841 DOI: 10.3389/fonc.2023.1043244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/13/2023] [Indexed: 04/25/2023] [Imported: 08/15/2023] Open
Abstract
Background Half of the population of non-small cell lung cancer (NSCLC) patients are older than 70 years and have limited therapeutic options due to poor tolerance and being excluded in most clinical trials. Anlotinib hydrochloride, a novel oral multi-target tyrosine kinase inhibitor, has been approved for the standard third-line treatment for NSCLC in China. Herein we report an elderly NSCLC patient without any driver gene mutations who was undergoing anlotinib as a front-line treatment and who achieved long-term survival. Case summary The 77-year-old male patient was admitted to the hospital for chest tightness after engaging in physical activity for a week. The patient has been diagnosed with stage IIIB driver gene-negative squamous cell lung carcinoma. After that, he was treated with anlotinib for 2 years and 10 months from the first diagnosis until the last disease progression. Briefly, anlotinib combined with platinum-based chemotherapy was performed as the first-line therapy over six cycles. After 6 more cycles of anlotinib monotherapy maintenance, disease progression occurred. Then, anlotinib combined with tegafur was administered as a salvage treatment, and the disease was controlled again. After 29 cycles of anlotinib combined with tegafur regimens, the disease progressed finally. The patient achieved a total of 34 months of progression-free survival after anlotinib was used as the front-line treatment. He is still alive with a good performance status now (performance status score: 1). Conclusion This patient achieved long-term survival using anlotinib as a front-line regimen combined with chemotherapy.
Collapse
Affiliation(s)
- Jingyi Wang
- Department of Oncology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqing Li
- Department of Oncology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Zhou
- Department of Oncology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Qiu
- Department of Oncology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Mengyao Zhang
- Department of Oncology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Lan Sun
- Department of Oncology, Bishan Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Lan Sun, ; Shengwen Calvin Li,
| | - Shengwen Calvin Li
- Neuro-Oncology and Stem Cell Research Laboratory, Center for Neuroscience Research, CHOC Children’s Research Institute, Children’s Hospital of Orange County (CHOC), Orange, CA, United States
- Department of Neurology, University of California-Irvine School of Medicine, Orange, CA, United States
- *Correspondence: Lan Sun, ; Shengwen Calvin Li,
| |
Collapse
|
4
|
Sun L, Li X, Tu L, Stucky A, Huang C, Chen X, Cai J, Li SC. RNA-Sequencing Combined With Genome-Wide Allele-Specific Expression Patterning Identifies ZNF44 Variants as a Potential New Driver Gene for Pediatric Neuroblastoma. Cancer Control 2023; 30:10732748231175017. [PMID: 37161925 DOI: 10.1177/10732748231175017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] [Imported: 08/15/2023] Open
Abstract
INTRODUCTION Neuroblastoma (NB) is one of the children's most common solid tumors, accounting for approximately 8% of pediatric malignancies and 15% of childhood cancer deaths. Somatic mutations in several genes, such as ALK, have been associated with NB progression and can facilitate the discovery of novel therapeutic strategies. However, the differential expression of mutated and wild-type alleles on the transcriptome level is poorly studied. METHODS This study analyzed 219 whole-exome sequencing datasets with somatic mutations detected by MuTect from paired normal and tumor samples. RESULTS We prioritized mutations in 8 candidate genes (RIMS4, RUSC2, ALK, MYCN, PTPN11, ALOX12B, ZNF44, and CNGB1) as potential driver mutations. We further confirmed the presence of allele-specific expression of the somatic mutations in NB with integrated analysis of 127 RNA-seq samples (of which 85 also had DNA-seq data available), including MYCN, ALK, and PTPN11. The allele-specific expression of mutations suggests that the same somatic mutation may have different effects on the clinical outcomes of tumors. CONCLUSION Our study suggests 2 novel variants of ZNF44 as a novel candidate driver gene for NB.
Collapse
Affiliation(s)
- Lan Sun
- Department of Oncology,Bishan Hospital of Chongqing Medical University, The People's Hospital of Bishan District, Chongqing, China
| | - Xiaoqing Li
- Department of Oncology,Bishan Hospital of Chongqing Medical University, The People's Hospital of Bishan District, Chongqing, China
| | - Lingli Tu
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andres Stucky
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chuan Huang
- Department of Oncology,Bishan Hospital of Chongqing Medical University, The People's Hospital of Bishan District, Chongqing, China
| | - Xuelian Chen
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jin Cai
- Department of Oral and Maxillofacial Surgery, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Shengwen Calvin Li
- Neuro-Oncology and Stem Cell Research Laboratory, Center for Neuroscience Research, CHOC Children's Research Institute, Children's Hospital of Orange County (CHOC), Orange, CA, USA
- Department of Neurology, University of California, Irvine School of Medicine, Orange, CA, USA
| |
Collapse
|
5
|
Li SC, Kabeer MH. Caveolae-Mediated Extracellular Vesicle (CMEV) Signaling of Polyvalent Polysaccharide Vaccination: A Host-Pathogen Interface Hypothesis. Pharmaceutics 2022; 14:pharmaceutics14122653. [PMID: 36559147 PMCID: PMC9784826 DOI: 10.3390/pharmaceutics14122653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/22/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] [Imported: 08/15/2023] Open
Abstract
We published a study showing that improvement in response to splenectomy associated defective, in regards to the antibody response to Pneumovax® 23 (23-valent polysaccharides, PPSV23), can be achieved by splenocyte reinfusion. This study triggered a debate on whether and how primary and secondary immune responses occur based on humoral antibody responses to the initial vaccination and revaccination. The anti-SARS-CoV-2 vaccine sheds new light on the interpretation of our previous data. Here, we offer an opinion on the administration of the polyvalent polysaccharide vaccine (PPSV23), which appears to be highly relevant to the primary vaccine against SARS-CoV-2 and its booster dose. Thus, we do not insist this is a secondary immune response but an antibody response, nonetheless, as measured through IgG titers after revaccination. However, we contend that we are not sure if these lower but present IgG levels against pneumococcal antigens are clinically protective or are equally common in all groups because of the phenomenon of "hyporesponsiveness" seen after repeated polysaccharide vaccine challenge. We review the literature and propose a new mechanism-caveolae memory extracellular vesicles (CMEVs)-by which polysaccharides mediate prolonged and sustained immune response post-vaccination. We further delineate and explain the data sets to suggest that the dual targets on both Cav-1 and SARS-CoV-2 spike proteins may block the viral entrance and neutralize viral load, which minimizes the immune reaction against viral attacks and inflammatory responses. Thus, while presenting our immunological opinion, we answer queries and responses made by readers to our original statements published in our previous work and propose a hypothesis for all vaccination strategies, i.e., caveolae-mediated extracellular vesicle-mediated vaccine memory.
