51
|
Powell JD, Abente EJ, Torchetti MK, Killian ML, Vincent AL. An avian influenza virus A(H7N9) reassortant that recently emerged in the United States with low pathogenic phenotype does not efficiently infect swine. Influenza Other Respir Viruses 2019; 13:288-291. [PMID: 30761746 PMCID: PMC6468088 DOI: 10.1111/irv.12631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 11/26/2022] Open
Abstract
In 2017, outbreaks of low and highly pathogenic avian H7N9 viruses were reported in four States in the United States. In total, over 270 000 birds died or were culled, causing significant economic loss. The potential for avian‐to‐swine transmission of the U.S. avian H7N9 was unknown. In an experimental challenge in swine using a representative low pathogenic H7N9 (A/chicken/Tennessee/17‐007431‐3/2017; LPAI TN/17) isolated from these events, no infectious virus in the upper and minimal virus in the lower respiratory tract was detected, nor was lung pathology or evidence of transmission in pigs observed, indicating that the virus cannot efficiently infect swine.
Collapse
Affiliation(s)
- Joshua D Powell
- Virus and Prion Research Unit, Agricultural Research Service, National Animal Disease Center, U.S. Department of Agriculture, Ames, Iowa
| | - Eugenio J Abente
- Virus and Prion Research Unit, Agricultural Research Service, National Animal Disease Center, U.S. Department of Agriculture, Ames, Iowa
| | - Mia K Torchetti
- National Veterinary Services Laboratories, Veterinary Services, U.S. Department of Agriculture, Ames, Iowa
| | - Mary L Killian
- National Veterinary Services Laboratories, Veterinary Services, U.S. Department of Agriculture, Ames, Iowa
| | - Amy L Vincent
- Virus and Prion Research Unit, Agricultural Research Service, National Animal Disease Center, U.S. Department of Agriculture, Ames, Iowa
| |
Collapse
|
52
|
Asha K, Kumar B. Emerging Influenza D Virus Threat: What We Know so Far! J Clin Med 2019; 8:jcm8020192. [PMID: 30764577 PMCID: PMC6406440 DOI: 10.3390/jcm8020192] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 01/20/2023] Open
Abstract
Influenza viruses, since time immemorial, have been the major respiratory pathogen known to infect a wide variety of animals, birds and reptiles with established lineages. They belong to the family Orthomyxoviridae and cause acute respiratory illness often during local outbreaks or seasonal epidemics and occasionally during pandemics. Recent studies have identified a new genus within the Orthomyxoviridae family. This newly identified pathogen, D/swine/Oklahoma/1334/2011 (D/OK), first identified in pigs with influenza-like illness was classified as the influenza D virus (IDV) which is distantly related to the previously characterized human influenza C virus. Several other back-to-back studies soon suggested cattle as the natural reservoir and possible involvement of IDV in the bovine respiratory disease complex was established. Not much is known about its likelihood to cause disease in humans, but it definitely poses a potential threat as an emerging pathogen in cattle-workers. Here, we review the evolution, epidemiology, virology and pathobiology of influenza D virus and the possibility of transmission among various hosts and potential to cause human disease.
Collapse
Affiliation(s)
- Kumari Asha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| | - Binod Kumar
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| |
Collapse
|
53
|
Determining the Mutation Bias of Favipiravir in Influenza Virus Using Next-Generation Sequencing. J Virol 2019; 93:JVI.01217-18. [PMID: 30381482 PMCID: PMC6321902 DOI: 10.1128/jvi.01217-18] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/21/2018] [Indexed: 12/15/2022] Open
Abstract
New antiviral drugs are needed as a first line of defense in the event of a novel influenza pandemic. Favipiravir is a broad-spectrum antiviral which is effective against influenza. The exact mechanism of how favipiravir works to inhibit influenza is still unclear. We used next-generation sequencing (NGS) to demonstrate that favipiravir causes mutations in influenza RNA. The greater depth of NGS sequence information over traditional sequencing methods allowed us to precisely determine the bias of particular mutations caused by favipiravir. NGS can also be used in a standard diagnostic pipeline to show that favipiravir is acting on the virus by revealing the mutation bias pattern typical to the drug. Our work will aid in testing whether viruses are resistant to favipiravir and may help demonstrate the effect of favipiravir on viruses in a clinical setting. This will be important if favipiravir is used during a future influenza pandemic. Favipiravir is a broad-spectrum antiviral drug that may be used to treat influenza. Previous research has identified that favipiravir likely acts as a mutagen, but the precise mutation bias that favipiravir induces in influenza virus RNAs has not been described. Here, we use next-generation sequencing (NGS) with barcoding of individual RNA molecules to accurately and quantitatively detect favipiravir-induced mutations and to sample orders of magnitude more mutations than would be possible through Sanger sequencing. We demonstrate that favipiravir causes mutations and show that favipiravir primarily acts as a guanine analogue and secondarily as an adenine analogue resulting in the accumulation of transition mutations. We also use a standard NGS pipeline to show that the mutagenic effect of favipiravir can be measured by whole-genome sequencing of virus. IMPORTANCE New antiviral drugs are needed as a first line of defense in the event of a novel influenza pandemic. Favipiravir is a broad-spectrum antiviral which is effective against influenza. The exact mechanism of how favipiravir works to inhibit influenza is still unclear. We used next-generation sequencing (NGS) to demonstrate that favipiravir causes mutations in influenza RNA. The greater depth of NGS sequence information over traditional sequencing methods allowed us to precisely determine the bias of particular mutations caused by favipiravir. NGS can also be used in a standard diagnostic pipeline to show that favipiravir is acting on the virus by revealing the mutation bias pattern typical to the drug. Our work will aid in testing whether viruses are resistant to favipiravir and may help demonstrate the effect of favipiravir on viruses in a clinical setting. This will be important if favipiravir is used during a future influenza pandemic.
Collapse
|
54
|
Chen C, Liu Z, Liu L, Xiao Y, Wang J, Jin Q. Broad neutralizing activity of a human monoclonal antibody against H7N9 strains from 2013 to 2017. Emerg Microbes Infect 2018; 7:179. [PMID: 30425238 PMCID: PMC6234208 DOI: 10.1038/s41426-018-0182-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/29/2018] [Accepted: 10/08/2018] [Indexed: 02/08/2023]
Abstract
H7N9 influenza virus has been circulating among humans for five epidemic waves since it was first isolated in 2013 in China. The recent increase in H7N9 infections during the fifth outbreak in China has caused concerns of a possible pandemic. In this study, we describe a previously characterized human monoclonal antibody, HNIgGA6, obtained by isolating rearranged heavy-chain and light-chain genes from patients who had recovered from H7N9 infections. HNIgGA6 recognized multiple HAs and neutralized the infectivity of 11 out of the 12 H7N9 strains tested, as well as three emerging HPAI H7N9 isolates. The only resistant strain was A/Shanghai/1/2013 (H7N9-SH1), which carries the avian receptor alleles 186V and 226Q in the sialic acid-binding pocket. The mAb broadly neutralized divergent H7N9 strains from 2013 to 2017 and represents a potential alternative treatment for H7N9 interventions.
