1
|
Bhatia M, Moochhala S. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. J Pathol 2004; 202:145-156. [PMID: 14743496 DOI: 10.1002/path.1491] [Citation(s) in RCA: 868] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2003] [Accepted: 09/29/2003] [Indexed: 12/17/2022] [Imported: 10/13/2024]
Abstract
Inflammatory response leading to organ dysfunction and failure continues to be the major problem after injury in many clinical conditions such as sepsis, severe burns, acute pancreatitis, haemorrhagic shock, and trauma. In general terms, systemic inflammatory response syndrome (SIRS) is an entirely normal response to injury. Systemic leukocyte activation, however, is a direct consequence of a SIRS and if excessive, can lead to distant organ damage and multiple organ dysfunction syndrome (MODS). When SIRS leads to MODS and organ failure, the mortality becomes high and can be more than 50%. Acute lung injury that clinically manifests as acute respiratory distress syndrome (ARDS) is a major component of MODS of various aetiologies. Inflammatory mediators play a key role in the pathogenesis of ARDS, which is the primary cause of death in these conditions. This review summarizes recent studies that demonstrate the critical role played by inflammatory mediators such as tumour necrosis factor (TNF)-alpha, interleukin (IL)-1beta, IL-6, platelet activating factor (PAF), IL-10, granulocyte macrophage-colony stimulating factor (GM-CSF), C5a, intercellular adhesion molecule (ICAM)-1, substance P, chemokines, VEGF, IGF-I, KGF, reactive oxygen species (ROS), and reactive nitrogen species (RNS) in the pathogenesis of ARDS. It is reasonable to speculate that elucidation of the key mediators in ARDS coupled with the discovery of specific inhibitors would make it possible to develop clinically effective anti-inflammatory therapy.
Collapse
|
Review |
21 |
868 |
2
|
Li L, Bhatia M, Zhu YZ, Zhu YC, Ramnath RD, Wang ZJ, Anuar FBM, Whiteman M, Salto-Tellez M, Moore PK. Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J 2005; 19:1196-1198. [PMID: 15863703 DOI: 10.1096/fj.04-3583fje] [Citation(s) in RCA: 637] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] [Imported: 10/13/2024]
Abstract
Hydrogen sulfide (H2S) is synthesized in the body from L-cysteine by several enzymes including cystathionine-gamma-lyase (CSE). To date, there is little information about the potential role of H2S in inflammation. We have now investigated the part played by H2S in endotoxin-induced inflammation in the mouse. E. coli lipopolysaccharide (LPS) administration produced a dose (10 and 20 mg/kg ip)- and time (6 and 24 h)-dependent increase in plasma H2S concentration. LPS (10 mg/kg ip, 6 h) increased plasma H2S concentration from 34.1 +/- 0.7 microM to 40.9 +/- 0.6 microM (n=6, P<0.05) while H2S formation from added L-cysteine was increased in both liver and kidney. CSE gene expression was also increased in both liver (94.2+/-2.7%, n=6, P<0.05) and kidney (77.5+/-3.2%, n=6, P<0.05). LPS injection also elevated lung (148.2+/-2.6%, n=6, P<0.05) and kidney (78.8+/-8.2%, n=6, P<0.05) myeloperoxidase (MPO, a marker of tissue neutrophil infiltration) activity alongside histological evidence of lung, liver, and kidney tissue inflammatory damage. Plasma nitrate/nitrite (NOx) concentration was additionally elevated in a time- and dose-dependent manner in LPS-injected animals. To examine directly the possible proinflammatory effect of H2S, mice were administered sodium hydrosulfide (H2S donor drug, 14 micromol/kg ip) that resulted in marked histological signs of lung inflammation, increased lung and liver MPO activity, and raised plasma TNF-alpha concentration (4.6+/-1.4 ng/ml, n=6). In contrast, DL-propargylglycine (CSE inhibitor, 50 mg/kg ip), exhibited marked anti-inflammatory activity as evidenced by reduced lung and liver MPO activity, and ameliorated lung and liver tissue damage. In separate experiments, we also detected significantly higher (150.5+/-43.7 microM c.f. 43.8+/-5.1 microM, n=5, P<0.05) plasma H2S levels in humans with septic shock. These findings suggest that H2S exhibits proinflammatory activity in endotoxic shock and suggest a new approach to the development of novel drugs for this condition.
Collapse
|
|
20 |
637 |
3
|
Bhatia M, Wong FL, Cao Y, Lau HY, Huang J, Puneet P, Chevali L. Pathophysiology of acute pancreatitis. Pancreatology 2005; 5:132-144. [PMID: 15849484 DOI: 10.1159/000085265] [Citation(s) in RCA: 383] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] [Imported: 10/13/2024]
Abstract
Acute pancreatitis is a common clinical condition. It is a disease of variable severity in which some patients experience mild, self-limited attacks while others manifest a severe, highly morbid, and frequently lethal attack. The exact mechanisms by which diverse etiological factors induce an attack are still unclear. It is generally believed that the earliest events in acute pancreatitis occur within acinar cells. Acinar cell injury early in acute pancreatitis leads to a local inflammatory reaction. If this inflammatory reaction is marked, it leads to a systemic inflammatory response syndrome (SIRS). An excessive SIRS leads to distant organ damage and multiple organ dysfunction syndrome (MODS). MODS associated with acute pancreatitis is the primary cause of morbidity and mortality in this condition. Recent studies have established the role played by inflammatory mediators in the pathogenesis of acute pancreatitis and the resultant MODS. At the same time, recent research has demonstrated the importance of acinar cell death in the form of apoptosis and necrosis as a determinant of pancreatitis severity. In this review, we will discuss about our current understanding of the pathophysiology of acute pancreatitis.