Collapse
Affiliation(s)
- Shengwen Calvin Li
- Neuro-Oncology and Stem Cell Research Laboratory, Center for Neuroscience Research, CHOC Children’s Research Institute, Children’s Hospital of Orange County, 1201 West La Veta Ave., Orange, CA 92868-3874, USA
- Department of Neurology, University of California-Irvine School of Medicine, 200 S Manchester Ave. Ste 206, Orange, CA 92868, USA
- Correspondence: ; Tel.: +1-714-509-4964
| | - Mustafa H. Kabeer
- Division of Pediatric General and Thoracic Surgery, CHOC Children’s Hospital, 1201 West La Veta Ave., Orange, CA 92868, USA
- Department of Surgery, University of California-Irvine School of Medicine, 333 City Blvd. West, Suite 700, Orange, CA 92868, USA
| |
Collapse
|
6
|
Li X, Wang X, Huang R, Stucky A, Chen X, Sun L, Wen Q, Zeng Y, Fletcher H, Wang C, Xu Y, Cao H, Sun F, Li SC, Zhang X, Zhong JF. The Machine-Learning-Mediated Interface of Microbiome and Genetic Risk Stratification in Neuroblastoma Reveals Molecular Pathways Related to Patient Survival. Cancers (Basel) 2022; 14:cancers14122874. [PMID: 35740540 PMCID: PMC9220810 DOI: 10.3390/cancers14122874] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] [Imported: 08/15/2023] Open
Abstract
Simple Summary Neuroblastoma is a highly heterogeneous malignancy with a wide range of outcomes from spontaneous regression to fatal chemoresistant disease, as currently treated according to the risk stratification of the Children’s Oncology Group (COG), resulting in some high COG risk patients receiving excessive treatment, due to lacking predictors for treatment response. Here, we sought to complement COG risk classification by using the tumor intracellular microbiome, which is part of the tumor’s molecular signature. We determine that an intra-tumor microbial gene abundance score, namely M-score, separates the high COG-risk patients into two subpopulations (Mhigh and Mlow) with higher accuracy in risk stratification than the current COG risk assessment, thus sparing a subset of high COG-risk patients from being subjected to traditional high-risk therapies. Abstract Currently, most neuroblastoma patients are treated according to the Children’s Oncology Group (COG) risk group assignment; however, neuroblastoma’s heterogeneity renders only a few predictors for treatment response, resulting in excessive treatment. Here, we sought to couple COG risk classification with tumor intracellular microbiome, which is part of the molecular signature of a tumor. We determine that an intra-tumor microbial gene abundance score, namely M-score, separates the high COG-risk patients into two subpopulations (Mhigh and Mlow) with higher accuracy in risk stratification than the current COG risk assessment, thus sparing a subset of high COG-risk patients from being subjected to traditional high-risk therapies. Mechanistically, the classification power of M-scores implies the effect of CREB over-activation, which may influence the critical genes involved in cellular proliferation, anti-apoptosis, and angiogenesis, affecting tumor cell proliferation survival and metastasis. Thus, intracellular microbiota abundance in neuroblastoma regulates intracellular signals to affect patients’ survival.
Collapse
Affiliation(s)
- Xin Li
- Department of Basic Science, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (X.L.); (A.S.); (X.C.); (H.F.); (C.W.)
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China; (X.W.); (R.H.); (Q.W.); (Y.Z.)
| | - Ruihao Huang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China; (X.W.); (R.H.); (Q.W.); (Y.Z.)
| | - Andres Stucky
- Department of Basic Science, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (X.L.); (A.S.); (X.C.); (H.F.); (C.W.)
| | - Xuelian Chen
- Department of Basic Science, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (X.L.); (A.S.); (X.C.); (H.F.); (C.W.)
| | - Lan Sun
- Department of Oncology, Bishan Hospital of Chongqing Medical University, the People’s Hospital of Bishan District, Chongqing 400037, China;
| | - Qin Wen
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China; (X.W.); (R.H.); (Q.W.); (Y.Z.)
| | - Yunjing Zeng
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China; (X.W.); (R.H.); (Q.W.); (Y.Z.)
| | - Hansel Fletcher
- Department of Basic Science, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (X.L.); (A.S.); (X.C.); (H.F.); (C.W.)
| | - Charles Wang
- Department of Basic Science, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (X.L.); (A.S.); (X.C.); (H.F.); (C.W.)
| | - Yi Xu
- Divisions of Hematology and Oncology and Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (Y.X.); (H.C.)
- Cancer Center of Loma Linda University, Loma Linda, CA 92350, USA
| | - Huynh Cao
- Divisions of Hematology and Oncology and Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (Y.X.); (H.C.)
- Cancer Center of Loma Linda University, Loma Linda, CA 92350, USA
| | - Fengzhu Sun
- Quantitative and Computational Biology Department, University of Southern California, Los Angeles, CA 90089, USA;
| | - Shengwen Calvin Li
- CHOC Children’s Research Institute, Children’s Hospital of Orange County (CHOC), 1201 La Veta Ave., Orange, CA 92868-3874, USA
- Department of Neurology, University of California—Irvine School of Medicine, 200 S. Manchester Ave. Ste. 206, Orange, CA 92868, USA
- Correspondence: (S.C.L.); (X.Z.); (J.F.Z.)
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China; (X.W.); (R.H.); (Q.W.); (Y.Z.)
- Correspondence: (S.C.L.); (X.Z.); (J.F.Z.)
| | - Jiang F. Zhong
- Department of Basic Science, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (X.L.); (A.S.); (X.C.); (H.F.); (C.W.)
- Cancer Center of Loma Linda University, Loma Linda, CA 92350, USA
- Correspondence: (S.C.L.); (X.Z.); (J.F.Z.)
| |
Collapse
|
7
|
Stucky A, Gao L, Li SC, Tu L, Luo J, Huang X, Chen X, Li X, Park TH, Cai J, Kabeer MH, Plant AS, Sun L, Zhang X, Zhong JF. Molecular Characterization of Differentiated-Resistance MSC Subclones by Single-Cell Transcriptomes. Front Cell Dev Biol 2022; 10:699144. [PMID: 35356283 PMCID: PMC8959432 DOI: 10.3389/fcell.2022.699144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 02/14/2022] [Indexed: 11/25/2022] [Imported: 08/15/2023] Open
Abstract
Background: The mechanism of tumorigenicity potentially evolved in mesenchymal stem cells (MSCs) remains elusive, resulting in inconsistent clinical application efficacy. We hypothesized that subclones in MSCs contribute to their tumorgenicity, and we approached MSC-subclones at the single-cell level. Methods: MSCs were cultured in an osteogenic differentiation medium and harvested on days 12, 19, and 25 for cell differentiation analysis using Alizarin Red and followed with the single-cell transcriptome. Results: Single-cell RNA-seq analysis reveals a discrete cluster of MSCs during osteogenesis, including differentiation-resistant MSCs (DR-MSCs), differentiated osteoblasts (DO), and precursor osteoblasts (PO). The DR-MSCs population resembled cancer initiation cells and were subjected to further analysis of the yes associated protein 1 (YAP1) network. Verteporfin was also used for YAP1 inhibition in cancer cell lines to confirm the role of YAP1 in MSC--involved tumorigenicity. Clinical data from various cancer types were analyzed to reveal relationships among YAP1, OCT4, and CDH6 in MSC--involved tumorigenicity. The expression of cadherin 6 (CDH6), octamer-binding transcription factor 4 (OCT4), and YAP1 expression was significantly upregulated in DR-MSCs compared to PO and DO. YAP1 inhibition by Verteporfin accelerated the differentiation of MSCs and suppressed the expression of YAP1, CDH6, and OCT4. A survey of 56 clinical cohorts revealed a high degree of co-expression among CDH6, YAP1, and OCT4 in various solid tumors. YAP1 inhibition also down-regulated HeLa cell viability and gradually inhibited YAP1 nuclear localization while reducing the transcription of CDH6 and OCT4. Conclusions: We used single-cell sequencing to analyze undifferentiated MSCs and to discover a carcinogenic pathway in single-cell MSCs of differentiated resistance subclones.
