1
|
Abstract
Liver regeneration after the loss of hepatic tissue is a fundamental parameter of liver response to injury. Recognized as a phenomenon from mythological times, it is now defined as an orchestrated response induced by specific external stimuli and involving sequential changes in gene expression, growth factor production, and morphologic structure. Many growth factors and cytokines, most notably hepatocyte growth factor, epidermal growth factor, transforming growth factor-alpha, interleukin-6, tumor necrosis factor-alpha, insulin, and norepinephrine, appear to play important roles in this process. This review attempts to integrate the findings of the last three decades and looks toward clues as to the nature of the causes that trigger this fascinating organ and cellular response.
Collapse
|
Review |
28 |
2455 |
2
|
Abstract
Liver regeneration after partial hepatectomy is a very complex and well-orchestrated phenomenon. It is carried out by the participation of all mature liver cell types. The process is associated with signaling cascades involving growth factors, cytokines, matrix remodeling, and several feedbacks of stimulation and inhibition of growth related signals. Liver manages to restore any lost mass and adjust its size to that of the organism, while at the same time providing full support for body homeostasis during the entire regenerative process. In situations when hepatocytes or biliary cells are blocked from regeneration, these cell types can function as facultative stem cells for each other.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
1142 |
3
|
Michalopoulos G, Pitot HC. Primary culture of parenchymal liver cells on collagen membranes. Morphological and biochemical observations. Exp Cell Res 1975; 94:70-78. [PMID: 243 DOI: 10.1016/0014-4827(75)90532-7] [Citation(s) in RCA: 602] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] [Imported: 10/07/2023]
|
Comparative Study |
50 |
602 |
4
|
Yu YP, Landsittel D, Jing L, Nelson J, Ren B, Liu L, McDonald C, Thomas R, Dhir R, Finkelstein S, Michalopoulos G, Becich M, Luo JH. Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J Clin Oncol 2004; 22:2790-2799. [PMID: 15254046 DOI: 10.1200/jco.2004.05.158] [Citation(s) in RCA: 575] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] [Imported: 10/07/2023] Open
Abstract
PURPOSE The incidence of prostate cancer is frequent, occurring in almost one-third of men older than 45 years. Only a fraction of the cases reach the stages displaying clinical significance. Despite the advances in our understanding of prostate carcinogenesis and disease progression, our knowledge of this disease is still fragmented. Identification of the genes and patterns of gene expression will provide a more cohesive picture of prostate cancer biology. PATIENTS AND METHODS In this study, we performed a comprehensive gene expression analysis on 152 human samples including prostate cancer tissues, prostate tissues adjacent to tumor, and organ donor prostate tissues, obtained from men of various ages, using the Affymetrix (Santa Clara, CA) U95a, U95b, and U95c chip sets (37,777 genes and expression sequence tags). RESULTS Our results confirm an alteration of gene expression in prostate cancer when comparing with nontumor adjacent prostate tissues. However, our study also indicates that the gene expression pattern in tissues adjacent to cancer is so substantially altered that it resembles a cancer field effect. CONCLUSION We also found that gene expression patterns can be used to predict the aggressiveness of prostate cancer using a novel model.
Collapse
|
|
21 |
575 |
5
|
Abstract
The molecular signals controlling liver regeneration are becoming rapidly defined. Control of growth in regenerating liver has advanced from elusive serum factors and nutrient effects to identification of entirely new growth factors with apparent liver specificity as well as establishment of meaningful gene expression patterns for growth factors already known. Based on studies with hepatocyte cultures and gene expression in regenerating liver, the substances EGF, TGF alpha, HBGF-1 (aFGF), and two new substances (HPTA/HGF and Hepatopoietin B) have been defined as complete mitogens for hepatocytes and implicated in control of liver growth. The amino acid sequence of HPTA/HGF recently became clear and revealed interesting structural homologies in a molecule that might become the largest known growth factor. The plasticity of growth responses seen in liver may be controlled by these factors as well as by comitogenic substances such as norepinephrine which, although nonmitogenic per se, can initiate growth in hepatocytes exposed to the above mitogenic growth factors or mitogenic inhibitors such as TGF beta. The role of the latter in cessation of DNA synthesis in liver regeneration will be discussed, presenting the positive and negative evidence that constitutes the TGF beta paradox of liver regeneration.