Collapse
|
Review |
20 |
383 |
4
|
Abstract
Inflammatory mediators play a key role in acute pancreatitis and the resultant multiple organ dysfunction syndrome, which is the primary cause of death in this condition. Recent studies have confirmed the critical role played by inflammatory mediators such as TNF-alpha, IL-1beta, IL-6, IL-8, PAF, IL-10, C5a, ICAM-1, and substance P. The systemic effects of acute pancreatitis have many similarities to those of other conditions such as septicaemia, severe burns, and trauma. The delay between the onset of inflammation in the pancreas and the development of the systemic response makes acute pancreatitis an ideal experimental and clinical model with which to study the role of inflammatory mediators and to test novel therapies. Elucidation of the key mediators involved in the pathogenesis of acute pancreatitis will facilitate the development of clinically effective anti-inflammatory therapy.
Collapse
|
Review |
25 |
362 |
5
|
Whiteman M, Li L, Kostetski I, Chu SH, Siau JL, Bhatia M, Moore PK. Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochem Biophys Res Commun 2006; 343:303-310. [PMID: 16540095 DOI: 10.1016/j.bbrc.2006.02.154] [Citation(s) in RCA: 294] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 02/24/2006] [Indexed: 11/15/2022] [Imported: 10/13/2024]
Abstract
The gaseous mediators hydrogen sulphide (H2S) and nitric oxide (*NO) are synthesised in the body from L-cysteine and L-arginine, respectively. In the cardiovascular system, *NO is an important regulator of vascular tone and its over- or under-production has been linked to a variety of diseases. The physiological significance of H2S is not yet clear but, like *NO, it exhibits vasodilator activity and may play a part in septic and haemorrhagic shock, hypertension, regulation of cardiac contractility, and in inflammation. To date, there have been no reports of a chemical interaction between H2S and *NO. Here we show that incubation of the H2S donor, sodium hydrosulphide, with a range of *NO donors and *NO gas in vitro leads to the formation of a nitrosothiol molecule as determined by a combination of techniques; electron paramagnetic resonance, amperometry, and measurement of nitrite. We further show that this nitrosothiol did not induce cGMP accumulation in cultured RAW264.7 cells unless *NO was released with Cu2+. Finally, using liver homogenates from LPS treated rats we present evidence for the endogenous formation of this nitrosothiol. These findings provide the first evidence for the formation of a novel nitrosothiol generated by reaction between H2S and *NO. We propose that generation of this nitrosothiol in the body may regulate the physiological effects of both *NO and H2S.
Collapse
|
|
19 |
294 |
6
|
Ali MY, Ping CY, Mok YYP, Ling L, Whiteman M, Bhatia M, Moore PK. Regulation of vascular nitric oxide in vitro and in vivo; a new role for endogenous hydrogen sulphide? Br J Pharmacol 2006; 149:625-634. [PMID: 17016507 PMCID: PMC2014646 DOI: 10.1038/sj.bjp.0706906] [Citation(s) in RCA: 283] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 06/26/2006] [Accepted: 07/06/2006] [Indexed: 11/09/2022] [Imported: 10/13/2024] Open
Abstract
BACKGROUND AND PURPOSE The aim of these experiments was to evaluate the significance of the chemical reaction between hydrogen sulphide (H2S) and nitric oxide (NO) for the control of vascular tone. EXPERIMENTAL APPROACH The effect of sodium hydrosulphide (NaHS; H2S donor) and a range of NO donors, such as sodium nitroprusside (SNP), either alone or together, was determined using phenylephrine (PE)-precontracted rat aortic rings and on the blood pressure of anaesthetised rats. KEY RESULTS Mixing NaHS with NO donors inhibited the vasorelaxant effect of NO both in vitro and in vivo. Low concentrations of NaHS or H2S gas in solution reversed the relaxant effect of acetylcholine (ACh, 400 nM) and histamine (100 microM) but not isoprenaline (400 nM). The effect of NaHS on the ACh response was antagonized by CuSO(4) (200 nM) but was unaffected by glibenclamide (10 microM). In contrast, high concentrations of NaHS (200-1600 microM) relaxed aortic rings directly, an effect reduced by glibenclamide but unaffected by CuSO4. Intravenous infusion of a low concentration of NaHS (10 micromol kg(-1) min(-1)) into the anaesthetized rat significantly increased mean arterial blood pressure. L-NAME (25 mg kg(-1), i.v.) pretreatment reduced this effect. CONCLUSIONS AND IMPLICATIONS These results suggest that H2S and NO react together to form a molecule (possibly a nitrosothiol) which exhibits little or no vasorelaxant activity either in vitro or in vivo. We propose that a crucial, and hitherto unappreciated, role of H2S in the vascular system is the regulation of the availability of NO.