Collapse
Affiliation(s)
- Andres Stucky
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, CA, United States
| | - Li Gao
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Shengwen Calvin Li
- Neuro-oncology and Stem Cell Research Laboratory, CHOC Children’s Research Institute, Center for Neuroscience Research, Children’s Hospital of Orange County (CHOC), Orange, CA, United States
- Department of Neurology, Irvine School of Medicine, University of California, Irvine, CA, United States
- *Correspondence: Shengwen Calvin Li, ; Lan Sun, ; Xi Zhang,
| | - Lingli Tu
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, CA, United States
- Department of Oncology, Bishan, The People’s Hospital of Bishan District, Bishan, Chongqing, China
| | - Jun Luo
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Huang
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuelian Chen
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, CA, United States
| | - Xiaoqing Li
- Department of Oncology, Bishan, The People’s Hospital of Bishan District, Bishan, Chongqing, China
| | - Tiffany H. Park
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jin Cai
- Department of Oral and Maxillofacial Surgery, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Mustafa H. Kabeer
- Pediatric Surgery, CHOC Children’s Hospital, Department of Surgery, Irvine School of Medicine, University of California, Irvine, CA, United States
| | - Ashley S. Plant
- Division of Pediatric Oncology, Children’s Hospital of Orange County, Orange, CA, United States
| | - Lan Sun
- Department of Oncology, Bishan, The People’s Hospital of Bishan District, Bishan, Chongqing, China
- *Correspondence: Shengwen Calvin Li, ; Lan Sun, ; Xi Zhang,
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- *Correspondence: Shengwen Calvin Li, ; Lan Sun, ; Xi Zhang,
| | - Jiang F. Zhong
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, CA, United States
| |
Collapse
|
8
|
Li X, Sun L, Stucky A, Tu L, Cai J, Chen X, Wu Z, Jiang X, Li SC. Reply to Schramm, L. Comment on “Li et al. BDP1 Variants I1264M and V1347M Significantly Associated with Clinical Outcomes of Pediatric Neuroblastoma Patients Imply a New Prognostic Biomarker: A 121-Patient Cancer Genome Study. Diagnostics 2021, 11, 2364”. Diagnostics (Basel) 2022; 12:diagnostics12030617. [PMID: 35328170 PMCID: PMC8947584 DOI: 10.3390/diagnostics12030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/25/2022] [Indexed: 12/10/2022] [Imported: 08/15/2023] Open
Affiliation(s)
- Xiaoqing Li
- Department of Oncology, The People’s Hospital of Bishan District, Chongqing 402760, China; (X.L.); (L.S.)
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Lan Sun
- Department of Oncology, The People’s Hospital of Bishan District, Chongqing 402760, China; (X.L.); (L.S.)
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (A.S.); (L.T.); (X.C.)
| | - Andres Stucky
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (A.S.); (L.T.); (X.C.)
| | - Lingli Tu
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (A.S.); (L.T.); (X.C.)
| | - Jin Cai
- Department of Oral and Maxillofacial Surgery, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai 519000, China;
| | - Xuelian Chen
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (A.S.); (L.T.); (X.C.)
| | - Zhongjun Wu
- Department of Oncology, The People’s Hospital of Bishan District, Chongqing 402760, China; (X.L.); (L.S.)
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
- Correspondence: (Z.W.); (X.J.)
| | - Xuhong Jiang
- Department of Health Management, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai 519000, China
- Correspondence: (Z.W.); (X.J.)
| | - Shengwen Calvin Li
- Neuro-Oncology and Stem Cell Research Laboratory, Center for Neuroscience Research, CHOC Children’s Research Institute, Children’s Hospital of Orange County (CHOC), 1201 West La Veta Ave., Orange, CA 92868-3874, USA;
- Department of Neurology, Irvine School of Medicine, University of California, 200 S Manchester Ave. Ste. 206, Orange, CA 92868, USA
| |
Collapse
|
9
|
Zhang X, Hou L, Li F, Zhang W, Wu C, Xiang L, Li J, Zhou L, Wang X, Xiang Y, Xiao Y, Li SC, Chen L, Ran Q, Li Z. Piezo1-mediated mechanosensation in bone marrow macrophages promotes vascular niche regeneration after irradiation injury. Am J Cancer Res 2022; 12:1621-1638. [PMID: 35198061 DOI: 10.7150/thno.64963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/09/2021] [Indexed: 11/05/2022] [Imported: 08/15/2023] Open
Abstract
Background: Irradiation disrupts the vascular niche where hematopoietic stem cells (HSCs) reside, causing delayed hematopoietic reconstruction. The subsequent recovery of sinusoidal vessels is key to vascular niche regeneration and a prerequisite for hematopoietic reconstruction. We hypothesize that resident bone marrow macrophages (BM-Mφs) are responsible for repairing the HSC niche upon irradiation injury. Methods: We examined the survival and activation of BM-Mφs in C57BL/6 mice upon total body irradiation. After BM-Mφ depletion via injected clodronate-containing liposomes and irradiation injury, hematopoietic reconstruction and sinusoidal vascular regeneration were assessed with immunofluorescence and flow cytometry. Then enzyme-linked immunosorbent assay (ELISA) and flow cytometry were performed to analyze the contribution of VEGF-A released by BM-Mφs to the vascular restructuring of the HSC niche. VEGF-A-mediated signal transduction was assessed with transcriptome sequencing, flow cytometry, and pharmacology (agonists and antagonists) to determine the molecular mechanisms of Piezo1-mediated responses to structural changes in the HSC niche. Results: The depletion of BM-Mφs aggravated the post-irradiation injury, delaying the recovery of sinusoidal endothelial cells and HSCs. A fraction of the BM-Mφ population persisted after irradiation, with residual BM-Mφ exhibiting an activated M2-like phenotype. The expression of VEGF-A, which is essential for sinusoidal regeneration, was upregulated in BM-Mφs post-irradiation, especially CD206+ BM-Mφs. The expression of mechanosensory ion channel Piezo1, a response to mechanical environmental changes induced by bone marrow ablation, was upregulated in BM-Mφs, especially CD206+ BM-Mφs. Piezo1 upregulation was mediated by the effects of irradiation, the activation of Piezo1 itself, and the M2-like polarization induced by the phagocytosis of apoptotic cells. Piezo1 activation was associated with increased expression of VEGF-A and increased accumulation of NFATC1, NFATC2, and HIF-1α. The Piezo1-mediated upregulation in VEGF-A was suppressed by inhibiting the calcineurin/NFAT/HIF-1α signaling pathway. Conclusion: These findings reveal that BM-Mφs play a critical role in promoting vascular niche regeneration by sensing and responding to structural changes after irradiation injury, offering a potential target for therapeutic efforts to enhance hematopoietic reconstruction.
Collapse
|
10
|
Li X, Sun L, Stucky A, Tu L, Cai J, Chen X, Wu Z, Jiang X, Li SC. BDP1 Variants I1264M and V1347M Significantly Associated with Clinical Outcomes of Pediatric Neuroblastoma Patients Imply a New Prognostic Biomarker: A 121-Patient Cancer Genome Study. Diagnostics (Basel) 2021; 11:diagnostics11122364. [PMID: 34943600 PMCID: PMC8700758 DOI: 10.3390/diagnostics11122364] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 01/03/2023] [Imported: 08/15/2023] Open
Abstract
Background: Neuroblastoma (N.B.) is the most common tumor in children. The gene BDP1 (B Double Prime 1) plays a role in cancers but is less known in N.B. Thus, we conducted this study to investigate the value of BDP1 mutations in N.B. prognosis. Methods: A dataset of 121 NB patients from the Cancer Genome Atlas database was used to analyze BDP1 gene mutations by RNA sequencing. Kaplan-Meier estimates were performed for overall survival (O.S.) analysis on BDP1 variants, and Cox’s proportional hazards regression model was used for multivariate analysis. Results: In 121 NB patients, we identified two variants of BDP1 associated with N.B., located at chr5:71511131 and chr5:71510884. The prevalence of these BDP1 variants, I1264M and V1347M, was 52.9% (64/121) and 45.5% (55/121), respectively. O.S. analysis showed a significant difference between subgroups with or without BDP1 variants (p < 0.05). Multivariate analysis further revealed that BDP1ariants were independent prognostic variables in N.B. (p < 0.05). Conclusion: Our results suggest BDP1 variants are associated with significantly improved clinical outcomes in N.B., thus providing clinicians with a new tool.
Collapse
Affiliation(s)
- Xiaoqing Li
- Department of Oncology, the People’s Hospital of Bishan District, Chongqing 402760, China; (X.L.); (L.S.)
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Lan Sun
- Department of Oncology, the People’s Hospital of Bishan District, Chongqing 402760, China; (X.L.); (L.S.)