Collapse
|
Review |
35 |
571 |
6
|
Michalopoulos GK. Liver regeneration after partial hepatectomy: critical analysis of mechanistic dilemmas. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2-13. [PMID: 20019184 PMCID: PMC2797862 DOI: 10.2353/ajpath.2010.090675] [Citation(s) in RCA: 558] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/25/2009] [Indexed: 12/11/2022] [Imported: 10/07/2023]
Abstract
Liver regeneration after partial hepatectomy is one of the most studied models of cell, organ, and tissue regeneration. The complexity of the signaling pathways initiating and terminating this process have provided paradigms for regenerative medicine. Many aspects of the signaling mechanisms involved in hepatic regeneration are under active investigation. The purpose of this review is to focus on the areas still not well understood. The review also aims to provide insights into the ways by which current concepts of liver regeneration can provide understanding regarding malfunction of the regenerative process in liver diseases, such as acute liver failure.
Collapse
|
Review |
15 |
558 |
7
|
Michalopoulos GK, Bhushan B. Liver regeneration: biological and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol 2021; 18:40-55. [PMID: 32764740 DOI: 10.1038/s41575-020-0342-4] [Citation(s) in RCA: 536] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2020] [Indexed: 02/08/2023] [Imported: 08/29/2023]
Abstract
The liver is the only solid organ that uses regenerative mechanisms to ensure that the liver-to-bodyweight ratio is always at 100% of what is required for body homeostasis. Other solid organs (such as the lungs, kidneys and pancreas) adjust to tissue loss but do not return to 100% of normal. The current state of knowledge of the regenerative pathways that underlie this 'hepatostat' will be presented in this Review. Liver regeneration from acute injury is always beneficial and has been extensively studied. Experimental models that involve partial hepatectomy or chemical injury have revealed extracellular and intracellular signalling pathways that are used to return the liver to equivalent size and weight to those prior to injury. On the other hand, chronic loss of hepatocytes, which can occur in chronic liver disease of any aetiology, often has adverse consequences, including fibrosis, cirrhosis and liver neoplasia. The regenerative activities of hepatocytes and cholangiocytes are typically characterized by phenotypic fidelity. However, when regeneration of one of the two cell types fails, hepatocytes and cholangiocytes function as facultative stem cells and transdifferentiate into each other to restore normal liver structure. Liver recolonization models have demonstrated that hepatocytes have an unlimited regenerative capacity. However, in normal liver, cell turnover is very slow. All zones of the resting liver lobules have been equally implicated in the maintenance of hepatocyte and cholangiocyte populations in normal liver.
Collapse
|
Review |
4 |
536 |
8
|
Zarnegar R, Michalopoulos GK. The many faces of hepatocyte growth factor: from hepatopoiesis to hematopoiesis. J Cell Biol 1995; 129:1177-1180. [PMID: 7775566 PMCID: PMC2120475 DOI: 10.1083/jcb.129.5.1177] [Citation(s) in RCA: 467] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] [Imported: 10/07/2023] Open
|
Review |
30 |
467 |
9
|
Hidvegi T, Ewing M, Hale P, Dippold C, Beckett C, Kemp C, Maurice N, Mukherjee A, Goldbach C, Watkins S, Michalopoulos G, Perlmutter DH. An autophagy-enhancing drug promotes degradation of mutant alpha1-antitrypsin Z and reduces hepatic fibrosis. Science 2010; 329:229-232. [PMID: 20522742 DOI: 10.1126/science.1190354] [Citation(s) in RCA: 466] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] [Imported: 10/07/2023]
Abstract
In the classical form of alpha1-antitrypsin (AT) deficiency, a point mutation in AT alters the folding of a liver-derived secretory glycoprotein and renders it aggregation-prone. In addition to decreased serum concentrations of AT, the disorder is characterized by accumulation of the mutant alpha1-antitrypsin Z (ATZ) variant inside cells, causing hepatic fibrosis and/or carcinogenesis by a gain-of-toxic function mechanism. The proteasomal and autophagic pathways are known to mediate degradation of ATZ. Here we show that the autophagy-enhancing drug carbamazepine (CBZ) decreased the hepatic load of ATZ and hepatic fibrosis in a mouse model of AT deficiency-associated liver disease. These results provide a basis for testing CBZ, which has an extensive clinical safety profile, in patients with AT deficiency and also provide a proof of principle for therapeutic use of autophagy enhancers.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
466 |
10
|
Naldini L, Weidner KM, Vigna E, Gaudino G, Bardelli A, Ponzetto C, Narsimhan RP, Hartmann G, Zarnegar R, Michalopoulos GK. Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. EMBO J 1991; 10:2867-2878. [PMID: 1655405 PMCID: PMC452997 DOI: 10.1002/j.1460-2075.1991.tb07836.x] [Citation(s) in RCA: 456] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] [Imported: 10/07/2023] Open
Abstract
Scatter Factor (SF) is a fibroblast-secreted protein which promotes motility and matrix invasion of epithelial cells. Hepatocyte Growth Factor (HGF) is a powerful mitogen for hepatocytes and other epithelial tissues. SF and HGF, purified according to their respective biological activities, were interchangeable and equally effective in assays for cell growth, motility and invasion. Both bound with identical affinities to the same sites in target cells. The receptor for SF and HGF was identified as the product of the MET oncogene by: (i) ligand binding and coprecipitation in immunocomplexes; (ii) chemical crosslinking to the Met beta subunit; (iii) transfer of binding activity in insect cells by a baculovirus carrying the MET cDNA; (iv) ligand-induced tyrosine phosphorylation of the Met beta subunit. SF and HGF cDNA clones from human fibroblasts, placenta and liver had virtually identical sequences. We conclude that the same molecule (SF/HGF) acts as a growth or motility factor through a single receptor in different target cells.