Collapse
Affiliation(s)
- Cong Chen
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zuliang Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Liguo Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan Xiao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianmin Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
| |
Collapse
|
55
|
Vaccination of poultry successfully eliminated human infection with H7N9 virus in China. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1465-1473. [DOI: 10.1007/s11427-018-9420-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 01/06/2023]
|
56
|
Short KR, Kedzierska K, van de Sandt CE. Back to the Future: Lessons Learned From the 1918 Influenza Pandemic. Front Cell Infect Microbiol 2018; 8:343. [PMID: 30349811 PMCID: PMC6187080 DOI: 10.3389/fcimb.2018.00343] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/10/2018] [Indexed: 01/02/2023] Open
Abstract
2018 marks the 100-year anniversary of the 1918 influenza pandemic, which killed ~50 million people worldwide. The severity of this pandemic resulted from a complex interplay between viral, host, and societal factors. Here, we review the viral, genetic and immune factors that contributed to the severity of the 1918 pandemic and discuss the implications for modern pandemic preparedness. We address unresolved questions of why the 1918 influenza H1N1 virus was more virulent than other influenza pandemics and why some people survived the 1918 pandemic and others succumbed to the infection. While current studies suggest that viral factors such as haemagglutinin and polymerase gene segments most likely contributed to a potent, dysregulated pro-inflammatory cytokine storm in victims of the pandemic, a shift in case-fatality for the 1918 pandemic toward young adults was most likely associated with the host's immune status. Lack of pre-existing virus-specific and/or cross-reactive antibodies and cellular immunity in children and young adults likely contributed to the high attack rate and rapid spread of the 1918 H1N1 virus. In contrast, lower mortality rate in in the older (>30 years) adult population points toward the beneficial effects of pre-existing cross-reactive immunity. In addition to the role of humoral and cellular immunity, there is a growing body of evidence to suggest that individual genetic differences, especially involving single-nucleotide polymorphisms (SNPs), contribute to differences in the severity of influenza virus infections. Co-infections with bacterial pathogens, and possibly measles and malaria, co-morbidities, malnutrition or obesity are also known to affect the severity of influenza disease, and likely influenced 1918 H1N1 disease severity and outcomes. Additionally, we also discuss the new challenges, such as changing population demographics, antibiotic resistance and climate change, which we will face in the context of any future influenza virus pandemic. In the last decade there has been a dramatic increase in the number of severe influenza virus strains entering the human population from animal reservoirs (including highly pathogenic H7N9 and H5N1 viruses). An understanding of past influenza virus pandemics and the lessons that we have learnt from them has therefore never been more pertinent.
Collapse
Affiliation(s)
- Kirsty R. Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Carolien E. van de Sandt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| |
Collapse
|
57
|
Zhu W, Yang L, Shu Y. Did the Highly Pathogenic Avian Influenza A(H7N9) Viruses Emerged in China Raise Increased Threat to Public Health? Vector Borne Zoonotic Dis 2018; 19:22-25. [PMID: 30222520 DOI: 10.1089/vbz.2018.2299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The low pathogenic avian influenza A(H7N9) viruses (LPAI) were first identified in 2013 and have continued to infect humans since then. It was reported in February 2017 that the LPAI H7N9 virus has evolved into highly pathogenic avian influenza (HPAI) viruses, potentially increasing the risk for human and poultry. We in this study overviewed the emergence, epidemiology, and biological characterizations of the HPAI H7N9 viruses for the risk assessment.
Collapse
Affiliation(s)
- Wenfei Zhu
- 1 National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Lei Yang
- 1 National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Yuelong Shu
- 1 National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China.,2 School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China
| |
Collapse
|
58
|
Jin L, Hu S, Tu T, Huang Z, Tang Q, Ma J, Wang X, Li X, Zhou X, Shuai S, Li M. Global Long Noncoding RNA and mRNA Expression Changes between Prenatal and Neonatal Lung Tissue in Pigs. Genes (Basel) 2018; 9:genes9090443. [PMID: 30189656 PMCID: PMC6162397 DOI: 10.3390/genes9090443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/25/2018] [Accepted: 08/27/2018] [Indexed: 12/29/2022] Open
Abstract
Lung tissue plays an important role in the respiratory system of mammals after birth. Early lung development includes six key stages, of which the saccular stage spans the pre- and neonatal periods and prepares the distal lung for alveolarization and gas-exchange. However, little is known about the changes in gene expression between fetal and neonatal lungs. In this study, we performed transcriptomic analysis of messenger RNA (mRNA) and long noncoding RNA (lncRNA) expressed in the lung tissue of fetal and neonatal piglets. A total of 19,310 lncRNAs and 14,579 mRNAs were identified and substantially expressed. Furthermore, 3248 mRNAs were significantly (FDR-adjusted p value ≤ 0.05, FDR: False Discovery Rate) differentially expressed and were mainly enriched in categories related to cell proliferation, immune response, hypoxia response, and mitochondrial activation. For example, CCNA2, an important gene involved in the cell cycle and DNA replication, was upregulated in neonatal lungs. We also identified 452 significantly (FDR-adjusted p value ≤ 0.05) differentially expressed lncRNAs, which might function in cell proliferation, mitochondrial activation, and immune response, similar to the differentially expressed mRNAs. These results suggest that differentially expressed mRNAs and lncRNAs might co-regulate lung development in early postnatal pigs. Notably, the TU64359 lncRNA might promote distal lung development by up-regulating the heparin-binding epidermal growth factor-like (HB-EGF) expression. Our research provides basic lung development datasets and will accelerate clinical researches of newborn lung diseases with pig models.
Collapse
Affiliation(s)
- Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Silu Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Teng Tu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jideng Ma
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xun Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xuewei Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xuan Zhou
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Surong Shuai
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
59
|
The Pandemic Threat of Emerging H5 and H7 Avian Influenza Viruses. Viruses 2018; 10:v10090461. [PMID: 30154345 PMCID: PMC6164301 DOI: 10.3390/v10090461] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/12/2022] Open
Abstract
The 1918 H1N1 Spanish Influenza pandemic was the most severe pandemic in modern history. Unlike more recent pandemics, most of the 1918 H1N1 virus' genome was derived directly from an avian influenza virus. Recent avian-origin H5 A/goose/Guangdong/1/1996 (GsGd) and Asian H7N9 viruses have caused several hundred human infections with high mortality rates. While these viruses have not spread beyond infected individuals, if they evolve the ability to transmit efficiently from person-to-person, specifically via the airborne route, they will initiate a pandemic. Therefore, this review examines H5 GsGd and Asian H7N9 viruses that have caused recent zoonotic infections with a focus on viral properties that support airborne transmission. Several GsGd H5 and Asian H7N9 viruses display molecular changes that potentiate transmission and/or exhibit ability for limited transmission between ferrets. However, the hemagglutinin of these viruses is unstable; this likely represents the most significant obstacle to the emergence of a virus capable of efficient airborne transmission. Given the global disease burden of an influenza pandemic, continued surveillance and pandemic preparedness efforts against H5 GsGd and Asian lineage H7N9 viruses are warranted.
Collapse
|
60
|
Horman WSJ, Nguyen THO, Kedzierska K, Bean AGD, Layton DS. The Drivers of Pathology in Zoonotic Avian Influenza: The Interplay Between Host and Pathogen. Front Immunol 2018; 9:1812. [PMID: 30135686 PMCID: PMC6092596 DOI: 10.3389/fimmu.2018.01812] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022] Open
Abstract
The emergence of zoonotic strains of avian influenza (AI) that cause high rates of mortality in people has caused significant global concern, with a looming threat that one of these strains may develop sustained human-to-human transmission and cause a pandemic outbreak. Most notable of these viral strains are the H5N1 highly pathogenic AI and the H7N9 low pathogenicity AI viruses, both of which have mortality rates above 30%. Understanding of their mechanisms of infection and pathobiology is key to our preparation for these and future viral strains of high consequence. AI viruses typically circulate in wild bird populations, commonly infecting waterfowl and also regularly entering commercial poultry flocks. Live poultry markets provide an ideal environment for the spread AI and potentially the selection of mutants with a greater propensity for infecting humans because of the potential for spill over from birds to humans. Pathology from these AI virus infections is associated with a dysregulated immune response, which is characterized by systemic spread of the virus, lymphopenia, and hypercytokinemia. It has been well documented that host/pathogen interactions, particularly molecules of the immune system, play a significant role in both disease susceptibility as well as disease outcome. Here, we review the immune/virus interactions in both avian and mammalian species, and provide an overview or our understanding of how immune dysregulation is driven. Understanding these susceptibility factors is critical for the development of new vaccines and therapeutics to combat the next pandemic influenza.