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (A.S.); (L.T.); (X.C.)
| | - Andres Stucky
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (A.S.); (L.T.); (X.C.)
| | - Lingli Tu
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (A.S.); (L.T.); (X.C.)
| | - Jin Cai
- Department of Oral and Maxillofacial Surgery, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai 519000, China;
| | - Xuelian Chen
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (A.S.); (L.T.); (X.C.)
| | - Zhongjun Wu
- Department of Oncology, the People’s Hospital of Bishan District, Chongqing 402760, China; (X.L.); (L.S.)
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
- Correspondence: (Z.W.); (X.J.)
| | - Xuhong Jiang
- Department of Health Management, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai 519000, China
- Correspondence: (Z.W.); (X.J.)
| | - Shengwen Calvin Li
- Neuro-Oncology and Stem Cell Research Laboratory, Center for Neuroscience Research, CHOC Children’s Research Institute, Children’s Hospital of Orange County (CHOC), 1201 West La Veta Ave, Orange, CA 92868-3874, USA;
- Department of Neurology, Irvine School of Medicine, University of California, 200 S Manchester Ave Ste 206, Orange, CA 92868, USA
| |
Collapse
|
11
|
Wang M, Chen Y, Zhao Z, Weng S, Yang J, Liu S, Liu C, Yuan F, Ai B, Zhang H, Zhang M, Lu L, Yuan K, Yu Z, Mo B, Liu X, Gai C, Li Y, Lu R, Zhong Z, Zheng L, Feng G, Li SC, He J. A convenient polyculture system that controls a shrimp viral disease with a high transmission rate. Commun Biol 2021; 4:1276. [PMID: 34764419 PMCID: PMC8585955 DOI: 10.1038/s42003-021-02800-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/19/2021] [Indexed: 11/30/2022] [Imported: 08/15/2023] Open
Abstract
Developing ecological approaches for disease control is critical for future sustainable aquaculture development. White spot syndrome (WSS), caused by white spot syndrome virus (WSSV), is the most severe disease in cultured shrimp production. Culturing specific pathogen-free (SPF) broodstock is an effective and widely used strategy for controlling WSS. However, most small-scale farmers, who predominate shrimp aquaculture in developing countries, cannot cultivate SPF shrimp, as they do not have the required infrastructure and skills. Thus, these producers are more vulnerable to WSS outbreaks than industrial farms. Here we developed a shrimp polyculture system that prevents WSS outbreaks by introducing specific fish species. The system is easy to implement and requires no special biosecurity measures. The promotion of this system in China demonstrated that it allowed small-scale farmers to improve their livelihood through shrimp cultivation by controlling WSS outbreaks and increasing the production of ponds. Wang et al. develop a shrimp polyculture system that prevents white spot syndrome outbreaks by introducing specific fish species. The system is easy to implement and requires no special biosecurity measures which makes it ideal for small-scale farmers.
Collapse
Affiliation(s)
- Muhua Wang
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Yonggui Chen
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Zhong Zhao
- School of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shaoping Weng
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.,School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, 525435, China
| | - Jinchuan Yang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shangyun Liu
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Chang Liu
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Fenghua Yuan
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Bin Ai
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Haiqing Zhang
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Mingyan Zhang
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Lirong Lu
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Kai Yuan
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Zhaolong Yu
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, 525435, China
| | - Bibo Mo
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Xinjian Liu
- Guangzhou Nansha District Yinong fishery cooperative, Guangzhou, 511464, China
| | - Chunlei Gai
- Marine Science Research Institute of Shandong Province, Qingdao, 266104, China
| | - Yijun Li
- Hainan Changjiang Nanjiang Biotechnology Co., Ltd., Changjiang, 572700, China
| | - Renjie Lu
- Aquatic Fine Breed & Fisheries Environmental Monitoring and Protection Center of Hebei Province, Shijiazhuang, 050035, China
| | - Zhiwei Zhong
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Luwei Zheng
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Guocan Feng
- School of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Shengwen Calvin Li
- University of California-Irvine School of Medicine, Children's Hospital of Orange County, Orange, CA, 92868-3874, USA.
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China. .,School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China. .,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, 525435, China.
| |
Collapse
|
12
|
Sun M, Xue X, Li L, Xu D, Li S, Li SC, Su Q. Ectosome biogenesis and release processes observed by using live-cell dynamic imaging in mammalian glial cells. Quant Imaging Med Surg 2021; 11:4604-4616. [PMID: 34737927 DOI: 10.21037/qims-20-1015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/09/2021] [Indexed: 01/08/2023] [Imported: 08/15/2023]
Abstract
Background Ectosomes are recognized as shedding from the plasma membranes into the extracellular environment. Recent research has demonstrated that ectosomes are surrounded by phospholipid membranes containing lipid rafts and caveolae. Some ectosomes contain cytokines in the lumen and have high levels of phosphatidylserine exposed to the outer membrane. Intracellular vesicles share both characters with ectosomes. Why the plasma membrane-derived ectosomes have the same characteristics as intracellular vesicles remain largely unknown. Methods Using live-cell dynamic imaging, we recorded the process of ectosome biogenesis and release in primary cultured neural cells. Results Our results show two different ectosome release methods: slow-releasing and fast-releasing. In the slow-releasing, multiple ectosomes emerge almost simultaneously on the cell surface and are released by outward budding from the plasma membrane. In the fast releasing, ectosomes squeeze out of the membrane domain and pinch off from a cell's surface. Using ER-tracker for live-cell imaging, we directly observed the process that intracellular vesicles jump out of the plasma membrane for release. This type of ectosomes has a reverse array of membrane proteins and phospholipids compared to the plasma membrane. So ectosomes should be divided into two groups: plasma membrane-derived and intracellular membrane-derived ectosomes. Conclusions Both slow releasing and fast releasing EVs imply mechanisms of human diseases and for diagnostics and drug delivery.
Collapse
Affiliation(s)
- Mengjiao Sun
- Bioengineering Research Center, School of Medicine, Shenzhen University, Shenzhen, China
| | - Xiufen Xue
- Bioengineering Research Center, School of Medicine, Shenzhen University, Shenzhen, China
| | - Lingyun Li
- Bioengineering Research Center, School of Medicine, Shenzhen University, Shenzhen, China
| | - Dandan Xu
- Nephrology Department, Shenzhen Nanshan People's Hospital, the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Shihe Li
- Bioengineering Research Center, School of Medicine, Shenzhen University, Shenzhen, China
| | - Shengwen Calvin Li
- Neuro-oncology and Stem Cell Research Laboratory (NSCL), CHOC Children's Research Institute, Children's Hospital of Orange County (CHOC), Orange, CA, USA.,Department of Neurology, University of California-Irvine (UCI) School of Medicine, Orange, CA, USA
| | - Qingning Su
- Bioengineering Research Center, School of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
13
|
Li F, Zhang R, Hu C, Ran Q, Xiang Y, Xiang L, Chen L, Yang Y, Li SC, Zhang G, Li Z. Irradiation Haematopoiesis Recovery Orchestrated by IL-12/IL-12Rβ1/TYK2/STAT3-Initiated Osteogenic Differentiation of Mouse Bone Marrow-Derived Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:729293. [PMID: 34540843 PMCID: PMC8446663 DOI: 10.3389/fcell.2021.729293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] [Imported: 08/15/2023] Open
Abstract
Purpose Repairing the irradiation-induced osteogenic differentiation injury of bone marrow mesenchymal stem cells (BM-MSCs) is beneficial to recovering haematopoiesis injury in radiotherapy; however, its mechanism is elusive. Our study aimed to help meet the needs of understanding the effects of radiotherapy on BM-MSC osteogenic potential. Methods and Materials Balb/c mice and the BM-MSCs were used to evaluate the irradiation-induced osteogenic differentiation injury in vivo. The cellular and molecular characterization were applied to determine the mechanism for recovery of irradiation-derived haematopoiesis injuries. Results We report a functional role of IL-12 in acute irradiation hematopoietic injury recovery and intend to dissect the possible mechanisms through BM-MSC, other than the direct effect of IL-12 on hematopoietic stem and progenitor cells (HSPCs). Specifically, we show that early use of IL-12 enhanced the osteogenic differentiation of BM-MSCs through IL-12Rβ1/TYK2/STAT3 signaling; furthermore, IL-12 induced osteogenesis facilitated bone formation and irradiation hematopoiesis recovery when transplanted BM-MSCs in the femur of Balb/c mice. For the mechanism of action, we found that IL-12 receptor beta 1 (IL-12Rβ1) expression of irradiated BM-MSCs was upregulated rapidly, coincidentally consistent with early use of IL-12 induced osteogenic differentiation enhancement. IL-12Rβ1 and tyrosine kinase 2 gene (Tyk2) silencing experiments and phosphotyrosine of signal transducer and activator of transcription 3 (p-STAT3) suppression experiments indicated the IL-12Rβ1/TYK2/STAT3 signaling was essential in IL-12-induced osteogenic differentiation enhancement of BM-MSCs. Conclusion These findings suggested that IL-12 may exert BM-MSCs-based hematopoietic recovery by repairing osteogenic differentiation abilities damages through IL-12Rβ1/TYK2/STAT3 signaling pathway post-irradiation.