Collapse
|
research-article |
34 |
456 |
11
|
Chandran UR, Ma C, Dhir R, Bisceglia M, Lyons-Weiler M, Liang W, Michalopoulos G, Becich M, Monzon FA. Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process. BMC Cancer 2007; 7:64. [PMID: 17430594 PMCID: PMC1865555 DOI: 10.1186/1471-2407-7-64] [Citation(s) in RCA: 389] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 04/12/2007] [Indexed: 02/04/2023] [Imported: 10/07/2023] Open
Abstract
BACKGROUND Prostate cancer is characterized by heterogeneity in the clinical course that often does not correlate with morphologic features of the tumor. Metastasis reflects the most adverse outcome of prostate cancer, and to date there are no reliable morphologic features or serum biomarkers that can reliably predict which patients are at higher risk of developing metastatic disease. Understanding the differences in the biology of metastatic and organ confined primary tumors is essential for developing new prognostic markers and therapeutic targets. METHODS Using Affymetrix oligonucleotide arrays, we analyzed gene expression profiles of 24 androgen-ablation resistant metastatic samples obtained from 4 patients and a previously published dataset of 64 primary prostate tumor samples. Differential gene expression was analyzed after removing potentially uninformative stromal genes, addressing the differences in cellular content between primary and metastatic tumors. RESULTS The metastatic samples are highly heterogenous in expression; however, differential expression analysis shows that 415 genes are upregulated and 364 genes are downregulated at least 2 fold in every patient with metastasis. The expression profile of metastatic samples reveals changes in expression of a unique set of genes representing both the androgen ablation related pathways and other metastasis related gene networks such as cell adhesion, bone remodelling and cell cycle. The differentially expressed genes include metabolic enzymes, transcription factors such as Forkhead Box M1 (FoxM1) and cell adhesion molecules such as Osteopontin (SPP1). CONCLUSION We hypothesize that these genes have a role in the biology of metastatic disease and that they represent potential therapeutic targets for prostate cancer.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
389 |
12
|
Block GD, Locker J, Bowen WC, Petersen BE, Katyal S, Strom SC, Riley T, Howard TA, Michalopoulos GK. Population expansion, clonal growth, and specific differentiation patterns in primary cultures of hepatocytes induced by HGF/SF, EGF and TGF alpha in a chemically defined (HGM) medium. J Cell Biol 1996; 132:1133-1149. [PMID: 8601590 PMCID: PMC2120765 DOI: 10.1083/jcb.132.6.1133] [Citation(s) in RCA: 366] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] [Imported: 10/07/2023] Open
Abstract
Mature adult parenchymal hepatocytes, typically of restricted capacity to proliferate in culture, can now enter into clonal growth under the influence of hepatocyte growth factor (scatter factor) (HGF/SF), epidermal growth factor (EGF), and transforming growth factor alpha (TGFalpha) in the presence of a new chemically defined medium (HGM). The expanding populations of hepatocytes lose expression of hepatocyte specific genes (albumin, cytochrome P450 IIB1), acquire expression of markers expressed by bile duct epithelium (cytokeratin 19), produce TGFalpha and acidic FGF and assume a very simplified morphologic phenotype by electron microscopy. A major change associated with this transition is the decrease in ratio between transcription factors C/EBPalpha and C/EBPbeta, as well as the emergence in the proliferating hepatocytes of transcription factors AP1, NFkappaB. The liver associated transcription factors HNFI, HNF3, and HNF4 are preserved throughout this process. After population expansion and clonal growth, the proliferating hepatocytes can return to mature hepatocyte phenotype in the presence of EHS gel (Matrigel). This includes complete restoration of electron microscopic structure and albumin expression. The hepatocyte cultures however can instead be induced to form acinar/ductular structures akin to bile ductules (in the presence of HGF/SF and type I collagen). These transformations affect the entire population of the hepatocytes and occur even when DNA synthesis is inhibited. Similar acinar/ductular structures are seen in embryonic liver when HGF/SF and its receptor are expressed at high levels. These findings strongly support the hypothesis that mature hepatocytes can function as or be a source of bipotential facultative hepatic stem cells (hepatoblasts). These studies also provide evidence for the growth factor and matrix signals that govern these complex phenotypic transitions of facultative stem cells which are crucial for recovery from acute and chronic liver injury.