Collapse
Affiliation(s)
- William S J Horman
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.,Australian Animal Health Laboratory, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Andrew G D Bean
- Australian Animal Health Laboratory, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| | - Daniel S Layton
- Australian Animal Health Laboratory, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| |
Collapse
|
61
|
Bao S, Jia L, Zhou X, Zhang ZG, Wu HWL, Yu Z, Ng G, Fan Y, Wong DSM, Huang S, Wang To KK, Yuen KY, Yeung ML, Song YQ. Integrated analysis of mRNA-seq and miRNA-seq for host susceptibilities to influenza A (H7N9) infection in inbred mouse lines. Funct Integr Genomics 2018; 18:411-424. [PMID: 29564647 DOI: 10.1007/s10142-018-0602-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/12/2018] [Indexed: 02/05/2023]
Abstract
Host genetic factors play an important role in diverse host outcomes after influenza A (H7N9) infection. Studying differential responses of inbred mouse lines with distinct genetic backgrounds to influenza virus infection could substantially increase our understanding of the contributory roles of host genetic factors to disease severity. Here, we utilized an integrated approach of mRNA-seq and miRNA-seq to investigate the transcriptome expression and regulation of host genes in C57BL/6J and DBA/2J mouse strains during influenza virus infection. The differential pathogenicity of influenza virus in C57BL/6J and DBA/2J has been fully demonstrated through immunohistochemical staining, histopathological analyses, and viral replication assessment. A transcriptional molecular signature correlates to differential host response to infection has been uncovered. With the introduction of temporal expression pattern analysis, we demonstrated that host factors responsible for influenza virus replication and host-virus interaction were significantly enriched in genes exhibiting distinct temporal dynamics between different inbred mouse lines. A combination of time-series expression analysis and temporal expression pattern analysis has provided a list of promising candidate genes for future studies. An integrated miRNA regulatory network from both mRNA-seq and miRNA-seq revealed several regulatory modules responsible for regulating host susceptibilities and disease severity. Overall, a comprehensive framework for analyzing host susceptibilities to influenza infection was established by integrating mRNA-seq and miRNA-seq data of inbred mouse lines. This work suggests novel putative molecular targets for therapeutic interventions in seasonal and pandemic influenza.
Collapse
Affiliation(s)
- Suying Bao
- Schoolof Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Lilong Jia
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Xueya Zhou
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China
| | - Zhi-Gang Zhang
- Schoolof Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Hazel Wai Lan Wu
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Zhe Yu
- Schoolof Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Gordon Ng
- Schoolof Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Yanhui Fan
- Schoolof Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Dana S M Wong
- Schoolof Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Shishu Huang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Kelvin Kai Wang To
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Man Lung Yeung
- Department of Microbiology, The University of Hong Kong, Hong Kong, China.
| | - You-Qiang Song
- Schoolof Biomedical Sciences, The University of Hong Kong, Hong Kong, China.
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China.
- HKU-SIRI/ZIRI, The University of Hong Kong, Hong Kong, China.
- HKU-SUSTech Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
62
|
Xiang D, Shen X, Pu Z, Irwin DM, Liao M, Shen Y. Convergent Evolution of Human-Isolated H7N9 Avian Influenza A Viruses. J Infect Dis 2018; 217:1699-1707. [PMID: 29438519 DOI: 10.1093/infdis/jiy082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/08/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Avian influenza A virus H7N9 has caused 5 epidemic waves of human infections in China since 2013. Avian influenza A viruses may face strong selection to adapt to novel conditions when establishing themselves in humans. In this study, we sought to determine whether adaptive evolution had occurred in human-isolated H7N9 viruses. METHODS We evaluated all available genomes of H7N9 avian influenza A virus. Maximum likelihood trees were separately reconstructed for all 8 genes. Signals of positive selection and convergent evolution were then detected on branches that lead to changes in host tropism (from avian to human). RESULTS We found that 3 genes had significant signals of positive selection (all of them P < .05). In addition, we detected 34 sites having significant signals for parallel evolution in 8 genes (all of them P < .05), including 7 well-known sites (Q591K, E627K, and D701N in PB2 gene; R156K, V202A, and L244Q in HA; and R289K in NA) that play roles in crossing species barriers for avian influenza A viruses. CONCLUSION Our study suggests that, during infection in humans, H7N9 viruses have undergone adaptive evolution to adapt to their new host environment and that the sites where parallel evolution occurred might play roles in crossing species barriers and respond to the new selection pressures arising from their new host environments.
Collapse
Affiliation(s)
- Dan Xiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou
- Shantou University Medical College, Guangzhou, China
| | - Xuejuan Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou
| | - Zhiqing Pu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
- Banting and Best Diabetes Centre, University of Toronto, Canada
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yongyi Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou
- Shantou University Medical College, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
63
|
Generation and application of replication-competent Venus-expressing H5N1, H7N9, and H9N2 influenza A viruses. Sci Bull (Beijing) 2018; 63:176-186. [PMID: 36659003 DOI: 10.1016/j.scib.2018.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 01/21/2023]
Abstract
The generation and application of replication-competent influenza A virus (IAV) expressing a reporter gene represent a valuable tool to elucidate the mechanism of viral pathogenesis and establish new countermeasures to combat the threat of influenza. Here, replication-competent IAVs with a neuraminidase (NA) segment harboring a fluorescent reporter protein, Venus, were generated in the background of H5N1, H7N9, and H9N2 influenza viruses, the three subtypes of viruses with imminent pandemic potential. All three reporter viruses maintained virion morphology, replicated with similar or slightly reduced titers relative to their parental viruses, and stably expressed the fluorescent signal for at least two passages in embryonated chicken eggs. As a proof of concept, we demonstrated that these reporter viruses, used in combination with a high-content imaging system, can serve as a convenient and rapid tool for the screening of antivirals and host factors involved in the virus life cycle. Moreover, the reporter viruses demonstrated similar growth properties and tissue tropism as their parental viruses in mice, among which the H7N9 NA-Venus virus could potentially be used in ex vivo studies to better understand H7N9 pathogenesis or to develop novel therapeutics.
Collapse
|
64
|
Chen E, Wang MH, He F, Sun R, Cheng W, Zee BCY, Lau SYF, Wang X, Chong KC. An increasing trend of rural infections of human influenza A (H7N9) from 2013 to 2017: A retrospective analysis of patient exposure histories in Zhejiang province, China. PLoS One 2018; 13:e0193052. [PMID: 29447278 PMCID: PMC5814046 DOI: 10.1371/journal.pone.0193052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/02/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Although investigations have shown that closing live poultry markets (LPMs) is highly effective in controlling human influenza A (H7N9) infections, many of the urban LPMs were shut down, but rural LPMs remained open. This study aimed to compare the proportional changes between urban and rural infections in the Zhejiang province from 2013 to 2017 by analyzing the exposure histories of human cases. METHODS All laboratory-confirmed cases of H7N9 from 2013 (the first wave) to 2017 (the fifth wave) in the Zhejiang province of China were analyzed. Urban and rural infections were defined based on the locations of poultry exposure (direct and indirect) in urban areas (central towns) and rural areas (towns and villages on the outskirts of cities). A Chi-square trend test was used to compare the proportional trend between urban and rural infections over time and logistic regression was used to obtain the odds ratio by years. RESULTS From 2013 to 2017, a statistically significant trend in rural infections was observed (p <0.01). The incremental odds ratio by years of rural infections was 1.59 with 95% confidence intervals of 1.34 to 1.86. Each year, significant increases in the proportion of live poultry transactions in LPMS and poultry processing plants were detected in conjunction with an increased proportion of urban and rural infections. CONCLUSION The empirical evidence indicated a need for heightened infection control measures in rural areas, such as serving rural farms and backyards as active surveillance points for the H7N9 virus. Other potential interventions such as the vaccination of poultry and extending the closure of LPMs to the provincial level require further careful investigations.