Collapse
Affiliation(s)
- Fengjie Li
- Department of Blood Transfusion, The Irradiation Biology Laboratory, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Qian Ran
- Department of Blood Transfusion, The Irradiation Biology Laboratory, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Yang Xiang
- Department of Blood Transfusion, The Irradiation Biology Laboratory, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Lixin Xiang
- Department of Blood Transfusion, The Irradiation Biology Laboratory, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Li Chen
- Department of Blood Transfusion, The Irradiation Biology Laboratory, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Yang Yang
- Department of Blood Transfusion, The Irradiation Biology Laboratory, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Shengwen Calvin Li
- CHOC Children's Research Institute, Children's Hospital of Orange County, University of California, Irvine, Irvine, CA, United States
| | - Gang Zhang
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Zhongjun Li
- Department of Blood Transfusion, The Irradiation Biology Laboratory, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| |
Collapse
|
14
|
Zhang XM, Chen DG, Li SC, Zhu B, Li ZJ. Embryonic Origin and Subclonal Evolution of Tumor-Associated Macrophages Imply Preventive Care for Cancer. Cells 2021; 10:cells10040903. [PMID: 33919979 PMCID: PMC8071014 DOI: 10.3390/cells10040903] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 01/16/2023] [Imported: 08/15/2023] Open
Abstract
Macrophages are widely distributed in tissues and function in homeostasis. During cancer development, tumor-associated macrophages (TAMs) dominatingly support disease progression and resistance to therapy by promoting tumor proliferation, angiogenesis, metastasis, and immunosuppression, thereby making TAMs a target for tumor immunotherapy. Here, we started with evidence that TAMs are highly plastic and heterogeneous in phenotype and function in response to microenvironmental cues. We pointed out that efforts to tear off the heterogeneous “camouflage” in TAMs conduce to target de facto protumoral TAMs efficiently. In particular, several fate-mapping models suggest that most tissue-resident macrophages (TRMs) are generated from embryonic progenitors, and new paradigms uncover the ontogeny of TAMs. First, TAMs from embryonic modeling of TRMs and circulating monocytes have distinct transcriptional profiling and function, suggesting that the ontogeny of TAMs is responsible for the functional heterogeneity of TAMs, in addition to microenvironmental cues. Second, metabolic remodeling helps determine the mechanism of phenotypic and functional characteristics in TAMs, including metabolic bias from macrophages’ ontogeny in macrophages’ functional plasticity under physiological and pathological conditions. Both models aim at dissecting the ontogeny-related metabolic regulation in the phenotypic and functional heterogeneity in TAMs. We argue that gleaning from the single-cell transcriptomics on subclonal TAMs’ origins may help understand the classification of TAMs’ population in subclonal evolution and their distinct roles in tumor development. We envision that TAM-subclone-specific metabolic reprogramming may round-up with future cancer therapies.
Collapse
Affiliation(s)
- Xiao-Mei Zhang
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing 400037, China;
| | - De-Gao Chen
- Institute of Cancer, The Second Affiliated Hospital, Army Military Medical University, Chongqing 400037, China;
| | - Shengwen Calvin Li
- Neuro-Oncology and Stem Cell Research Laboratory, Center for Neuroscience Research, CHOC Children’s Research Institute, Children’s Hospital of Orange County (CHOC), 1201 West La Veta Ave., Orange, CA 92868, USA
- Department of Neurology, University of California-Irvine School of Medicine, 200 S Manchester Ave., Ste 206, Orange, CA 92868, USA
- Correspondence: (S.C.L.); (B.Z.); (Z.-J.L.)
| | - Bo Zhu
- Institute of Cancer, The Second Affiliated Hospital, Army Military Medical University, Chongqing 400037, China;
- Correspondence: (S.C.L.); (B.Z.); (Z.-J.L.)
| | - Zhong-Jun Li
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing 400037, China;
- Correspondence: (S.C.L.); (B.Z.); (Z.-J.L.)
| |
Collapse
|
15
|
Zeng Y, Gao L, Luo X, Chen Y, Kabeer MH, Chen X, Stucky A, Loudon WG, Li SC, Zhang X, Zhong JF. Corrigendum to: Microfluidic enrichment of plasma cells improves treatment of multiple myeloma. Mol Oncol 2021; 15:317. [PMID: 33398937 PMCID: PMC7782077 DOI: 10.1002/1878-0261.12874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] [Imported: 08/15/2023] Open
|
16
|
Lee LX, Li SC. Hunting down the dominating subclone of cancer stem cells as a potential new therapeutic target in multiple myeloma: An artificial intelligence perspective. World J Stem Cells 2020; 12:706-720. [PMID: 32952853 PMCID: PMC7477658 DOI: 10.4252/wjsc.v12.i8.706] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/08/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] [Imported: 08/15/2023] Open
Abstract
The development of single-cell subclones, which can rapidly switch from dormant to dominant subclones, occur in the natural pathophysiology of multiple myeloma (MM) but is often "pressed" by the standard treatment of MM. These emerging subclones present a challenge, providing reservoirs for chemoresistant mutations. Technological advancement is required to track MM subclonal changes, as understanding MM's mechanism of evolution at the cellular level can prompt the development of new targeted ways of treating this disease. Current methods to study the evolution of subclones in MM rely on technologies capable of phenotypically and genotypically characterizing plasma cells, which include immunohistochemistry, flow cytometry, or cytogenetics. Still, all of these technologies may be limited by the sensitivity for picking up rare events. In contrast, more incisive methods such as RNA sequencing, comparative genomic hybridization, or whole-genome sequencing are not yet commonly used in clinical practice. Here we introduce the epidemiological diagnosis and prognosis of MM and review current methods for evaluating MM subclone evolution, such as minimal residual disease/multiparametric flow cytometry/next-generation sequencing, and their respective advantages and disadvantages. In addition, we propose our new single-cell method of evaluation to understand MM's mechanism of evolution at the molecular and cellular level and to prompt the development of new targeted ways of treating this disease, which has a broad prospect.