Collapse
|
Comparative Study |
29 |
366 |
13
|
Michalopoulos GK. Hepatostat: Liver regeneration and normal liver tissue maintenance. Hepatology 2017; 65:1384-1392. [PMID: 27997988 DOI: 10.1002/hep.28988] [Citation(s) in RCA: 311] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022] [Imported: 08/29/2023]
Abstract
In contrast to all other organs, liver-to-body-weight ratio needs to be maintained always at 100% of what is required for body homeostasis. Adjustment of liver size to 100% of what is required for homeostasis has been called "hepatostat." Removal of a portion of any other organ is followed with local regeneration of a limited degree, but it never attempts to reach 100% of the original size. The complex mechanisms involved in this uniquely hepatic process encompass a variety of regenerative pathways that are specific to different types of injury. The most studied form of liver regeneration (LR) is that occurring after loss of hepatocytes in a single acute injury, such as rodent LR after two-thirds partial hepatectomy or administration of damaging chemicals (CCl4 , acetaminophen, etc.). Alternative regenerative pathways become activated when normal regeneration is thwarted and trigger the appearance of "progenitor" cells. Chronic loss of hepatocytes is associated with regenerative efforts characterized by continual hepatocyte proliferation and often has adverse consequences (development of cirrhosis or liver cancer). Even though a very few hepatocytes proliferate at any given time in normal liver, the mechanisms involved in the maintenance of liver weight by this slow process in the absence of liver injury are not as well understood. (Hepatology 2017;65:1384-1392).
Collapse
|
Review |
8 |
311 |
14
|
Tan X, Behari J, Cieply B, Michalopoulos GK, Monga SPS. Conditional deletion of beta-catenin reveals its role in liver growth and regeneration. Gastroenterology 2006; 131:1561-1572. [PMID: 17101329 DOI: 10.1053/j.gastro.2006.08.042] [Citation(s) in RCA: 297] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 07/19/2006] [Indexed: 12/02/2022] [Imported: 10/07/2023]
Abstract
BACKGROUND & AIMS The Wnt/beta-catenin pathway plays a role in liver growth and development. To address this conclusively, we used a conditional knockout approach to delete beta-catenin in the liver. METHODS Floxed beta-catenin (exons 2-6) mice were intercrossed with Albumin-Cre recombinase transgenic mice; considerable beta-catenin deletion was evident 15 days after birth by Western blot and immunohistochemistry analyses. RESULTS Although these mice were viable, there was a significant decrease in their liver weight/body weight ratio by 14% at 1 month and 28%-35% by 2-6 months of age, which was sustained throughout their normal life span. There was an accompanying decrease in basal hepatocyte proliferation showed by Ki-67 staining. Additional analysis revealed several known and novel genes to be down-regulated in these mice that play a role in normal liver homeostasis. When subjected to two-thirds partial hepatectomy, the Ctnnb1(loxp/loxp); Alb-Cre(+/-) mice were sick and lethargic, especially during the first 2-3 days only. These mice display a 2-fold decrease in the number of Ki-67- or PCNA-positive cells at the time of peak hepatocyte proliferation at 40 hours, which coincided with decreased cyclin A, D, and E expression. However, a rebound increase in hepatocyte proliferation was evident in the knockout mice at 3 days. Also, increased apoptosis was observed in the knockout livers during regeneration at all stages. CONCLUSIONS Thus, beta-catenin is essential for normal liver growth and development. Also, although regeneration is delayed in the absence of beta-catenin, it does occur suboptimally, showing its redundancy in the liver.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
297 |
15
|
Petersen BE, Goff JP, Greenberger JS, Michalopoulos GK. Hepatic oval cells express the hematopoietic stem cell marker Thy-1 in the rat. Hepatology 1998; 27:433-445. [PMID: 9462642 DOI: 10.1002/hep.510270218] [Citation(s) in RCA: 270] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] [Imported: 10/07/2023]
Abstract