Collapse
Affiliation(s)
- Enfu Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Binjiang District, Hangzhou, Zhejiang, China
| | - Maggie H. Wang
- School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Clinical Trials and Biostatistics Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fan He
- Zhejiang Provincial Center for Disease Control and Prevention, Binjiang District, Hangzhou, Zhejiang, China
| | - Riyang Sun
- School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Cheng
- Zhejiang Provincial Center for Disease Control and Prevention, Binjiang District, Hangzhou, Zhejiang, China
| | - Benny C. Y. Zee
- School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Clinical Trials and Biostatistics Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Steven Y. F. Lau
- School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoxiao Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Binjiang District, Hangzhou, Zhejiang, China
- * E-mail: (KCC); (XW)
| | - Ka Chun Chong
- School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Clinical Trials and Biostatistics Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- * E-mail: (KCC); (XW)
| |
Collapse
|
65
|
ZHANG XINAN, ZOU LAN, CHEN JING, FANG YILE, HUANG JICAI, ZHANG JINHUI, LIU SANHONG, FENG GUANGTING, YANG CUIHONG, RUAN SHIGUI. AVIAN INFLUENZA A H7N9 VIRUS HAS BEEN ESTABLISHED IN CHINA. J BIOL SYST 2017. [DOI: 10.1142/s0218339017400095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In March 2013, a novel avian-origin influenza A H7N9 virus was identified among human patients in China and a total of 124 human cases with 24 related deaths were confirmed by May 2013. From November 2013 to July 2017, H7N9 broke out four more times in China. A deterministic model is proposed to study the transmission dynamics of the avian influenza A H7N9 virus between wild and domestic birds and from birds to humans, and is applied to simulate the open data on numbers of the infected human cases and related deaths reported from March to May 2013 and from November 2013 to June 2014 by the Chinese Center for Disease Control and Prevention. The basic reproduction number [Formula: see text] is estimated and sensitivity analysis of [Formula: see text] in terms of model parameters is performed. Taking into account the fact that it broke out again from November 2014 to June 2015, from November 2015 to July 2016, and from October 2016 to July 2017, we believe that H7N9 virus has been well established in birds and will likely cause regular outbreaks in humans again in the future. Control measures for the future spread of H7N9 include (i) reducing the transmission opportunities between wild birds and domestic birds, (ii) closing or monitoring the retail live-poultry markets in the infected areas, and (iii) culling the infected domestic birds in the epidemic regions.
Collapse
Affiliation(s)
- XINAN ZHANG
- School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, P. R. China
| | - LAN ZOU
- Department of Mathematics, Sichuan University, Chengdu 610064, P. R. China
| | - JING CHEN
- Department of Mathematics, University of Miami, Coral Gables, FL 33146, USA
| | - YILE FANG
- Department of Electrical and Electronic Education, Huazhong University of Science and Technology, Wuchang Branch, Wuhan 430064, P. R. China
| | - JICAI HUANG
- School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, P. R. China
| | - JINHUI ZHANG
- Department of Applied Mathematics, Zhongyuan University of Technology, Zhengzhou 451191, P. R. China
| | - SANHONG LIU
- School of Mathematics and Statistics, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - GUANGTING FENG
- School of Mathematics and Quantitative Economics, Hubei University of Education, Wuhan 432025, P. R. China
| | - CUIHONG YANG
- School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, P. R. China
| | - SHIGUI RUAN
- School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, P. R. China
- Department of Mathematics, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
66
|
Carrasco-Hernandez R, Jácome R, López Vidal Y, Ponce de León S. Are RNA Viruses Candidate Agents for the Next Global Pandemic? A Review. ILAR J 2017; 58:343-358. [PMID: 28985316 PMCID: PMC7108571 DOI: 10.1093/ilar/ilx026] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 12/16/2022] Open
Abstract
Pathogenic RNA viruses are potentially the most important group involved in zoonotic disease transmission, and they represent a challenge for global disease control. Their biological diversity and rapid adaptive rates have proved to be difficult to overcome and to anticipate by modern medical technology. Also, the anthropogenic change of natural ecosystems and the continuous population growth are driving increased rates of interspecies contacts and the interchange of pathogens that can develop into global pandemics. The combination of molecular, epidemiological, and ecological knowledge of RNA viruses is therefore essential towards the proper control of these emergent pathogens. This review outlines, throughout different levels of complexity, the problems posed by RNA viral diseases, covering some of the molecular mechanisms allowing them to adapt to new host species-and to novel pharmaceutical developments-up to the known ecological processes involved in zoonotic transmission.
Collapse
Affiliation(s)
- R Carrasco-Hernandez
- R. Carrasco-Hernandez, PhD, is a postdoctoral research fellow at the Microbiome Laboratory in the Postgraduate Division of the Faculty of Medicine at the Universidad Nacional Autónoma de México, CDMX
| | - Rodrigo Jácome
- Rodrigo Jácome, MD, PhD, is a postdoctoral research fellow at the Microbiome Laboratory in the Postgraduate Division of the Faculty of Medicine at the Universidad Nacional Autónoma de México, CDMX
| | - Yolanda López Vidal
- Yolanda López-Vidal, MD, PhD, is an associate professor “C” and is responsible for the Program of Microbial Molecular Immunology in the Department of Microbiology and Parasitology of the Faculty of Medicine at the Universidad Nacional Autónoma de México, CDMX
| | - Samuel Ponce de León
- Samuel Ponce-de-León, MD, MSc, is an associate professor “C”, is responsible for the Microbiome Laboratory and Coordinator of the University Program for Health Research of the Faculty of Medicine at the Universidad Nacional Autónoma de México, CDMX
| |
Collapse
|
67
|
Vaccination with a Recombinant H7 Hemagglutinin-Based Influenza Virus Vaccine Induces Broadly Reactive Antibodies in Humans. mSphere 2017; 2:mSphere00502-17. [PMID: 29242836 PMCID: PMC5729220 DOI: 10.1128/msphere.00502-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/22/2017] [Indexed: 11/21/2022] Open
Abstract
Zoonotic infections with high case fatality rates caused by avian H7N9 influenza viruses have been reported since early 2013 in China. Since then, the fifth wave of the H7N9 epidemic emerged in China, resulting in higher numbers of laboratory-confirmed cases than in previous years. Recently, H7N9 has started to antigenically drift and split into two new lineages, the Pearl River Delta and Yangtze River Delta clades, which do not match stockpiled H7 vaccines well. Humans are immunologically naive to these subtypes, and an H7N9 strain that acquires the capability of efficient human-to-human transmission poses a credible pandemic threat. Other characteristics of H7N9 are raising concerns as well, like its ability to bind to receptors in the human upper respiratory tract, the recent emergence of highly pathogenic variants, and the ability to quickly gain resistance to neuraminidase inhibitors. Therefore, developing and testing H7N9 vaccines constitutes a priority for pandemic preparedness. Human influenza virus infections with avian subtype H7N9 viruses are a major public health concern and have encouraged the development of effective H7 prepandemic vaccines. In this study, baseline and postvaccination serum samples of individuals aged 18 years and older who received a recombinant H7 hemagglutinin vaccine with and without an oil-in-water emulsion (SE) adjuvant were analyzed using a panel of serological assays. While only a small proportion of individuals seroconverted to H7N9 as measured by the conventional hemagglutination inhibition assay, our data show strong induction of anti-H7 hemagglutinin antibodies as measured by an enzyme-linked immunosorbent assay (ELISA). In addition, cross-reactive antibodies against phylogenetically distant group 2 hemagglutinins were induced, presumably