Collapse
|
other |
19 |
283 |
7
|
Bhatia M, Wong FL, Fu D, Lau HY, Moochhala SM, Moore PK. Role of hydrogen sulfide in acute pancreatitis and associated lung injury. FASEB J 2005; 19:623-625. [PMID: 15671155 DOI: 10.1096/fj.04-3023fje] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] [Imported: 10/13/2024]
Abstract
Hydrogen sulfide (H2S) is a naturally occurring gas with potent vasodilator activity. Cystathionine-gamma-lyase (CSE) and cystathionine-beta-synthase (CBS) utilize L-cysteine as substrate to form H2S. Of these two enzymes, cystathionine-gamma-lyase (CSE) is believed to be the key enzyme that forms H2S in the cardiovascular system. Whilst H2S has been reported to relax precontracted rat arteries in vitro and to lower blood pressure in the rat, its effect in an inflammatory condition such as acute pancreatitis has not previously been reported. In this paper, we report the presence of H2S synthesizing enzyme activity and CSE (as determined by mRNA signal) in the pancreas. Also, prophylactic, as well as therapeutic, treatment with the CSE inhibitor, DL-propargylglycine (PAG), significantly reduced the severity of caerulein-induced pancreatitis and associated lung injury, as determined by 1) hyperamylasemia [plasma amylase (U/L) (control, 1204+/-59); prophylactic treatment: placebo, 10635+/-305; PAG, 7904+/-495; therapeutic treatment: placebo, 10427+/-470; PAG, 7811+/-428; P<0.05 PAG c.f. placebo; n=24 animals in each group]; 2) neutrophil sequestration in the pancreas [pancreatic myeloperoxidase oxidase (MPO) activity (fold increase over control) (prophylactic treatment: placebo, 5.78+/-0.63; PAG, 2.97+/-0.39; therapeutic treatment: placebo, 5.48+/-0.52; PAG, 3.03+/-0.47; P<0.05 PAG c.f. placebo; n=24 animals in each group)]; 3) pancreatic acinar cell injury/necrosis; 4) lung MPO activity (fold increase over control) [prophylactic treatment: placebo, 1.99+/-0.16; PAG, 1.34+/-0.14; therapeutic treatment: placebo, 2.03+/-0.12; PAG, 1.41+/-0.97; P<0.05 PAG c.f. placebo; n=24 animals in each group]; and 5) histological evidence of lung injury. These effects of CSE blockade suggest an important proinflammatory role of H2S in regulating the severity of pancreatitis and associated lung injury and raise the possibility that H2S may exert similar activity in other forms of inflammation.
Collapse
|
|
20 |
239 |
8
|
Moore PK, Bhatia M, Moochhala S. Hydrogen sulfide: from the smell of the past to the mediator of the future? Trends Pharmacol Sci 2003; 24:609-611. [PMID: 14654297 DOI: 10.1016/j.tips.2003.10.007] [Citation(s) in RCA: 232] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] [Imported: 10/13/2024]
Abstract
Gases such as nitric oxide and carbon monoxide play important roles both in normal physiology and in disease. In recent years, interest has been directed towards other naturally occurring gases, notably hydrogen sulfide (H(2)S), which is both a potent vasodilator and a mediator of long-term potentiation in the brain. This article focuses on recent work that suggests a role for H(2)S, and perhaps other gases, in the CNS and cardiovascular system.
Collapse
|
|
22 |
232 |
9
|
Bhatia M, Saluja AK, Hofbauer B, Frossard JL, Lee HS, Castagliuolo I, Wang CC, Gerard N, Pothoulakis C, Steer ML. Role of substance P and the neurokinin 1 receptor in acute pancreatitis and pancreatitis-associated lung injury. Proc Natl Acad Sci U S A 1998; 95:4760-4765. [PMID: 9539812 PMCID: PMC22564 DOI: 10.1073/pnas.95.8.4760] [Citation(s) in RCA: 231] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/1997] [Indexed: 02/07/2023] [Imported: 10/13/2024] Open
Abstract
Substance P, acting via the neurokinin 1 receptor (NK1R), plays an important role in mediating a variety of inflammatory processes. However, its role in acute pancreatitis has not been previously described. We have found that, in normal mice, substance P levels in the pancreas and pancreatic acinar cell expression of NK1R are both increased during secretagogue-induced experimental pancreatitis. To evaluate the role of substance P, pancreatitis was induced in mice that genetically lack NK1R by administration of 12 hourly injections of a supramaximally stimulating dose of the secretagogue caerulein. During pancreatitis, the magnitude of hyperamylasemia, hyperlipasemia, neutrophil sequestration in the pancreas, and pancreatic acinar cell necrosis were significantly reduced in NK1R-/- mice when compared with wild-type NK1R+/+ animals. Similarly, pancreatitis-associated lung injury, as characterized by intrapulmonary sequestration of neutrophils and increased pulmonary microvascular permeability, was reduced in NK1R-/- animals. These effects of NK1R deletion indicate that substance P, acting via NK1R, plays an important proinflammatory role in regulating the severity of acute pancreatitis and pancreatitis-associated lung injury.
Collapse
|
research-article |
27 |
231 |
10
|
Puneet P, Moochhala S, Bhatia M. Chemokines in acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol 2005; 288:L3-L15. [PMID: 15591040 PMCID: PMC7191630 DOI: 10.1152/ajplung.00405.2003] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] [Imported: 10/13/2024] Open
Abstract
A characteristic feature of all inflammatory disorders is the excessive recruitment of leukocytes to the site of inflammation. The loss of control in trafficking these cells contributes to inflammatory diseases. Leukocyte recruitment is a well-orchestrated process that includes several protein families including the large cytokine subfamily of chemotactic cytokines, the chemokines. Chemokines and their receptors are involved in the pathogenesis of several diseases. Acute lung injury that clinically manifests as acute respiratory distress syndrome (ARDS) is caused by an uncontrolled systemic inflammatory response resulting from clinical events including major surgery, trauma, multiple transfusions, severe burns, pancreatitis, and sepsis. Systemic inflammatory response syndrome involves activation of alveolar macrophages and sequestered neutrophils in the lung. The clinical hallmarks of ARDS are severe hypoxemia, diffuse bilateral pulmonary infiltrates, and normal intracardiac filling pressures. The magnitude and duration of the inflammatory process may ultimately determine the outcome in patients with ARDS. Recent evidence shows that activated leukocytes and chemokines play a key role in the pathogenesis of ARDS. The expanding number of antagonists of chemokine receptors for inflammatory disorders may hold promise for new medicines to combat ARDS.