Hepatic oval cells (HOC) are a small subpopulation of cells found in the liver when hepatocyte proliferation is inhibited and followed by some type of hepatic injury. HOC can be induced to proliferate using a 2-acetylaminofluorene (2-AAF)/hepatic injury (i.e., CCl4, partial hepatectomy [PHx]) protocol. These cells are believed to be bipotential, i.e., able to differentiate into hepatocytes or bile ductular cells. In the past, isolation of highly enriched populations of these cells has been difficult. Thy-1 is a cell surface marker used in conjunction with CD34 and lineage-specific markers to identify hematopoietic stem cells. Thy-1 antigen is not normally expressed in adult liver, but is expressed in fetal liver, presumably on the hematopoietic cells. We report herein that HOC express high levels of Thy-1. Immunohistochemistry revealed that the cells expressing Thy-1 were indeed oval cells, because they also expressed alpha-fetoprotein (AFP), gamma-glutamyl transpeptidase (GGT), cytokeratin 19 (CK-19), OC.2, and OV-6, all known markers for oval cell identification. In addition, the Thy-1+ cells were negative for desmin, a marker specific for Ito cells. Using Thy-1 antibody as a new marker for the identification of oval cells, a highly enriched population was obtained. Using flow cytometric methods, we isolated a 95% to 97% pure Thy-1+ oval cell population. Our results indicate that cell sorting using Thy-1 could be an attractive tool for future studies, which would facilitate both in vivo and in vitro studies of HOC.
Collapse
|
|
27 |
270 |
16
|
Luo JH, Ren B, Keryanov S, Tseng GC, Rao UNM, Monga SP, Strom S, Demetris AJ, Nalesnik M, Yu YP, Ranganathan S, Michalopoulos GK. Transcriptomic and genomic analysis of human hepatocellular carcinomas and hepatoblastomas. Hepatology 2006; 44:1012-1024. [PMID: 17006932 PMCID: PMC1769554 DOI: 10.1002/hep.21328] [Citation(s) in RCA: 265] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] [Imported: 08/29/2023]
Abstract
This study analyzed gene expression patterns and global genomic alterations in hepatocellular carcinomas (HCC), hepatoblastomas (HPBL), tissue adjacent to HCC and normal liver tissue derived from normal livers and hepatic resections. We found that HCC and adjacent non-neoplastic cirrhotic tissue have considerable overlap in gene expression patterns compared to normal liver. Several genes including Glypican 3, spondin-2, PEG10, EDIL3 and Osteopontin are over-expressed in HCC vs. adjacent tissue whereas Ficolin 3 is the most consistently under-expressed gene. HCC can be subdivided into three clusters based on gene expression patterns. HCC and HPBL have clearly different patterns of gene expression, with genes IGF2, Fibronectin, DLK1, TGFb1, MALAT1 and MIG6 being over-expressed in HPBL versus HCC. In addition, specific areas of the genome appear unstable in HCC, with the same regions undergoing either deletion or increased gene dosage in all HCC. In conclusion, a set of specific genes and areas of genomic instability are found across the board in liver neoplasia.
Collapse
|
Comparative Study |
19 |
265 |
17
|
Jo M, Stolz DB, Esplen JE, Dorko K, Michalopoulos GK, Strom SC. Cross-talk between epidermal growth factor receptor and c-Met signal pathways in transformed cells. J Biol Chem 2000; 275:8806-8811. [PMID: 10722725 DOI: 10.1074/jbc.275.12.8806] [Citation(s) in RCA: 265] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] [Imported: 10/07/2023] Open
Abstract
In rat liver epithelial cells constitutively expressing transforming growth factor alpha (TGFalpha), c-Met is constitutively phosphorylated in the absence of its ligand, hepatocyte growth factor. We proposed that TGFalpha and the autocrine activation of its receptor, epidermal growth factor receptor (EGFR), leads to phosphorylation and activation of c-Met. We found that there is constitutive c-Met phosphorylation in human hepatoma cell lines and the human epidermoid carcinoma cell line, A431 which express TGFalpha, but not in normal human hepatocytes. Constitutive c-Met phosphorylation in A431, HepG2, AKN-1, and HuH6 cells was inhibited by neutralizing antibodies against TGFalpha and/or EGFR. Exposure to exogenous TGFalpha or EGF increased the phosphorylation of c-Met in the human epidermoid carcinoma cell line, A431. The increase of c-Met phosphorylation by TGFalpha in A431 cells was inhibited by neutralizing antibodies against TGFalpha and/or EGFR and by the EGFR-specific inhibitor tyrphostin AG1478. These results indicate that constitutive c-Met phosphorylation, and the increase of c-Met phosphorylation by TGFalpha or EGF, in tumor cell lines is the result of the activation via EGFR. We found that c-Met in tumor cells co-immunoprecipitates with EGFR regardless of the existence of their ligands in tumor cells, but not in normal human hepatocytes. We conclude that c-Met associates with EGFR in tumor cells, and this association facilitates the phosphorylation of c-Met in the absence of hepatocyte growth factor. This cross-talk between c-Met and EGFR may have significant implications for altered growth control in tumorigenesis.