targeting the conserved stalk domain of the hemagglutinin. Further analysis confirmed an induction of stalk-specific antibodies, suggesting that epitopes outside the classical antigenic sites are targeted by this vaccine in the context of preexisting immunity to related H3 hemagglutinin. Antibodies induced by H7 vaccination also showed functional activity in antibody-dependent cell-mediated cytotoxicity reporter assays and microneutralization assays. Additionally, our data show that sera from hemagglutination inhibition seroconverters conferred protection in a passive serum transfer experiment against lethal H7N9 virus challenge in mice. Interestingly, sera from hemagglutination inhibition nonseroconverters also conferred partial protection in the lethal animal challenge model. In conclusion, while recombinant H7 vaccination fails to induce measurable levels of hemagglutination-inhibiting antibodies in most subjects, this vaccination regime induces homosubtypic and heterosubtypic cross-reactive binding antibodies that are functional and partly protective in a murine passive transfer challenge model. IMPORTANCE Zoonotic infections with high case fatality rates caused by avian H7N9 influenza viruses have been reported since early 2013 in China. Since then, the fifth wave of the H7N9 epidemic emerged in China, resulting in higher numbers of laboratory-confirmed cases than in previous years. Recently, H7N9 has started to antigenically drift and split into two new lineages, the Pearl River Delta and Yangtze River Delta clades, which do not match stockpiled H7 vaccines well. Humans are immunologically naive to these subtypes, and an H7N9 strain that acquires the capability of efficient human-to-human transmission poses a credible pandemic threat. Other characteristics of H7N9 are raising concerns as well, like its ability to bind to receptors in the human upper respiratory tract, the recent emergence of highly pathogenic variants, and the ability to quickly gain resistance to neuraminidase inhibitors. Therefore, developing and testing H7N9 vaccines constitutes a priority for pandemic preparedness.
Collapse
|
68
|
Research progress in human infection with avian influenza H7N9 virus. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1299-1306. [DOI: 10.1007/s11427-017-9221-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/06/2017] [Indexed: 12/26/2022]
|
69
|
Shi J, Deng G, Kong H, Gu C, Ma S, Yin X, Zeng X, Cui P, Chen Y, Yang H, Wan X, Wang X, Liu L, Chen P, Jiang Y, Liu J, Guan Y, Suzuki Y, Li M, Qu Z, Guan L, Zang J, Gu W, Han S, Song Y, Hu Y, Wang Z, Gu L, Yang W, Liang L, Bao H, Tian G, Li Y, Qiao C, Jiang L, Li C, Bu Z, Chen H. H7N9 virulent mutants detected in chickens in China pose an increased threat to humans. Cell Res 2017; 27:1409-1421. [PMID: 29151586 PMCID: PMC5717404 DOI: 10.1038/cr.2017.129] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/17/2017] [Accepted: 09/26/2017] [Indexed: 12/14/2022] Open
Abstract
Certain low pathogenic avian influenza viruses can mutate to highly pathogenic viruses when they circulate in domestic poultry, at which point they can cause devastating poultry diseases and severe economic damage. The H7N9 influenza viruses that emerged in 2013 in China had caused severe human infections and deaths. However, these viruses were nonlethal in poultry. It is unknown whether the H7N9 viruses can acquire additional mutations during their circulation in nature and become lethal to poultry and more dangerous for humans. Here, we evaluated the evolution of H7N9 viruses isolated from avian species between 2013 and 2017 in China and found 23 different genotypes, 7 of which were detected only in ducks and were genetically distinct from the other 16 genotypes that evolved from the 2013 H7N9 viruses. Importantly, some H7N9 viruses obtained an insertion of four amino acids in their hemagglutinin (HA) cleavage site and were lethal in chickens. The index strain was not lethal in mice or ferrets, but readily obtained the 627K or 701N mutation in its PB2 segment upon replication in ferrets, causing it to become highly lethal in mice and ferrets and to be transmitted efficiently in ferrets by respiratory droplet. H7N9 viruses bearing the HA insertion and PB2 627K mutation have been detected in humans in China. Our study indicates that the new H7N9 mutants are lethal to chickens and pose an increased threat to human health, and thus highlights the need to control and eradicate the H7N9 viruses to prevent a possible pandemic.
Collapse
Affiliation(s)
- Jianzhong Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Guohua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Huihui Kong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Chunyang Gu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Shujie Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xin Yin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xianying Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Pengfei Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Huanliang Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xiaopeng Wan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xiurong Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Liling Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Pucheng Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yongping Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jinxiong Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yuntao Guan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yasuo Suzuki
- College of Life and Health Sciences, Chubu University, Aichi 487-8501, Japan
| | - Mei Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhiyuan Qu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Lizheng Guan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jinkai Zang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Wenli Gu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Shuyu Han
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yangming Song
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yuzhen Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zeng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Linlin Gu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Wenyu Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Libin Liang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Hongmei Bao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Guobin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yanbing Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Chuanling Qiao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Li Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| |
Collapse
|
70
|
Imai M, Watanabe T, Kiso M, Nakajima N, Yamayoshi S, Iwatsuki-Horimoto K, Hatta M, Yamada S, Ito M, Sakai-Tagawa Y, Shirakura M, Takashita E, Fujisaki S, McBride R, Thompson AJ, Takahashi K, Maemura T, Mitake H, Chiba S, Zhong G, Fan S, Oishi K, Yasuhara A, Takada K, Nakao T, Fukuyama S, Yamashita M, Lopes TJS, Neumann G, Odagiri T, Watanabe S, Shu Y, Paulson JC, Hasegawa H, Kawaoka Y. A Highly Pathogenic Avian H7N9 Influenza Virus Isolated from A Human Is Lethal in Some Ferrets Infected via Respiratory Droplets. Cell Host Microbe 2017; 22:615-626.e8. [PMID: 29056430 DOI: 10.1016/j.chom.2017.09.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/03/2017] [Accepted: 09/15/2017] [Indexed: 11/16/2022]
Abstract
Low pathogenic H7N9 influenza viruses have recently evolved to become highly pathogenic, raising concerns of a pandemic, particularly if these viruses acquire efficient human-to-human transmissibility. We compared a low pathogenic H7N9 virus with a highly pathogenic isolate, and two of its variants that represent neuraminidase inhibitor-sensitive and -resistant subpopulations detected within the isolate. The highly pathogenic H7N9 viruses replicated efficiently in mice, ferrets, and/or nonhuman primates, and were more pathogenic in mice and ferrets than the low pathogenic H7N9 virus, with the exception of the neuraminidase inhibitor-resistant virus, which showed mild-to-moderate attenuation. All viruses transmitted among ferrets via respiratory droplets, and the neuraminidase-sensitive variant killed several of the infected and exposed animals. Neuraminidase inhibitors showed limited effectiveness against these viruses in vivo, but the viruses were susceptible to a polymerase inhibitor. These results suggest that the highly pathogenic H7N9 virus has pandemic potential and should be closely monitored.