Collapse
|
Review |
20 |
225 |
11
|
Frossard JL, Saluja A, Bhagat L, Lee HS, Bhatia M, Hofbauer B, Steer ML. The role of intercellular adhesion molecule 1 and neutrophils in acute pancreatitis and pancreatitis-associated lung injury. Gastroenterology 1999; 116:694-701. [PMID: 10029629 DOI: 10.1016/s0016-5085(99)70192-7] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] [Imported: 10/13/2024]
Abstract
BACKGROUND & AIMS Intercellular adhesion molecule 1 (ICAM-1) and neutrophils play important roles in many inflammatory processes, but their importance in both acute pancreatitis and pancreatitis-associated lung injury has not been defined. METHODS To address this issue, mice that do not express ICAM-1 were used and depleted of neutrophils by administration of antineutrophil serum. Pancreatitis was induced by administering either supramaximal doses of the secretagogue cerulein or feeding a choline-deficient, ethionine-supplemented diet. The severity of pancreatitis was evaluated by quantitating serum amylase, pancreatic edema, acinar cell necrosis, and pancreas myeloperoxidase activity (i.e., neutrophil content). Lung injury was evaluated by quantitating lung myeloperoxidase activity and pulmonary microvascular permeability. ICAM-1 was quantitated by enzyme-linked immunosorbent assay and was localized by light-microscopic immunohistochemistry. RESULTS It was found that serum, pancreas, and lung ICAM-1 levels increase during pancreatitis. Both pancreatitis and the associated lung injury are blunted, but not completely prevented, in mice deficient in ICAM-1. Neutrophil depletion also reduces the severity of both pancreatitis and lung injury. However, the combination of neutrophil depletion with ICAM-1 deficiency does not reduce the severity of pancreatitis or lung injury to a greater extent than either neutrophil depletion or ICAM-1 deficiency alone. Neither pancreatitis nor pancreatitis-associated lung injury are completely prevented by ICAM-1 deficiency, neutrophil depletion, or combined ICAM-1 deficiency plus neutrophil depletion. CONCLUSIONS The observations indicate that ICAM-1 plays an important, neutrophil-mediated, proinflammatory role in pancreatitis and pancreatitis-associated lung injury. The studies also indicate that ICAM-1 and neutrophil-independent events also contribute to the evolution of pancreatitis and lung injury in these models.
Collapse
|
|
26 |
206 |
12
|
Bhatia M, Zemans RL, Jeyaseelan S. Role of chemokines in the pathogenesis of acute lung injury. Am J Respir Cell Mol Biol 2012; 46:566-572. [PMID: 22323365 PMCID: PMC3361356 DOI: 10.1165/rcmb.2011-0392tr] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 02/02/2012] [Indexed: 12/11/2022] [Imported: 10/13/2024] Open
Abstract
Acute lung injury (ALI) is due to an uncontrolled systemic inflammatory response resulting from direct injury to the lung or indirect injury in the setting of a systemic process. Such insults lead to the systemic inflammatory response syndrome (SIRS), which includes activation of leukocytes-alveolar macrophages and sequestered neutrophils-in the lung. Although systemic inflammatory response syndrome is a physiologic response to an insult, systemic leukocyte activation, if excessive, can lead to end organ injury, such as ALI. Excessive recruitment of leukocytes is critical to the pathogenesis of ALI, and the magnitude and duration of the inflammatory process may ultimately determine the outcome in patients with ALI. Leukocyte recruitment is a well orchestrated process that depends on the function of chemokines and their receptors. Understanding the mechanisms that contribute to leukocyte recruitment in ALI may ultimately lead to the development of effective therapeutic strategies.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
193 |
13
|
Mok YYP, Mohammed Atan MSB, Ping CY, Jing WZ, Bhatia M, Moochhala S, Moore PK. Role of hydrogen sulphide in haemorrhagic shock in the rat: protective effect of inhibitors of hydrogen sulphide biosynthesis. Br J Pharmacol 2004; 143:881-889. [PMID: 15504752 PMCID: PMC1575944 DOI: 10.1038/sj.bjp.0706014] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 09/09/2004] [Accepted: 09/10/2004] [Indexed: 11/09/2022] [Imported: 10/13/2024] Open
Abstract
Haemorrhagic shock (60 min) in the anaesthetized rat resulted in a prolonged fall in the mean arterial blood pressure (MAP) and heart rate (HR). Pre-treatment (30 min before shock) or post-treatment (60 min after shock) with inhibitors of cystathionine gamma lyase (CSE; converts cysteine into hydrogen sulphide (H(2)S)), dl-propargylglycine or beta-cyanoalanine (50 mg kg(-1), i.v.), or glibenclamide (40 mg kg(-1), i.p.), produced a rapid, partial restoration in MAP and HR. Neither saline nor DMSO affected MAP or HR. Plasma H(2)S concentration was elevated 60 min after blood withdrawal (37.5+/-1.3 microM, n=18 c.f. 28.9+/-1.4 microM, n=15, P<0.05). The conversion of cysteine to H(2)S by liver (but not kidney) homogenates prepared from animals killed 60 min after withdrawal of blood was significantly increased (52.1+/-1.6 c.f. 39.8+/-4.1 nmol mg protein(-1), n=8, P<0.05), as was liver CSE mRNA (2.7 x). Both PAG (IC(50), 55.0+/-3.2 microM) and BCA (IC(50), 6.5+/-1.2 microM) inhibited liver H(2)S synthesizing activity in vitro. Pre-treatment of animals with PAG or BCA (50 mg kg(-1), i.p.) but not glibenclamide (40 mg kg(-1), i.p., K(ATP) channel inhibitor) abolished the rise in plasma H(2)S in animals exposed to 60 min haemorrhagic shock and prevented the augmented biosynthesis of H(2)S from cysteine in liver. These results demonstrate that H(2)S plays a role in haemorrhagic shock in the rat. CSE inhibitors may provide a novel approach to the treatment of haemorrhagic shock.