Collapse
|
|
25 |
265 |
18
|
Michalopoulos GK, Barua L, Bowen WC. Transdifferentiation of rat hepatocytes into biliary cells after bile duct ligation and toxic biliary injury. Hepatology 2005; 41:535-544. [PMID: 15726663 PMCID: PMC1821079 DOI: 10.1002/hep.20600] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] [Imported: 08/29/2023]
Abstract
Rats with chimeric livers were generated by using the protocol of injecting hepatocytes from dipeptidyl peptidase IV (DPPIV)-positive donors into retrorsine-treated DPPIV-negative recipients subjected to partial hepatectomy. Rats with established chimeric livers were subjected to bile duct ligation, with or without pretreatment with the biliary toxin methylene diamiline (DAPM). Ductules bearing the donor hepatocyte marker DPPIV were seen at 30 days after bile duct ligation. The frequency of the ductules derived from the donor hepatocytes was dramatically enhanced (36-fold) by the pretreatment with DAPM. In conclusion, our results show that hepatocytes can function as facultative stem cells and rescue the biliary epithelium during repair from injury when its proliferative capacity is being compromised.
Collapse
|
research-article |
20 |
255 |
19
|
Lindroos PM, Zarnegar R, Michalopoulos GK. Hepatocyte growth factor (hepatopoietin A) rapidly increases in plasma before DNA synthesis and liver regeneration stimulated by partial hepatectomy and carbon tetrachloride administration. Hepatology 1991; 13:743-750. [PMID: 1826282 DOI: 10.1002/hep.1840130422] [Citation(s) in RCA: 231] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] [Imported: 10/07/2023]
Abstract
An enzyme-linked immunosorbent assay was used to measure the level of hepatocyte growth factor in rat plasma at various times after two-thirds partial hepatectomy or CCl4 administration. An initial 17-fold rise and 13-fold rise in the level of hepatocyte growth factor was observed 2 hr after partial hepatectomy and CCl4 treatment, respectively, well before the onset of DNA synthesis in the liver. The peaks of DNA synthesis in remnant livers and livers exposed to CCl4 occurred at 24 hr and 48 hr, respectively, as determined by 5-bromo-2'-deoxyuridine labeling and [3H]thymidine uptake by the liver. A later peak level (17-fold above control) of hepatocyte growth factor at 24 hr after CCl4 treatment coincided with strong immunostaining of damaged or necrotic hepatocytes around central veins with an antibody to hepatocyte growth factor. This suggests a later intrahepatic origin of the signals for liver regeneration after hepatotoxic injury subsequent to the early extrahepatic production of hepatocyte growth factor at 2 hr after CCl4 administration. The absence of staining in the liver remnants in partially hepatectomized rats implies that the increase in hepatocyte growth factor seen in the plasma is caused by production at extrahepatic site(s). Possible sources include the pancreas, brain, thyroid and salivary glands, and Brunner's glands of the duodenum. Norepinephrine also increases in plasma as early as 2 hr after hepatectomy. In vitro, [3H]thymidine incorporation into hepatocyte DNA in the presence of hepatocyte growth factor is greater if 10(-5) mol/L norepinephrine is also present in the media.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
34 |
231 |
20
|
Monga SPS, Pediaditakis P, Mule K, Stolz DB, Michalopoulos GK. Changes in WNT/beta-catenin pathway during regulated growth in rat liver regeneration. Hepatology 2001; 33:1098-1109. [PMID: 11343237 PMCID: PMC1821078 DOI: 10.1053/jhep.2001.23786] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] [Imported: 10/07/2023]
Abstract
The wnt/beta-catenin pathway is important during embryogenesis and carcinogenesis. beta-Catenin interaction with E-cadherin has been shown to be crucial in cell-cell adhesion. We report novel findings in the wnt pathway during rat liver regeneration after 70% partial hepatectomy using Western blot analyses, immunoprecipitation studies, and immunofluorescence. We found wnt-1 and beta-catenin proteins to be predominantly localized in hepatocytes. Immediately following partial hepatectomy, we observed an initial increase in beta-catenin protein during the first 5 minutes with its translocation to the nucleus. We show this increase to be the result of decreased degradation of beta-catenin (decrease in serine phosphorylated beta-catenin) as seen by immunoprecipitation studies. We observed activation of beta-catenin degradation complex comprising of adenomatous polyposis coli gene product (APC) and serine-phosphorylated axin protein, beginning at 5 minutes after hepatectomy, leading to its decreased levels after this time. Quantitative changes observed in E-cadherin protein during liver regeneration are, in general, reverse to those seen in beta-catenin. In addition, using immunoprecipitation, we observe elevated levels of tyrosine-phosphorylated beta-catenin at 6 hours onward. Thus, changes in the wnt pathway during regulated growth seem to tightly regulate cytosolic beta-catenin levels and may be contributing to induce cell proliferation and target gene expression. Furthermore, these changes might also be intended to negatively regulate cell-cell adhesion for structural reorganization during the process of liver regeneration.