Collapse
Affiliation(s)
- Masaki Imai
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
| | - Tokiko Watanabe
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Maki Kiso
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Noriko Nakajima
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Kiyoko Iwatsuki-Horimoto
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Masato Hatta
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Shinya Yamada
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Mutsumi Ito
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Yuko Sakai-Tagawa
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Masayuki Shirakura
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Emi Takashita
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Seiichiro Fujisaki
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Ryan McBride
- Departments of Molecular Medicine & Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew J Thompson
- Departments of Molecular Medicine & Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kenta Takahashi
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tadashi Maemura
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Hiromichi Mitake
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Shiho Chiba
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Gongxun Zhong
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Shufang Fan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Kohei Oishi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Atsuhiro Yasuhara
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Kosuke Takada
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Tomomi Nakao
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Satoshi Fukuyama
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Makoto Yamashita
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Tiago J S Lopes
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Takato Odagiri
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Shinji Watanabe
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Yuelong Shu
- National Institute for Viral Disease Control and Prevention, China Centers for Disease Control and Prevention, Beijing 102206, China
| | - James C Paulson
- Departments of Molecular Medicine & Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA; Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
71
|
Hassan AO, Amen O, Sayedahmed EE, Vemula SV, Amoah S, York I, Gangappa S, Sambhara S, Mittal SK. Adenovirus vector-based multi-epitope vaccine provides partial protection against H5, H7, and H9 avian influenza viruses. PLoS One 2017; 12:e0186244. [PMID: 29023601 PMCID: PMC5638338 DOI: 10.1371/journal.pone.0186244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/27/2017] [Indexed: 11/18/2022] Open
Abstract
The emergence of H5, H7, and H9 avian influenza virus subtypes in humans reveals their pandemic potential. Although human-to-human transmission has been limited, the genetic reassortment of the avian and human/porcine influenza viruses or mutations in some of the genes resulting in virus replication in the upper respiratory tract of humans could generate novel pandemic influenza viruses. Current vaccines do not provide cross protection against antigenically distinct strains of the H5, H7, and H9 influenza viruses. Therefore, newer vaccine approaches are needed to overcome these potential threats. We developed an egg-independent, adenovirus vector-based, multi-epitope (ME) vaccine approach using the relatively conserved immunogenic domains of the H5N1 influenza virus [M2 ectodomain (M2e), hemagglutinin (HA) fusion domain (HFD), T-cell epitope of nucleoprotein (TNP). and HA α-helix domain (HαD)]. Our ME vaccine induced humoral and cell-mediated immune responses and caused a significant reduction in the viral loads in the lungs of vaccinated mice that were challenged with antigenically distinct H5, H7, or H9 avian influenza viruses. These results suggest that our ME vaccine approach provided broad protection against the avian influenza viruses. Further improvement of this vaccine will lead to a pre-pandemic vaccine that may lower morbidity, hinder transmission, and prevent mortality in a pandemic situation before a strain-matched vaccine becomes available.
Collapse
Affiliation(s)
- Ahmed O. Hassan
- Department of Comparative Pathobiology and Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States of America
| | - Omar Amen
- Department of Comparative Pathobiology and Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States of America
- Poultry Diseases Department, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Ekramy E. Sayedahmed
- Department of Comparative Pathobiology and Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States of America
| | - Sai V. Vemula
- Department of Comparative Pathobiology and Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States of America
| | - Samuel Amoah
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Ian York
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Shivaprakash Gangappa
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Suryaprakash Sambhara
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
- * E-mail: (SKM); (SS)
| | - Suresh K. Mittal
- Department of Comparative Pathobiology and Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States of America
- * E-mail: (SKM); (SS)
| |
Collapse
|
72
|
Ke C, Mok CKP, Zhu W, Zhou H, He J, Guan W, Wu J, Song W, Wang D, Liu J, Lin Q, Chu DKW, Yang L, Zhong N, Yang Z, Shu Y, Peiris JSM. Human Infection with Highly Pathogenic Avian Influenza A(H7N9) Virus, China. Emerg Infect Dis 2017; 23:1332-1340. [PMID: 28580899 PMCID: PMC5547808 DOI: 10.3201/eid2308.170600] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The recent increase in zoonotic avian influenza A(H7N9) disease in China is a cause of public health concern. Most of the A(H7N9) viruses previously reported have been of low pathogenicity. We report the fatal case of a patient in China who was infected with an A(H7N9) virus having a polybasic amino acid sequence at its hemagglutinin cleavage site (PEVPKRKRTAR/GL), a sequence suggestive of high pathogenicity in birds. Its neuraminidase also had R292K, an amino acid change known to be associated with neuraminidase inhibitor resistance. Both of these molecular features might have contributed to the patient’s adverse clinical outcome. The patient had a history of exposure to sick and dying poultry, and his close contacts had no evidence of A(H7N9) disease, suggesting human-to-human transmission did not occur. Enhanced surveillance is needed to determine whether this highly pathogenic avian influenza A(H7N9) virus will continue to spread.
Collapse
|
73
|
Su S, Gu M, Liu D, Cui J, Gao GF, Zhou J, Liu X. Epidemiology, Evolution, and Pathogenesis of H7N9 Influenza Viruses in Five Epidemic Waves since 2013 in China. Trends Microbiol 2017; 25:713-728. [PMID: 28734617 DOI: 10.1016/j.tim.2017.06.008] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 01/30/2023]
Abstract
H7N9 influenza viruses were first isolated in 2013 and continue to cause human infections. H7N9 infections represent an ongoing public health threat that has resulted in 1344 cases with 511 deaths as of April 9, 2017. This highlights the continued threat posed by the current poultry trade and live poultry market system in China. Until now, there have been five H7N9 influenza epidemic waves in China; however, the steep increase in the number of humans infected with H7N9 viruses observed in the fifth wave, beginning in October 2016, the spread into western provinces, and the emergence of highly pathogenic (HP) H7N9 influenza outbreaks in chickens and infection in humans have caused domestic and international concern. In this review, we summarize and compare the different waves of H7N9 regarding their epidemiology, pathogenesis, evolution, and characteristic features, and speculate on factors behind the recent increase in the number of human cases and sudden outbreaks in chickens. The continuous evolution of the virus poses a long-term threat to public health and the poultry industry, and thus it is imperative to strengthen prevention and control strategies.
Collapse
Affiliation(s)
- Shuo Su
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Di Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jie Cui
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Jiyong Zhou
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China; Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China.
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, China; Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
74
|
The Interplay between the Host Receptor and Influenza Virus Hemagglutinin and Neuraminidase. Int J Mol Sci 2017; 18:ijms18071541. [PMID: 28714909 PMCID: PMC5536029 DOI: 10.3390/ijms18071541] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/30/2017] [Accepted: 07/10/2017] [Indexed: 12/16/2022] Open
Abstract
The hemagglutinin (HA) and neuraminidase (NA) glycoproteins of influenza A virus are responsible for the surface interactions of the virion with the host. Entry of the virus is mediated by functions of the HA: binding to cellular receptors and facilitating fusion of the virion membrane with the endosomal membrane. The HA structure contains receptor binding sites in the globular membrane distal head domains of the trimer, and the fusion machinery resides in the stem region. These sites have specific characteristics associated with subtype and host, and the differences often define species barriers. For example, avian viruses preferentially recognize α2,3-Sialic acid terminating glycans as receptors and mammalian viruses recognize α2,6-Sialic acid. The neuraminidase, or the receptor-destroying protein, cleaves the sialic acid from cellular membrane constituents and viral glycoproteins allowing for egress of nascent virions. A functional balance of activity has been demonstrated between the two glycoproteins, resulting in an optimum level of HA affinity and NA enzymatic cleavage to allow for productive infection. As more is understood about both HA and NA, the relevance for functional balance between HA and NA continues to expand, with potential implications for interspecies transmission, host adaptation, and pathogenicity.