Collapse
|
research-article |
21 |
192 |
14
|
Gerard C, Frossard JL, Bhatia M, Saluja A, Gerard NP, Lu B, Steer M. Targeted disruption of the beta-chemokine receptor CCR1 protects against pancreatitis-associated lung injury. J Clin Invest 1997; 100:2022-2027. [PMID: 9329966 PMCID: PMC508392 DOI: 10.1172/jci119734] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] [Imported: 10/13/2024] Open
Abstract
beta-Chemokines and their receptors mediate the trafficking and activation of a variety of leukocytes including the lymphocyte and macrophage. An array of no less than eight beta-chemokine receptors has been identified, four of which are capable of recognizing the chemokines MIP1alpha and RANTES. Genetic deletion of one of the MIP1alpha and RANTES receptors, CCR5, is associated with protection from infection with HIV-1 in humans, while deletion of the ligand MIP1alpha protects against Coxsackie virus-associated myocarditis. In this report we show that the deletion of another receptor for MIP1alpha and RANTES, the CCR1 receptor, is associated with protection from pulmonary inflammation secondary to acute pancreatitis in the mouse. The protection from lung injury is associated with decreased levels of TNF-alpha in a temporal sequence indicating that the activation of the CCR1 receptor is an early event in the systemic inflammatory response syndrome.
Collapse
|
research-article |
28 |
177 |
15
|
Li L, Bhatia M, Moore PK. Hydrogen sulphide--a novel mediator of inflammation? Curr Opin Pharmacol 2006; 6:125-129. [PMID: 16487749 DOI: 10.1016/j.coph.2005.10.007] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 10/03/2005] [Indexed: 01/08/2023] [Imported: 10/13/2024]
Abstract
Hydrogen sulphide (H2S) is a naturally occurring gas synthesized from cysteine. It exhibits vasodilator activity (most probably by opening vascular smooth muscle K(ATP) channels), influences leucocyte chemotaxis and promotes vascular smooth muscle cell apoptosis. Increased biosynthesis of H2S has been demonstrated in animal models of septic/endotoxic and haemorrhagic shock, pancreatitis and carrageenan-evoked hindpaw oedema in the rat. In each case, pharmacological inhibition of H2S biosynthesis is anti-inflammatory.
Collapse
|
Review |
19 |
160 |
16
|
Abstract
Acute pancreatitis is a disease of variable severity in which some patients experience mild, self-limited attacks, whereas others manifest a severe, highly morbid, and frequently lethal attack. The events that regulate the severity of acute pancreatitis are, for the most part, unknown. It is generally believed that the earliest events in acute pancreatitis occur within acinar cells and result in acinar cell injury. Other processes, such as recruitment of inflammatory cells and generation of inflammatory mediators, are believed to occur subsequent to acinar cell injury, and these "downstream" events are believed to influence the severity of the disease. Several recently reported studies, however, have suggested that the acinar cell response to injury may, itself, be an important determinant of disease severity. In these studies, mild acute pancreatitis was found to be associated with extensive apoptotic acinar cell death, whereas severe acute pancreatitis was found to involve extensive acinar cell necrosis but very little acinar cell apoptosis. These observations led to the hypothesis that apoptosis could be a favorable response to acinar cells and that interventions that favor induction of apoptotic, as opposed to necrotic, acinar cell death might reduce the severity of an attack of acute pancreatitis. Indeed, in an experimental setting, the induction of pancreatic acinar cell apoptosis protects mice against acute pancreatitis. Little is known about the mechanism of apoptosis in the pancreatic acinar cell, although some early attempts have been made in that direction. Also, clinical relevance of these experimental studies remains to be investigated.