Collapse
Affiliation(s)
- Lisa X Lee
- Division of Hematology/Oncology, Department of Medicine, Chao Family Comprehensive Cancer Center, UCI Health, Orange, CA 92868, United States
| | - Shengwen Calvin Li
- Neuro-oncology and Stem Cell Research Laboratory, CHOC Children's Research Institute, Children's Hospital of Orange County, Orange, CA 92868, United States
- Department of Neurology, University of California-Irvine School of Medicine, Orange, CA 92868, United States
| |
Collapse
|
17
|
Li SC, Kabeer MH. Autologous Splenocyte Reinfusion Improves Antibody-Mediated Immune Response to the 23-Valent Pneumococcal Polysaccharide-Based Vaccine in Splenectomized Mice. Biomolecules 2020; 10:biom10050704. [PMID: 32369978 PMCID: PMC7277809 DOI: 10.3390/biom10050704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] [Imported: 08/15/2023] Open
Abstract
Common clinical options, currently, for necessary splenectomy are vaccinations and antibiotic prophylaxis. However, despite these two adjuncts, there still occur numerous cases of overwhelming post-splenectomy infection. To examine whether reperfusion of critical splenic lymphocytes could boost immune response, we harvested splenic lymphocytes, reperfused the autologous lymphocytes, and then administered a pneumococcal vaccine (PNEUMOVAX®23, i.e., PPSV23) in splenectomized mice. We found that splenectomy impaired the immune response in the splenectomized group compared to the non-splenectomized group; the splenectomized group with lymphocyte reinfusion had a higher response to polysaccharide vaccination based on antibody titer than the splenectomized group without lymphocyte reinfusion. The sham group with the native spleen had the most elevated antibody titer against the PPSV23 polysaccharide antigen. This may be additive, resulting from contributions of the splenic structure, along with the phagocytic function of the spleen and its constituent cells affecting the antibody response. Reinfusion of splenic lymphocytes may enhance immunity without the complications associated with splenic fragment autotransplantation, which never gained acceptance. This technique is safe and simple since the splenic lymphocytes are autologous and, therefore, not self-reactive, and very similar to autologous blood transfusion. This concept may be beneficial in cases of unavoidable splenectomy, especially in pediatric cases.
Collapse
Affiliation(s)
- Shengwen Calvin Li
- Neuro-Oncology and Stem Cell Research Laboratory (NSCL), Center for Neuroscience Research (CNR), CHOC Children’s Research Institute (CCRI), Children’s Hospital of Orange County (CHOC), 1201 West La Veta Ave., Orange, CA 92868-3874, USA
- Department of Neurology, University of California-Irvine School of Medicine, 200 S Manchester Ave Ste 206, Orange, CA 92868, USA
- Correspondence: ; Tel.: +1-714-509-4964
| | - Mustafa H. Kabeer
- Division of Pediatric General and Thoracic Surgery, CHOC Children’s Hospital, 1201 West La Veta Ave., Orange, CA 92868, USA;
- Department of Surgery, University of California-Irvine School of Medicine, 333 City Blvd. West, Suite 700, Orange, CA 92868, USA
| |
Collapse
|
18
|
Xiang LX, Ran Q, Chen L, Xiang Y, Li FJ, Zhang XM, Xiao YN, Zou LY, Zhong JF, Li SC, Li ZJ. CR6-interacting factor-1 contributes to osteoclastogenesis by inducing receptor activator of nuclear factor κB ligand after radiation. World J Stem Cells 2020; 12:222-240. [PMID: 32266053 PMCID: PMC7118287 DOI: 10.4252/wjsc.v12.i3.222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/29/2020] [Accepted: 03/15/2020] [Indexed: 02/06/2023] [Imported: 08/15/2023] Open
Abstract
BACKGROUND Radiation induces rapid bone loss and enhances bone resorption and adipogenesis, leading to an increased risk of bone fracture. There is still a lack of effective preventive or therapeutic method for irradiation-induced bone injury. Receptor activator of nuclear factor κB ligand (RANKL) provides the crucial signal to induce osteoclast differentiation and plays an important role in bone resorption. However, the mechanisms of radiation-induced osteoporosis are not fully understood.
AIM To investigate the role of CR6-interacting factor-1 (Crif1) in osteoclastogenesis after radiation and its possible mechanism.
METHODS C57BL/6 mice were exposed to Co-60 gamma rays and received 5 Gy of whole-body sublethal irradiation at a rate of 0.69 Gy/min. For in vitro study, mouse bone marrow mesenchymal stem/stromal cells (BM-MSCs) were irradiated with Co-60 at a single dose of 9 Gy. For osteoclast induction, monocyte-macrophage RAW264.7 cells were cocultured with mouse BM-MSCs for 7 d. ClusPro and InterProSurf were used to investigate the interaction interface in Crif1 and protein kinase cyclic adenosine monophosphate (cAMP)-activited catalytic subunit alpha complex. Virtual screening using 462608 compounds from the Life Chemicals database around His120 of Crif1 was carried out using the program Autodock_vina. A tetrazolium salt (WST-8) assay was carried out to study the toxicity of compounds to different cells, including human BM-MSCs, mouse BM-MSCs, and Vero cells.
RESULTS Crif1 expression increased in bone marrow cells after radiation in mice. Overexpression of Crif1 in mouse BM-MSCs and radiation exposure could increase RANKL secretion and promote osteoclastogenesis in vitro. Deletion of Crif1 in BM-MSCs could reduce both adipogenesis and RANKL expression, resulting in the inhibition of osteoclastogenesis. Deletion of Crif1 in RAW264.7 cells did not affect the receptor activator of nuclear factor κB expression or osteoclast differentiation. Following treatment with protein kinase A (PKA) agonist (forskolin) and inhibitor (H-89) in mouse BM-MSCs, Crif1 induced RANKL secretion via the cAMP/PKA pathway. Moreover, we identified the Crif1-protein kinase cyclic adenosine monophosphate-activited catalytic subunit alpha interaction interface by in silico studies and shortlisted interface inhibitors through virtual screening on Crif1. Five compounds dramatically suppressed RANKL secretion and adipogenesis by inhibiting the cAMP/PKA pathway.
CONCLUSION Crif1 promotes RANKL expression via the cAMP/PKA pathway, which induces osteoclastogenesis by binding to receptor activator of nuclear factor κB on monocytes-macrophages in the mouse model. These results suggest a role for Crif1 in modulating osteoclastogenesis and provide insights into potential therapeutic strategies targeting the balance between osteogenesis and adipogenesis for radiation-induced bone injury.
Collapse
Affiliation(s)
- Li-Xin Xiang
- Laboratory Medicine Center, Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Qian Ran
- Laboratory Medicine Center, Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Li Chen
- Laboratory Medicine Center, Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yang Xiang
- Laboratory Medicine Center, Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Feng-Jie Li
- Laboratory Medicine Center, Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Xiao-Mei Zhang
- Laboratory Medicine Center, Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yan-Ni Xiao
- Laboratory Medicine Center, Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Ling-Yun Zou
- Bioinformatics Center, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Jiang F Zhong
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Shengwen Calvin Li
- CHOC Children’s Research Institute, Children’s Hospital of Orange County, University of California, Irvine, CA 92868, United States
| | - Zhong-Jun Li
- Laboratory Medicine Center, Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| |
Collapse
|
19
|
Li SC, Sparks KJ, Sender LS. Implementation and Validation of the Roche Light Cycler 480 96-Well Plate Platform as a Real-Time PCR Assay for the Quantitative Detection of Cytomegalovirus (CMV) in Clinical Specimens Using the Luminex MultiCode ASRs System. Med Sci (Basel) 2020; 8:E14. [PMID: 32168800 DOI: 10.3390/medsci8010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 11/16/2022] [Imported: 08/15/2023] Open
Abstract
Allogenic stem-cell therapies benefit patients in the treatment of multiple diseases; however, the side effects of stem-cell therapies (SCT) derived from the concomitant use of immune suppression agents often include triggering infection diseases. Thus, analysis is required to improve the detection of pathogen infections in SCT. We develop a polymerase chain reaction (PCR)-based methodology for the qualitative real-time DNA detection of cytomegalovirus (CMV), with reference to herpes simplex virus types 1 (HSVI), Epstein–Barr virus (EBV), and varicella-zoster virus (VZV) in blood, urine, solid tissues, and cerebrospinal fluid. This real-time PCR of 96-well plate format provides a rapid framework as required by the Food and Drug Administration (FDA) for clinical settings, including the processing of specimens, reagent handling, special safety precautions, quality control criteria and analytical accuracy, precisely reportable range (analyst measurement range), reference range, limit of detection (LOD), analytical specificity established by interference study, and analyte stability. Specifically, we determined the reportable range (analyst measurement range) with the following criteria: CMV copies ≥200 copies/mL; report copy/mL value; CMV copies ≤199 copies/mL; report detected but below quantitative range; CMV copies = 0 with report <200 copies/mL. That is, with reference range, copy numbers (CN) per milliliter (mL) of the LOD were determined by standard curves that correlated Ct value and calibrated standard DNA panels. The three repeats determined that the measuring range was 1E2~1E6 copies/mL. The standard curves show the slopes were within the range −2.99 to −3.65 with R2 ≥ 0.98. High copy (HC) controls were within 0.17–0.18 log differences of DNA copy numbers; (2) low copy (LC) controls were within 0.17–0.18 log differences; (3) LOD was within 0.14–0.15 log differences. As such, we set up a fast, simple, inexpensive, sensitive, and reliable molecular approach for the qualitative detection of CMV pathogens. Conclusion: This real-time PCR of the 96-well plate format provides a rapid framework as required by the FDA for clinical settings.