Collapse
|
75
|
A recombinant H7N9 influenza vaccine with the H7 hemagglutinin transmembrane domain replaced by the H3 domain induces increased cross-reactive antibodies and improved interclade protection in mice. Antiviral Res 2017; 143:97-105. [DOI: 10.1016/j.antiviral.2017.03.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/20/2017] [Indexed: 11/20/2022]
|
76
|
Webby RJ, Yang Z. The changing landscape of A H7N9 influenza virus infections in China. THE LANCET. INFECTIOUS DISEASES 2017; 17:783-784. [PMID: 28583579 DOI: 10.1016/s1473-3099(17)30337-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 11/18/2022]
Affiliation(s)
- Richard J Webby
- Department of infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Zifeng Yang
- Clinical Virology Division, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
77
|
An avian influenza H7 DNA priming vaccine is safe and immunogenic in a randomized phase I clinical trial. NPJ Vaccines 2017; 2:15. [PMID: 29263871 PMCID: PMC5627236 DOI: 10.1038/s41541-017-0016-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/12/2017] [Accepted: 04/24/2017] [Indexed: 11/18/2022] Open
Abstract
A novel avian influenza subtype, A/H7N9, emerged in 2013 and represents a public health threat with pandemic potential. We have previously shown that DNA vaccine priming increases the magnitude and quality of antibody responses to H5N1 monovalent inactivated boost. We now report the safety and immunogenicity of a H7 DNA-H7N9 monovalent inactivated vaccine prime-boost regimen. In this Phase 1, open label, randomized clinical trial, we evaluated three H7N9 vaccination regimens in healthy adults, with a prime-boost interval of 16 weeks. Group 1 received H7 DNA vaccine prime and H7N9 monovalent inactivated vaccine boost. Group 2 received H7 DNA and H7N9 monovalent inactivated vaccine as a prime and H7N9 monovalent inactivated vaccine as a boost. Group 3 received H7N9 monovalent inactivated vaccine in a homologous prime-boost regimen. Overall, 30 individuals between 20 to 60 years old enrolled and 28 completed both vaccinations. All injections were well tolerated with no serious adverse events. 2 weeks post-boost, 50% of Group 1 and 33% of Group 2 achieved a HAI titer ≥1:40 compared with 11% of Group 3. Also, at least a fourfold increase in neutralizing antibody responses was seen in 90% of Group 1, 100% of Group 2, and 78% of Group 3 subjects. Peak neutralizing antibody geometric mean titers were significantly greater for Group 1 (GMT = 440.61, p < 0.05) and Group 2 (GMT = 331, p = 0.02) when compared with Group 3 (GMT = 86.11). A novel H7 DNA vaccine was safe, well-tolerated, and immunogenic when boosted with H7N9 monovalent inactivated vaccine, while priming for higher HAI and neutralizing antibody titers than H7N9 monovalent inactivated vaccine alone. A vaccine candidate to treat a deadly subtype of avian influenza was shown to induce protective antibodies in initial clinical trials. As of March 2017, avian influenza strain A/H7N9 has killed 497 people since 2013, with 1349 confirmed cases. Julie Ledgerwood and her team from the United States’ National Institutes of Health in collaboration with colleagues at the Centers for Disease Control and Prevention tested their two-stage vaccine protocol in humans, showing it to be effective and safe. The vaccine consists of an initial injection of viral DNA, which ‘primes’ the immune system to the pathogen, followed by a follow-up injection of an inactivated purified viral protein, which further boosts the host’s production of protective antibodies. The study shows the viability of this vaccine regimen and suggests further investigation into its appropriateness for treating avian influenza in humans.
Collapse
|
78
|
Camp JV, Jonsson CB. A Role for Neutrophils in Viral Respiratory Disease. Front Immunol 2017; 8:550. [PMID: 28553293 PMCID: PMC5427094 DOI: 10.3389/fimmu.2017.00550] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 04/24/2017] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are immune cells that are well known to be present during many types of lung diseases associated with acute respiratory distress syndrome (ARDS) and may contribute to acute lung injury. Neutrophils are poorly studied with respect to viral infection, and specifically to respiratory viral disease. Influenza A virus (IAV) infection is the cause of a respiratory disease that poses a significant global public health concern. Influenza disease presents as a relatively mild and self-limiting although highly pathogenic forms exist. Neutrophils increase in the respiratory tract during infection with mild seasonal IAV, moderate and severe epidemic IAV infection, and emerging highly pathogenic avian influenza (HPAI). During severe influenza pneumonia and HPAI infection, the number of neutrophils in the lower respiratory tract is correlated with disease severity. Thus, comparative analyses of the relationship between IAV infection and neutrophils provide insights into the relative contribution of host and viral factors that contribute to disease severity. Herein, we review the contribution of neutrophils to IAV disease pathogenesis and to other respiratory virus infections.
Collapse
Affiliation(s)
- Jeremy V Camp
- Institute of Virology, University of Veterinary Medicine at Vienna, Vienna, Austria
| | - Colleen B Jonsson
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN, USA
| |
Collapse
|
79
|
Evaluation of the Immune Responses to and Cross-Protective Efficacy of Eurasian H7 Avian Influenza Viruses. J Virol 2017; 91:JVI.02259-16. [PMID: 28331080 DOI: 10.1128/jvi.02259-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/03/2017] [Indexed: 12/28/2022] Open
Abstract
Due to increasing concerns about human infection by various H7 influenza viruses, including recent H7N9 viruses, we evaluated the genetic relationships and cross-protective efficacies of three different Eurasian H7 avian influenza viruses. Phylogenic and molecular analyses revealed that recent Eurasian H7 viruses can be separated into two different lineages, with relatively high amino acid identities within groups (94.8 to 98.8%) and low amino acid identities between groups (90.3 to 92.6%). In vivo immunization with representatives of each group revealed that while group-specific cross-reactivity was induced, cross-reactive hemagglutination inhibition (HI) titers were approximately 4-fold lower against heterologous group viruses than against homologous group viruses. Moreover, the group I (RgW109/06) vaccine protected 100% of immunized mice from various group I viruses, while only 20 to 40% of immunized mice survived lethal challenge with heterologous group II viruses and exhibited high viral titers in the lung. Moreover, while the group II (RgW478/14) vaccine also protected mice from lethal challenge with group II viruses, it failed to elicit cross-protection against group I viruses. However, it is noteworthy that vaccination with RgAnhui1/13, a virus of a sublineage of group I, cross-protected immunized mice against lethal challenge with both group I and II viruses and significantly attenuated lung viral titers. Interestingly, immune sera from RgAnhui1/13-vaccinated mice showed a broad neutralizing spectrum rather than the group-specific pattern observed with the other viruses. These results suggest that the recent human-infective H7N9 strain may be a candidate broad cross-protective vaccine for Eurasian H7 viruses.IMPORTANCE Genetic and phylogenic analyses have demonstrated that the Eurasian H7 viruses can be separated into at least two different lineages, both of which contain human-infective fatal H7 viruses, including the recent novel H7N9 viruses isolated in China since 2013. Due to the increasing concerns regarding the global public health risk posed by H7 viruses, we evaluated the genetic relationships between Eurasian H7 avian influenza viruses and the cross-protective efficacies of three different H7 viruses: W109/06 (group I), W478/14 (group II), and Anhui1/13 (a sublineage of group I). While each vaccine induced group-specific antibody responses and cross-protective efficacy, only Anhui1/13 was able to cross-protect immunized hosts against lethal challenge across groups. In fact, the Anhui1/13 virus induced not only cross-protection but also broad serum neutralizing antibody responses against both groups of viruses. This suggests that Anhui1/13-like H7N9 viruses may be viable vaccine candidates for broad protection against Eurasian H7 viruses.