Collapse
|
Review |
21 |
154 |
17
|
Collin M, Anuar FBM, Murch O, Bhatia M, Moore PK, Thiemermann C. Inhibition of endogenous hydrogen sulfide formation reduces the organ injury caused by endotoxemia. Br J Pharmacol 2005; 146:498-505. [PMID: 16100527 PMCID: PMC1751176 DOI: 10.1038/sj.bjp.0706367] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 06/22/2005] [Accepted: 07/13/2005] [Indexed: 11/09/2022] [Imported: 10/13/2024] Open
Abstract
Hydrogen sulfide (H2S) is a naturally occurring gaseous transmitter, which may play important roles in normal physiology and disease. Here, we investigated the role of H2S in the organ injury caused by severe endotoxemia in the rat. Male Wistar rats were subjected to acute endotoxemia (Escherichia coli lipopolysaccharide (LPS) 6 mg kg(-1) intravenously (i.v.) for 6 h) and treated with vehicle (saline, 1 ml kg(-1) i.v.) or DL-propargylglycine (PAG, 10-100 mg kg(-1) i.v.), an inhibitor of the H2S-synthesizing enzyme cystathionine-gamma-lyase (CSE). PAG was administered either 30 min prior to or 60 min after the induction of endotoxemia. Endotoxemia resulted in circulatory failure (hypotension and tachycardia) and an increase in serum levels of alanine aminotransferase and aspartate aminotransferase (markers for hepatic injury), lipase (indicator of pancreatic injury) and creatine kinase (indicator of neuromuscular injury). In the liver, endotoxemia induced a significant increase in the myeloperoxidase (MPO) activity, and in the expression and activity of the H2S-synthesizing enzymes CSE and cystathionine-beta-synthase. Administration of PAG either prior to or after the injection of LPS dose-dependently reduced the hepatocellular, pancreatic and neuromuscular injury caused by endotoxemia, but not the circulatory failure. Pretreatment of rats with PAG abolished the LPS-induced increase in the MPO activity and in the formation of H2S and in the liver. These findings support the view that an enhanced formation of H2S contributes to the pathophysiology of the organ injury in endotoxemia. We propose that inhibition of H2S synthesis may be a useful therapeutic strategy against the organ injury associated with sepsis and shock.
Collapse
|
research-article |
20 |
153 |
18
|
Pawlak J, Mackessy SP, Fry BG, Bhatia M, Mourier G, Fruchart-Gaillard C, Servent D, Ménez R, Stura E, Ménez A, Kini RM. Denmotoxin, a three-finger toxin from the colubrid snake Boiga dendrophila (Mangrove Catsnake) with bird-specific activity. J Biol Chem 2006; 281:29030-29041. [PMID: 16864572 DOI: 10.1074/jbc.m605850200] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] [Imported: 10/13/2024] Open
Abstract
Boiga dendrophila (mangrove catsnake) is a colubrid snake that lives in Southeast Asian lowland rainforests and mangrove swamps and that preys primarily on birds. We have isolated, purified, and sequenced a novel toxin from its venom, which we named denmotoxin. It is a monomeric polypeptide of 77 amino acid residues with five disulfide bridges. In organ bath experiments, it displayed potent postsynaptic neuromuscular activity and irreversibly inhibited indirectly stimulated twitches in chick biventer cervicis nerve-muscle preparations. In contrast, it induced much smaller and readily reversible inhibition of electrically induced twitches in mouse hemidiaphragm nerve-muscle preparations. More precisely, the chick muscle alpha(1)betagammadelta-nicotinic acetylcholine receptor was 100-fold more susceptible compared with the mouse receptor. These data indicate that denmotoxin has a bird-specific postsynaptic activity. We chemically synthesized denmotoxin, crystallized it, and solved its crystal structure at 1.9 A by the molecular replacement method. The toxin structure adopts a non-conventional three-finger fold with an additional (fifth) disulfide bond in the first loop and seven additional residues at its N terminus, which is blocked by a pyroglutamic acid residue. This is the first crystal structure of a three-finger toxin from colubrid snake venom and the first fully characterized bird-specific toxin. Denmotoxin illustrates the relationship between toxin specificity and the primary prey type that constitutes the snake's diet.
Collapse
|
|
19 |
151 |
19
|
Zhang H, Zhi L, Moore PK, Bhatia M. Role of hydrogen sulfide in cecal ligation and puncture-induced sepsis in the mouse. Am J Physiol Lung Cell Mol Physiol 2006; 290:L1193-L1201. [PMID: 16428267 DOI: 10.1152/ajplung.00489.2005] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] [Imported: 10/13/2024] Open
Abstract
Endogenous hydrogen sulfide (H(2)S) is naturally synthesized in various types of mammalian cells from l-cysteine in a reaction catalyzed by two enzymes, cystathionine-gamma-lyase (CSE) and/or cystathionine-beta-synthase. The latest studies have implied that H(2)S functions as a vasodilator and neurotransmitter. However, so far there is little information about the role played by H(2)S in systemic inflammation such as sepsis. Thus the aim of this study was to investigate the potential role of endogenous H(2)S in cecal ligation and puncture (CLP)-induced sepsis. Male Swiss mice were subjected to CLP-induced sepsis and treated with saline (ip), dl-propargylglycine (PAG, 50 mg/kg ip), a CSE inhibitor, or sodium hydrosulfide (NaHS; 10 mg/kg ip). PAG was administered either 1 h before or 1 h after the induction of sepsis, whereas NaHS was given at the same time of CLP. CLP-induced sepsis significantly increased the plasma H(2)S level and the liver H(2)S synthesis 8 h after CLP compared with sham operation. Induction of sepsis also resulted in a significant upregulation of CSE mRNA in liver. On the other hand, prophylactic as well as therapeutic administration of PAG significantly reduced sepsis-associated systemic inflammation, as evidenced by myeloperoxidase activity and histological changes in lung and liver, and attenuated the mortality of CLP-induced sepsis. Injection of NaHS significantly aggravated sepsis-associated systemic inflammation. Therefore, the effect of inhibition of H(2)S formation and administration of NaHS suggests that H(2)S plays a proinflammatory role in regulating the severity of sepsis and associated organ injury.