Collapse
|
20
|
Zhang J, Su Q, Loudon WG, Lee KL, Luo J, Dethlefs BA, Li SC. Breathing Signature as Vitality Score Index Created by Exercises of Qigong: Implications of Artificial Intelligence Tools Used in Traditional Chinese Medicine. J Funct Morphol Kinesiol 2019; 4:71. [PMID: 31853512 PMCID: PMC6919646 DOI: 10.3390/jfmk4040071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] [Imported: 08/15/2023] Open
Abstract
Rising concerns about the short- and long-term detrimental consequences of administration of conventional pharmacopeia are fueling the search for alternative, complementary, personalized, and comprehensive approaches to human healthcare. Qigong, a form of Traditional Chinese Medicine, represents a viable alternative approach. Here, we started with the practical, philosophical, and psychological background of Ki (in Japanese) or Qi (in Chinese) and their relationship to Qigong theory and clinical application. Noting the drawbacks of the current state of Qigong clinic, herein we propose that to manage the unique aspects of the Eastern 'non-linearity' and 'holistic' approach, it needs to be integrated with the Western "linearity" "one-direction" approach. This is done through developing the concepts of "Qigong breathing signatures," which can define our life breathing patterns associated with diseases using machine learning technology. We predict that this can be achieved by establishing an artificial intelligence (AI)-Medicine training camp of databases, which will integrate Qigong-like breathing patterns with different pathologies unique to individuals. Such an integrated connection will allow the AI-Medicine algorithm to identify breathing patterns and guide medical intervention. This unique view of potentially connecting Eastern Medicine and Western Technology can further add a novel insight to our current understanding of both Western and Eastern medicine, thereby establishing a vitality score index (VSI) that can predict the outcomes of lifestyle behaviors and medical conditions.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Physical Training and Physical Therapy, Shenzhen University, 3688 Nanhai Avenue, Nanshan District, Shenzhen 518060, China
| | - Qingning Su
- Center of Bioengineering, School of Medicine, Shenzhen University, 3688 Nanhai Avenue, Nanshan District, Shenzhen 518060, China
| | - William G. Loudon
- Neuroscience Institute, Children’s Hospital of Orange County, Gamma Knife Center of Southern California, Department of Neurosurgery, University of California-Irvine School of Medicine, Orange, CA 92612, USA
| | - Katherine L. Lee
- School of Social Ecology, University of California-Irvine, 5300 Social and Behavioral Sciences Gateway, Irvine, CA 92697-7050, USA
| | - Jane Luo
- AB Sciex, Inc., Danaher Corporation, 250 South Kraemer Boulevard, Brea, CA 92821-6232, USA
| | - Brent A. Dethlefs
- CHOC Children’s Research Institute, Children’s Hospital of Orange County (CHOC), 1201 W. La Veta Ave., Orange, CA 92868-3874, USA
| | - Shengwen Calvin Li
- Neuro-Oncology and Stem Cell Research Laboratory (NSCL), CHOC Children’s Research Institute (CCRI), Children’s Hospital of Orange County (CHOC), 1201 W. La Veta Ave., Orange, CA 92868-3874, USA
- Department of Neurology, University of California-Irvine (UCI) School of Medicine, 200 S Manchester Ave Ste 206, Orange, CA 92868, USA
- Correspondence: ; Tel.: +1-714-509-4964; Fax: +1-714-509-4318
| |
Collapse
|
21
|
Ran Q, Jin F, Xiang Y, Xiang L, Wang Q, Li F, Chen L, Zhang Y, Wu C, Zhou L, Xiao Y, Chen L, Wu J, Zhong JF, Li SC, Li Z. CRIF1 as a potential target to improve the radiosensitivity of osteosarcoma. Proc Natl Acad Sci U S A. 2019;116:20511-20516. [PMID: 31548420 DOI: 10.1073/pnas.1906578116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] [Imported: 08/15/2023] Open
Abstract
Resistance to ionizing radiation (IR), which is a conventional treatment for osteosarcoma that cannot be resected, undermines the efficacy of this therapy. However, the mechanism by which IR induces radioresistance in osteosarcoma is not defined. Here, we report that CR6-interacting factor-1 (CRIF1) is highly expressed in osteosarcoma and undergoes nuclear-cytoplasmic shuttling of cyclin-dependent kinase 2 (CDK2) after IR. Osteosarcoma cells lacking CRIF1 show increased sensitivity to IR, which is associated with delayed DNA damage repair, inactivated G1/S checkpoint, and mitochondrial dysfunction. CRIF1 interacts with the DNA damage checkpoint regulator CDK2, and CRIF1 and CDK2 colocalize in the nucleus after IR. Nuclear localization of CDK2 is associated with phosphorylation changes that promote DNA repair and activation of the G1/S checkpoint. CRIF1 knockdown synergized with IR in an in vivo osteosarcoma model, leading to tumor regression. Based on these findings, we identify CRIF1 as a potential therapeutic target in osteosarcoma that can increase the efficacy of radiotherapy. More broadly, our findings may provide insights into the mechanism for other types of radioresistant cancers and be exploited for therapeutic ends.
Collapse
|
22
|
Abstract
Tracking and monitoring implanted stem cells are essential to maximize benefits and to minimize the side effects of stem cell therapy for personalized or "precision" medicine. Previously, we proposed a comprehensive biological Global Positioning System (bGPS) to track and monitor stem cells in vivo. Magnetic resonance imaging (MRI), positron emission tomography (PET), bioluminescent imaging, fluorescence imaging, and single-photon emission computerized tomography (SPECT) have been utilized to track labeled or genetically-modified cells in vivo in rats and humans. A large amount of research has been dedicated to the design of reporter genes and molecular probes for imaging and the visualization of the biodistribution of the implanted cells in high resolution. On the other hand, optical-based functional imaging, such as photoacoustic imaging (PAI), optical coherence tomography (OCT), and multiphoton microscopy (MPM), has been implemented into small endoscopes to image cells inside the body. The optical fiber allows miniaturization of the imaging probe while maintaining high resolution due to light-based imaging. Upon summarizing the recent progress in the design and application of functional endoscopy techniques for stem cell monitoring, we offer perspectives for the future development of endoscopic molecular imaging tools for in vivo tracking of spatiotemporal changes in subclonal evolution at the single cell level.