Collapse
|
research-article |
24 |
216 |
21
|
Leng J, Han C, Demetris AJ, Michalopoulos GK, Wu T. Cyclooxygenase-2 promotes hepatocellular carcinoma cell growth through Akt activation: evidence for Akt inhibition in celecoxib-induced apoptosis. Hepatology 2003; 38:756-768. [PMID: 12939602 DOI: 10.1053/jhep.2003.50380] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] [Imported: 10/07/2023]
Abstract
Cyclooxygenase-2 (COX-2)-controlled prostaglandin (PG) metabolism recently has been implicated in the pathogenesis of hepatocellular carcinoma (HCC). However, the biologic role and molecular mechanism of COX-2-mediated PGs in the control of liver cancer growth have not been established. This study was designed to examine the direct effect of COX-2 and its inhibitor celecoxib on the growth control of liver cancer cells. Human HCC cell lines Hep3B and HepG2 transfected with COX-2 expression vector showed increased cell growth and enhanced phosphorylation of serine/threonine protein kinase B (Akt). The level of COX-2 expression and Akt phosphorylation is correlated positively in cultured HCC cells and human liver cancer tissues. Inhibition of Akt activation by phosphatidylinositol 3-kinase (PI3-kinase) inhibitor LY294002 significantly decreased the viability of Hep3B and HepG2 cells (P <.01). These results reveal a novel role of Akt activation in COX-2-induced HCC cell survival. Furthermore, HCC cells treated with the COX-2 inhibitor celecoxib showed significant reduction of Akt phosphorylation and marked morphologic and biochemical characteristics of apoptosis. Overexpression of COX-2 or addition of exogenous PGE(2) partially prevented celecoxib-induced apoptosis (P <.01). In conclusion, our results suggest the involvement of COX-2-dependent and -independent mechanisms in celecoxib-mediated HCC cell apoptosis.
Collapse
|
|
22 |
214 |
22
|
Affo S, Nair A, Brundu F, Ravichandra A, Bhattacharjee S, Matsuda M, Chin L, Filliol A, Wen W, Song X, Decker A, Worley J, Caviglia JM, Yu L, Yin D, Saito Y, Savage T, Wells RG, Mack M, Zender L, Arpaia N, Remotti HE, Rabadan R, Sims P, Leblond AL, Weber A, Riener MO, Stockwell BR, Gaublomme J, Llovet JM, Kalluri R, Michalopoulos GK, Seki E, Sia D, Chen X, Califano A, Schwabe RF. Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations. Cancer Cell 2021; 39:866-882.e11. [PMID: 33930309 PMCID: PMC8241235 DOI: 10.1016/j.ccell.2021.03.012] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/26/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022] [Imported: 10/07/2023]
Abstract
Cancer-associated fibroblasts (CAF) are a poorly characterized cell population in the context of liver cancer. Our study investigates CAF functions in intrahepatic cholangiocarcinoma (ICC), a highly desmoplastic liver tumor. Genetic tracing, single-cell RNA sequencing, and ligand-receptor analyses uncovered hepatic stellate cells (HSC) as the main source of CAF and HSC-derived CAF as the dominant population interacting with tumor cells. In mice, CAF promotes ICC progression, as revealed by HSC-selective CAF depletion. In patients, a high panCAF signature is associated with decreased survival and increased recurrence. Single-cell RNA sequencing segregates CAF into inflammatory and growth factor-enriched (iCAF) and myofibroblastic (myCAF) subpopulations, displaying distinct ligand-receptor interactions. myCAF-expressed hyaluronan synthase 2, but not type I collagen, promotes ICC. iCAF-expressed hepatocyte growth factor enhances ICC growth via tumor-expressed MET, thus directly linking CAF to tumor cells. In summary, our data demonstrate promotion of desmoplastic ICC growth by therapeutically targetable CAF subtype-specific mediators, but not by type I collagen.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
210 |
23
|
Cruise JL, Houck KA, Michalopoulos GK. Induction of DNA synthesis in cultured rat hepatocytes through stimulation of alpha 1 adrenoreceptor by norepinephrine. Science 1985; 227:749-751. [PMID: 2982212 DOI: 10.1126/science.2982212] [Citation(s) in RCA: 197] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] [Imported: 10/07/2023]