Collapse
|
|
19 |
147 |
20
|
Yusuf M, Kwong Huat BT, Hsu A, Whiteman M, Bhatia M, Moore PK. Streptozotocin-induced diabetes in the rat is associated with enhanced tissue hydrogen sulfide biosynthesis. Biochem Biophys Res Commun 2005; 333:1146-1152. [PMID: 15967410 DOI: 10.1016/j.bbrc.2005.06.021] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Accepted: 06/05/2005] [Indexed: 02/07/2023] [Imported: 10/13/2024]
Abstract
This investigation is aimed to determine whether the biosynthesis of H(2)S, an endogenous vasodilator gas, is altered in the streptozotocin-diabetic rat. Plasma H(2)S concentration as well as the activity, and expression, of H(2)S synthesizing enzymes (namely cystathionine-gamma-lyase (CSE) and cystathionine-beta-synthetase (CBS)) were measured in various tissues of non-diabetic, streptozotocin-diabetic and insulin-treated diabetic rats. H(2)S formation in pancreas and liver was increased in diabetic rats. Both CSE and CBS mRNAs were increased in liver of diabetic animals. Similarly, CBS mRNA was increased in pancreas. Insulin treatment restored the changes in H(2)S metabolism seen. The findings of this study suggest that the metabolism of H(2)S in pancreas and liver is altered in the streptozotocin-diabetic rat. This is the first study in which a derangement in H(2)S biosynthesis in diabetes has been demonstrated. H(2)S may play a part in the aetiology or development of diabetes in this animal model.
Collapse
|
Comparative Study |
20 |
147 |
21
|
Guiramand J, Montmayeur JP, Ceraline J, Bhatia M, Borrelli E. Alternative splicing of the dopamine D2 receptor directs specificity of coupling to G-proteins. J Biol Chem 1995; 270:7354-7358. [PMID: 7706278 DOI: 10.1074/jbc.270.13.7354] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] [Imported: 10/13/2024] Open
Abstract
Two isoforms of the dopamine D2 receptor have been characterized, D2L (long) and D2S (short), generated by alternative splicing from the same gene. They differ by an in-frame insert of 29 amino acids specific to D2L within the putative third intracytoplasmic loop of the receptor. We have previously demonstrated (Montmayeur, J.-P., Guiramand, J., and Borelli, E. (1993) Mol. Endocrinol. 7, 161-170) that D2S and D2L, although presenting very similar pharmacological profiles, couple differently to the alpha-subunit of guanine nucleotide-binding regulatory proteins (G-proteins). In particular, D2L, but not D2S, requires the presence of the alpha-subunit of the inhibitory G-protein (G alpha i2) to elicit greater inhibition of adenylyl cyclase activity. The insert present in D2L must therefore confer the specificity of interaction with G alpha i2. Thus, we introduced substitution mutations within the D2L insert. These mutant receptors were expressed in JEG3 cells, a G alpha i2-deficient cell line, scoring for those presenting an increased inhibition of adenylyl cyclase by dopamine. Our analysis identified two mutants, S259/262A and D249V, with these properties. These results clearly show that the insert present in D2L plays a critical role in the selectivity for the G-proteins interacting with the receptor.
Collapse
|
Comparative Study |
30 |
136 |
22
|
Zhi L, Ang AD, Zhang H, Moore PK, Bhatia M. Hydrogen sulfide induces the synthesis of proinflammatory cytokines in human monocyte cell line U937 via the ERK-NF-kappaB pathway. J Leukoc Biol 2007; 81:1322-1332. [PMID: 17289797 DOI: 10.1189/jlb.1006599] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] [Imported: 10/13/2024] Open
Abstract
Hydrogen sulfide (H2S) is now considered an endogenous, gaseous mediator, which has been demonstrated to be involved in many inflammatory states. However, the mechanism of its proinflammatory function remains unknown. In the present study, we used IFN-gamma-primed human monocytic cell line U937 to investigate the effects of H2S in vitro on monocytes. We found that treatment with the H2S donor, sodium hydrosulfide, led to significant increases in the mRNA expression and protein production of TNF-alpha, IL-1beta, and IL-6 in U937 cells. H2S-triggered monocyte activation was confirmed further by the up-regulation of CD11b expression on the cell surface. We also observed that H2S could induce a rapid degradation of IkappaBalpha and subsequent activation of NF-kappaB p65, and this effect was attenuated by Bay 11-7082, a specific inhibitor of NF-kappaB. Furthermore, pretreatment of cells with Bay 11-7082 substantially inhibited the secretion of TNF-alpha, IL-1beta, and IL-6 induced by H2S. We also found that H2S stimulated the phosphorylation and activation of ERK1/2, but not of p38 MAPK and JNK, and pretreatment with PD98059, a selective MEK1 antagonist, could inhibit H2S-induced NF-kappaB activation markedly. Together, our findings suggest for the first time that H2S stimulates the activation of human monocytes with the generation of proinflammatory cytokines, and this response is, at least partially, through the ERK-NF-kappaB signaling pathway.