Collapse
Affiliation(s)
- Yusi Miao
- Beckman Laser Institute, University of California Irvine, Irvine, CA, USA
| | - Zhongping Chen
- Beckman Laser Institute, University of California Irvine, Irvine, CA, USA
| | - Shengwen Calvin Li
- Department of Neurology, University of California Irvine School of Medicine, Orange, CA, USA.,Department of Biological Science, California State University, Fullerton, CA, USA.,CHOC Children's Research Institute, Children's Hospital of Orange County (CHOC), University of California Irvine, Orange, CA, USA
| |
Collapse
|
23
|
Chen X, Wen Q, Stucky A, Zeng Y, Gao S, Loudon WG, Ho HW, Kabeer MH, Li SC, Zhang X, Zhong JF. Relapse pathway of glioblastoma revealed by single-cell molecular analysis. Carcinogenesis 2019; 39:931-936. [PMID: 29718126 DOI: 10.1093/carcin/bgy052] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/23/2018] [Indexed: 12/15/2022] [Imported: 08/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) remains an incurable brain tumor. The highly malignant behavior of GBM may, in part, be attributed to its intraclonal genetic and phenotypic diversity (subclonal evolution). Identifying the molecular pathways driving GBM relapse may provide novel, actionable targets for personalized diagnosis, characterization of prognosis and improvement of precision therapy. We screened single-cell transcriptomes, namely RNA-seq data of primary and relapsed GBM tumors from a patient, to define the molecular profile of relapse. Characterization of hundreds of individual tumor cells identified three mutated genes within single cells, involved in the RAS/GEF GTP-dependent signaling pathway. The identified molecular pathway was further verified by meta-analysis of RNA-seq data from more than 3000 patients. This study showed that single-cell molecular analysis overcomes the inherent heterogeneity of bulk tumors with respect to defining tumor subclonal evolution relevant to GBM relapse.
Collapse
Affiliation(s)
- Xuelian Chen
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Qin Wen
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.,Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, P.R. China
| | - Andres Stucky
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Yunjing Zeng
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.,Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, P.R. China
| | - Shengjia Gao
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - William G Loudon
- Department of Neurosurgery, CHOC Children's Hospital, Neuroscience Institute, Gamma Knife Center of Southern California, University of California - Irvine School of Medicine, Orange, CA, USA
| | - Hector W Ho
- Division of Neurological Surgery, Saint Jude Heritage Medical Group, Saint Joseph Hospital, Orange, CA, USA
| | - Mustafa H Kabeer
- Department of Surgery, CHOC Children's Hospital, University of California - Irvine School of Medicine, Orange, CA, USA
| | - Shengwen Calvin Li
- Neuro-Oncology and Stem Cell Research Laboratory, CHOC Children's Research Institute, Children's Hospital of Orange County, Department of Neurology, University of California - Irvine School of Medicine, Orange, CA, USA
| | - Xi Zhang
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.,Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, P.R. China
| | - Jiang F Zhong
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
24
|
Li SC, Rangel AD, Kabeer MH. Precision Technique for Splenectomy Limits Mouse Stress Responses for Accurate and Realistic Measurements for Investigating Inflammation and Immunity. Bio Protoc 2019; 9:e3317. [PMID: 31497622 DOI: 10.21769/bioprotoc.3317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] [Imported: 08/15/2023] Open
Abstract
Splenectomy in an animal model requires a standardized technique utilizing best practice to avoid variability which can result in adverse impact to the animal resulting in flawed physiologic responses simply due to technique rather than to the studied variables. In the case of the spleen, often investigators are analyzing the animal immune or inflammatory responses. Surgical splenectomy involves many variables from the training and expertise of the surgeon, which directly correlates to surgical technique to the length of operation and ease of the procedure. This operation, in turn, impacts blood loss and insensible fluid losses, sterile technique, unintended trauma to the spleen and surrounding organs, the length of the incision and the duration of the operation with more prolonged exposure to anesthetic agents. All these variables ultimately play a significant role in the experiment since they directly affect the response of the model in terms of inflammation, immune activation, or even suppression. Undesired variables such as these go unnoticed and lead to inaccurate and misleading data.
Collapse
Affiliation(s)
- Shengwen Calvin Li
- CHOC Children's Research Institute, Neuro-oncology and Stem Cell Research Laboratory (NSCL), Center for Neuroscience Research (CNR), Children's Hospital of Orange County (CHOC), 1201 W. La Veta Ave.; Orange, CA 92868-3874, United States of America.,Department of Neurology, University of California-Irvine School of Medicine, 200 S Manchester Ave Ste 206, Orange, CA 92868, United States of America
| | - Anthony D Rangel
- CHOC Children's Research Institute, Neuro-oncology and Stem Cell Research Laboratory (NSCL), Center for Neuroscience Research (CNR), Children's Hospital of Orange County (CHOC), 1201 W. La Veta Ave.; Orange, CA 92868-3874, United States of America
| | - Mustafa H Kabeer
- Pediatric Surgery, Children's Hospital of Orange County, Orange, CA 92868-3874, United States of America.,Department of Surgery, University of California-Irvine School of Medicine, 333 City Blvd. West, Suite 1600, Orange, CA 92868, United States of America
| |
Collapse
|
25
|
Li SC, Stucky A, Chen X, Kabeer MH, Loudon WG, Plant AS, Torno L, Nangia CS, Cai J, Zhang G, Zhong JF. Single-cell transcriptomes reveal the mechanism for a breast cancer prognostic gene panel. Oncotarget 2018; 9:33290-301. [PMID: 30279960 DOI: 10.18632/oncotarget.26044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022] [Imported: 08/15/2023] Open
Abstract
The clinical benefits of the MammaPrint® signature for breast cancer is well documented; however, how these genes are related to cell cycle perturbation have not been well determined. Our single-cell transcriptome mapping (algorithm) provides details into the fine perturbation of all individual genes during a cell cycle, providing a view of the cell-cycle-phase specific landscape of any given human genes. Specifically, we identified that 38 out of the 70 (54%) MammaPrint® signature genes are perturbated to a specific phase of the cell cycle. The MammaPrint® signature panel derived its clinical prognosis power from measuring the cell cycle activity of specific breast cancer samples. Such cell cycle phase index of the MammaPrint® signature suggested that measurement of the cell cycle index from tumors could be developed into a prognosis tool for various types of cancer beyond breast cancer, potentially improving therapy through targeting a specific phase of the cell cycle of cancer cells.
Collapse
|
26
|
Li SC, Vu LT, Luo JJ, Zhong JF, Li Z, Dethlefs BA, Loudon WG, Kabeer MH. Tissue Elasticity Bridges Cancer Stem Cells to the Tumor Microenvironment Through microRNAs: Implications for a "Watch-and-Wait" Approach to Cancer. Curr Stem Cell Res Ther 2018; 12:455-470. [PMID: 28270089 DOI: 10.2174/1574888x12666170307105941] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 02/01/2017] [Accepted: 03/01/2017] [Indexed: 12/16/2022] [Imported: 08/15/2023]
Abstract
BACKGROUND Targeting the tumor microenvironment (TME) through which cancer stem cells (CSCs) crosstalk for cancer initiation and progression, may open new treatments different from those centered on the original hallmarks of cancer genetics thereby implying a new approach for suppression of TME driven activation of CSCs. Cancer is dynamic, heterogeneous, evolving with the TME and can be influenced by tissue-specific elasticity. One of the mediators and modulators of the crosstalk between CSCs and mechanical forces is miRNA, which can be developmentally regulated, in a tissue- and cellspecific manner. OBJECTIVE Here, based on our previous data, we provide a framework through which such gene expression changes in response to external mechanical forces can be understood during cancer progression. Recognizing the ways mechanical forces regulate and affect intracellular signals with applications in cancer stem cell biology. Such TME-targeted pathways shed new light on strategies for attacking cancer stem cells with fewer side effects than traditional gene-based treatments for cancer, requiring a "watchand- wait" approach. We attempt to address both normal brain microenvironment and tumor microenvironment as both works together, intertwining in pathology and physiology - a balance that needs to be maintained for the "watch-and-wait" approach to cancer. CONCLUSION This review connected the subjects of tissue elasticity, tumor microenvironment, epigenetic of miRNAs, and stem-cell biology that are very relevant in cancer research and therapy. It attempts to unify apparently separate entities in a complex biological web, network, and system in a realistic and practical manner, i.e., to bridge basic research with clinical application.
Collapse
|