Abstract
Addition of norepinephrine to primary cultures of adult rat hepatocytes stimulates the incorporation of [3H]thymidine in a dose-dependent manner. This effect has been observed in serum-free medium containing epidermal growth factor and insulin. Stimulation of DNA synthesis by norepinephrine was strongly antagonized by the alpha 1-adrenergic antagonist prazosin but not by an alpha 2 antagonist or by a beta-adrenergic blocker. The beta agonist isoproterenol did not stimulate significant DNA synthesis. These results indicate that catecholamines interact with the alpha 1 adrenoreceptor to stimulate DNA synthesis in hepatocytes. Since alpha 1 receptors are present in most cells, this receptor may be important in cell growth regulation.
Collapse
|
|
40 |
197 |
24
|
Kan M, Zhang GH, Zarnegar R, Michalopoulos G, Myoken Y, McKeehan WL, Stevens JI. Hepatocyte growth factor/hepatopoietin A stimulates the growth of rat kidney proximal tubule epithelial cells (RPTE), rat nonparenchymal liver cells, human melanoma cells, mouse keratinocytes and stimulates anchorage-independent growth of SV-40 transformed RPTE. Biochem Biophys Res Commun 1991; 174:331-337. [PMID: 1846541 DOI: 10.1016/0006-291x(91)90524-b] [Citation(s) in RCA: 187] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] [Imported: 10/07/2023]
Abstract
Hepatocyte growth factor/hepatopoietin A is a mitogen for primary hepatocytes and may mediate regeneration after liver damage. To date, the activity of this novel factor has been restricted to hepatocytes. We now show that the factor is also a mitogen for a number of primary epithelial cells but is inactive with human foreskin fibroblasts, human endothelial cells and HEP3B cells. The factor also substitutes for HBGF-2 (basic FGF) in stimulating the anchorage-independent growth of SV-40 transformed rat kidney epithelial cells. Therefore, hepatocyte growth factor/hepatopoietin A appears to act on a variety of epithelial, but not mesenchymal, cells which respond to HBGFs.
Collapse
|
|
34 |
187 |
25
|
Monga SPS, Monga HK, Tan X, Mulé K, Pediaditakis P, Michalopoulos GK. Beta-catenin antisense studies in embryonic liver cultures: role in proliferation, apoptosis, and lineage specification. Gastroenterology 2003; 124:202-216. [PMID: 12512043 DOI: 10.1053/gast.2003.50000] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] [Imported: 10/07/2023]
Abstract
BACKGROUND & AIMS Wnt/beta-catenin pathway activation occurs during liver growth in hepatoblastomas, hepatocellular cancers, and liver regeneration. The aim of this study was to investigate the role of beta-catenin, a key component of the Wnt pathway, in liver development as well as its normal distribution in developing liver. METHODS Embryonic liver cultures and beta-catenin antisense phosphorodiamidate morpholino oligomer (PMO) were used to elucidate the role of beta-catenin in liver development. Livers from embryos at 10 days of gestational development were cultured in the presence of antisense or control PMO for 72 hours and analyzed. RESULTS Beta-catenin shows stage-specific localization and distinct distribution compared with known markers in developing liver. A substantial decrease in beta-catenin protein was evident in the organs cultured in the presence of antisense. Beta-catenin inhibition decreased cell proliferation and increased apoptosis in these organ cultures. Presence of antisense resulted in loss of CK19 immunoreactivity of the bipotential stem cells. Beta-catenin inhibition also promoted c-kit immunoreactivity of the hepatocytes. CONCLUSIONS We conclude that the PMO antisense to beta-catenin effectively inhibits synthesis of its protein. Beta-catenin modulates cell proliferation and apoptosis in developing liver. It may play a significant role in early biliary lineage commitment of the bipotential stem cells and also seems to be important in hepatocyte maturation.
Collapse
|
|
22 |
183 |