Collapse
|
|
18 |
133 |
23
|
Bhatia M, Sidhapuriwala J, Moochhala SM, Moore PK. Hydrogen sulphide is a mediator of carrageenan-induced hindpaw oedema in the rat. Br J Pharmacol 2005; 145:141-144. [PMID: 15753944 PMCID: PMC1576135 DOI: 10.1038/sj.bjp.0706186] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 01/24/2005] [Accepted: 01/26/2005] [Indexed: 11/09/2022] [Imported: 10/13/2024] Open
Abstract
Hydrogen sulphide (H(2)S) is a naturally occurring gas, with potent vasodilator activity. In this report, we identify a role for H(2)S in carrageenan-induced hindpaw oedema in the rat. Intraplantar injection of carrageenan (150 microl, 2% (w v(-1))) resulted in an increase in hindpaw H(2)S synthesising enzyme activity and increased myeloperoxidase (MPO) activity. Pretreatment (i.p. 60 min before carrageenan) with DL-propargylglycine (PAG, 25-75 mg kg(-1)), an inhibitor of the H(2)S synthesising enzyme cystathionine-gamma-lyase (CSE), significantly reduced carrageenan-induced hindpaw oedema in a dose-dependent manner (e.g. increase in hindpaw weight at 3 h, saline: 0.12+/-0.017 g; carrageenan, 1.39+/-0.037 g; PAG, 50 mg kg(-1), 1.11+/-0.06 g, n=10) and MPO activity (fold increase) in the hindpaw (saline: 1.0+/-0.12; carrageenan, 2.92+/-0.45 g; PAG, 50 mg kg(-1), 1.1+/-0.22, n=10); PAG (50 mg kg(-1)) also inhibited H(2)S synthesising enzyme activity (nmol microg DNA(-1)) in the hindpaw in a dose-dependent manner (saline, 0.46+/-0.05; carrageenan, 0.71+/-0.08 g; PAG, 50 mg kg(-1), 0.17+/-0.05, n=10).
Collapse
|
research-article |
20 |
129 |
24
|
Zhang H, Zhi L, Moochhala S, Moore PK, Bhatia M. Hydrogen sulfide acts as an inflammatory mediator in cecal ligation and puncture-induced sepsis in mice by upregulating the production of cytokines and chemokines via NF-kappaB. Am J Physiol Lung Cell Mol Physiol 2007; 292:L960-L971. [PMID: 17209138 DOI: 10.1152/ajplung.00388.2006] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] [Imported: 10/13/2024] Open
Abstract
Recent studies have implied that hydrogen sulfide (H2S) plays a crucial role in several inflammatory conditions. However, so far little is known about the mechanism by which H2S provokes the inflammatory response in sepsis. Thus the aim of this study was to investigate if H2S regulates sepsis-associated systemic inflammation and production of proinflammatory mediators via the activation of NF-kappaB. Male Swiss mice were subjected to cecal ligation and puncture (CLP)-induced sepsis and treated with dl-propargylglycine (PAG; 50 mg/kg ip), NaHS (10 mg/kg ip), or saline. PAG, an inhibitor of H2S formation, was administered either 1 h before or 1 h after CLP, whereas NaHS, an H2S donor, was given at the time of CLP. Some normal mice were given NaHS (10 mg/kg ip) to induce lung inflammation with or without pretreatment with the NF-kappaB inhibitor BAY 11-7082. Eight hours after CLP, both prophylactic and therapeutic administration of PAG significantly reduced the mRNA and protein levels of IL-1beta, IL-6, TNF-alpha, monocyte chemotactic protein-1, and macrophage inflammatory protein-2 in lung and liver coupled with decreased activation and translocation of NF-kappaB in lung and liver. Inhibition of H2S formation also significantly reduced lung permeability and plasma alanine aminotransferase activity. In contrast, injection of NaHS significantly aggravated sepsis-associated systemic inflammation and increased NF-kappaB activation. In addition, H2S-induced lung inflammation was blocked by BAY 11-7082. Therefore, H2S upregulates the production of proinflammatory mediators and exacerbates the systemic inflammation in sepsis through a mechanism involving NF-kappaB activation.
Collapse
|
|
18 |
127 |
25
|
Bhatia M, Brady M, Zagorski J, Christmas SE, Campbell F, Neoptolemos JP, Slavin J. Treatment with neutralising antibody against cytokine induced neutrophil chemoattractant (CINC) protects rats against acute pancreatitis associated lung injury. Gut 2000; 47:838-844. [PMID: 11076884 PMCID: PMC1728153 DOI: 10.1136/gut.47.6.838] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] [Imported: 10/13/2024]
Abstract
BACKGROUND Lung injury manifest clinically as adult respiratory distress syndrome (ARDS) is a common cause of morbidity and mortality following acute pancreatitis (AP). Neutrophils play a critical role in the progression of AP to ARDS. C-x-C chemokines are potent neutrophil chemoattractants and activators and have been implicated in AP. AIMS To evaluate the effect of blocking the C-x-C chemokine, cytokine induced neutrophil chemoattractant (CINC), in AP on pancreatic inflammation and the associated lung injury in rats. METHODS AP was induced by hourly intraperitoneal injections of caerulein. Goat anti-CINC antibody was administered either before or after starting caerulein injections to evaluate the prophylactic and therapeutic effects, respectively. Severity of AP was determined by measuring plasma amylase, pancreatic water content, and pancreatic myeloperoxidase (MPO) activity as a measure of neutrophil sequestration in the pancreas. Lung injury was determined by measurement of pulmonary microvascular permeability and lung MPO activity. RESULTS Treatment with anti-CINC antibody had little effect on caerulein induced pancreatic damage. However, it reduced the caerulein mediated increase in lung MPO activity as well as lung microvascular permeability when administered either prophylactically (lung MPO (fold increase over control): 1.53 (0.21) v. 3.30 (0.46), p<0.05; microvascular permeability (L/P%): 0.42 (0.07) v. 0.77 (0.11), p<0.05) or therapeutically (lung MPO (fold increase over control): 2.13 (0.10) v 4.42 (0.65), p<0.05; microvascular permeability (L/P%): 0.31 (0.05) v 0.79 (0.13), p<0.05). CONCLUSION Treatment with anti-CINC antibody afforded significant protection against pancreatitis associated lung injury. These results suggest that CINC plays an important role in the systemic inflammatory response in AP.
Collapse
|
research-article |
25 |
121 |