Collapse
|
80
|
Role of Neuraminidase in Influenza A(H7N9) Virus Receptor Binding. J Virol 2017; 91:JVI.02293-16. [PMID: 28356530 PMCID: PMC5432883 DOI: 10.1128/jvi.02293-16] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/14/2017] [Indexed: 12/31/2022] Open
Abstract
Influenza A(H7N9) viruses have caused a large number of zoonotic infections since their emergence in 2013. They remain a public health concern due to the repeated high levels of infection with these viruses and their perceived pandemic potential. A major factor that determines influenza A virus fitness and therefore transmissibility is the interaction of the surface glycoproteins hemagglutinin (HA) and neuraminidase (NA) with the cell surface receptor sialic acid. Typically, the HA is responsible for binding to the sialic acid to allow virus internalization and the NA is a sialidase responsible for cleaving sialic acid to aid virus spread and release. N9 NA has previously been shown to have receptor binding properties mediated by a sialic acid binding site, termed the hemadsorption (Hb) site, which is discrete from the enzymatically active sialidase site. This study investigated the N9 NA from a zoonotic H7N9 virus strain in order to determine its possible role in virus receptor binding. We demonstrate that this N9 NA has an active Hb site which binds to sialic acid, which enhances overall virus binding to sialic acid receptor analogues. We also show that the N9 NA can also contribute to receptor binding due to unusual kinetic characteristics of the sialidase site which specifically enhance binding to human-like α2,6-linked sialic acid receptors. IMPORTANCE The interaction of influenza A virus glycoproteins with cell surface receptors is a major determinant of infectivity and therefore transmissibility. Understanding these interactions is important for understanding which factors are necessary to determine pandemic potential. Influenza A viruses generally mediate binding to cell surface sialic acid receptors via the hemagglutinin (HA) glycoprotein, with the neuraminidase (NA) glycoprotein being responsible for cleaving the receptor to allow virus release. Previous studies showed that the NA proteins of the N9 subtype can bind sialic acid via a separate binding site distinct from the sialidase active site. This study demonstrates for purified protein and virus that the NA of the zoonotic H7N9 viruses has a binding capacity via both the secondary binding site and unusual kinetic properties of the sialidase site which promote receptor binding via this site and which enhance binding to human-like receptors. This could have implications for understanding human-to-human transmission of these viruses.
Collapse
|
81
|
Xie Y, Luo X, He Z, Zheng Y, Zuo Z, Zhao Q, Miao Y, Ren J. VirusMap: A visualization database for the influenza A virus. J Genet Genomics 2017; 44:281-284. [PMID: 28529079 DOI: 10.1016/j.jgg.2017.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/21/2017] [Accepted: 04/28/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Yubin Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaotong Luo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhihao He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yueyuan Zheng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhixiang Zuo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Qi Zhao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China.
| | - Yanyan Miao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Jian Ren
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha 410073, China.
| |
Collapse
|
82
|
Lai C, Wang K, Zhao Z, Zhang L, Gu H, Yang P, Wang X. C-C Motif Chemokine Ligand 2 (CCL2) Mediates Acute Lung Injury Induced by Lethal Influenza H7N9 Virus. Front Microbiol 2017; 8:587. [PMID: 28421067 PMCID: PMC5379033 DOI: 10.3389/fmicb.2017.00587] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 03/21/2017] [Indexed: 11/13/2022] Open
Abstract
An avian-origin influenza A (H7N9) virus was a cause for concern in China in the spring of 2013. Most H7N9 infections resulted in acute respiratory distress syndrome (ARDS), which is a severe form of acute lung injury (ALI) that contributes to morbidity and mortality. In this study, we induced viral ALI by infecting wild-type and CCL2-deficient mice with influenza H7N9 virus. The results suggested a close association between C-C motif chemokine ligand 2 (CCL2) expressions and ALI induced by a lethal H7N9 virus strain (A/Hebei/01/2013). Elevated CCL2 levels were also detected in confirmed human cases of H7N9 and the bronchoalveolar lavage fluid (BALF) of H7N9-infected mice. Moreover, CCL2 was overexpressed in the lung tissue of infected mice. More importantly, CCL2 deficiency ameliorated H7N9-induced ALI in mice as determined by weight loss, survival rate, the wet:dry ratio of the lung, and pathology. Taken together, our findings demonstrate that CCL2 is essential for H7N9 virus infection and thus that it is a potential therapeutic target for influenza.
Collapse
Affiliation(s)
- Chengcai Lai
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Keyu Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Zhongpeng Zhao
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Liangyan Zhang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Hongjing Gu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Penghui Yang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China.,Beijing 302 HospitalBeijing, China
| | - Xiliang Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| |
Collapse
|
83
|
Zanin M, Koçer ZA, Poulson RL, Gabbard JD, Howerth EW, Jones CA, Friedman K, Seiler J, Danner A, Kercher L, McBride R, Paulson JC, Wentworth DE, Krauss S, Tompkins SM, Stallknecht DE, Webster RG. Potential for Low-Pathogenic Avian H7 Influenza A Viruses To Replicate and Cause Disease in a Mammalian Model. J Virol 2017; 91:e01934-16. [PMID: 27852855 PMCID: PMC5244340 DOI: 10.1128/jvi.01934-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/10/2016] [Indexed: 11/20/2022] Open
Abstract
H7 subtype influenza A viruses are widely distributed and have been responsible for human infections and numerous outbreaks in poultry with significant impact. Despite this, the disease-causing potential of the precursor low-pathogenic (LP) H7 viruses from the wild bird reservoir has not been investigated. Our objective was to assess the disease-causing potential of 30 LP H7 viruses isolated from wild avian species in the United States and Canada using the DBA/2J mouse model. Without prior mammalian adaptation, the majority of viruses, 27 (90%), caused mortality in mice. Of these, 17 (56.7%) caused 100% mortality and 24 were of pathogenicity similar to that of A/Anhui/1/2013 (H7N9), which is highly pathogenic in mice. Viruses of duck origin were more pathogenic than those of shorebird origin, as 13 of 18 (72.2%) duck origin viruses caused 100% mortality while 4 of 12 (33.3%) shorebird origin viruses caused 100% mortality, despite there being no difference in mean lung viral titers between the groups. Replication beyond the respiratory tract was also evident, particularly in the heart and brain. Of the 16 viruses studied for fecal shedding, 11 were detected in fecal samples. These viruses exhibited a strong preference for avian-type α2,3-linked sialic acids; however, binding to mammalian-type α2,6-linked sialic acids was also detected. These findings indicate that LP avian H7 influenza A viruses are able to infect and cause disease in mammals without prior adaptation and therefore pose a potential public health risk. IMPORTANCE Low-pathogenic (LP) avian H7 influenza A viruses are widely distributed in the avian reservoir and are the precursors of numerous outbreaks of highly pathogenic avian influenza viruses in commercial poultry farms. However, unlike highly pathogenic H7 viruses, the disease-causing potential of LP H7 viruses from the wild bird reservoir has not been investigated. To address this, we studied 30 LP avian H7 viruses isolated from wild avian species in the United States and Canada using the DBA/2J mouse model. Surprisingly, the majority of these viruses, 90%, caused mortality in mice without prior mammalian adaptation, and 56.7% caused 100% mortality. There was also evidence of spread beyond the respiratory tract and fecal shedding. Therefore, the disease-causing potential of LP avian H7 influenza A viruses in mammals may be underestimated, and these viruses therefore pose a potential public health risk.
Collapse
Affiliation(s)
- Mark Zanin
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Zeynep A Koçer
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rebecca L Poulson
- Department of Population Health, University of Georgia, Athens, Georgia, USA
| | - Jon D Gabbard
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Elizabeth W Howerth
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Cheryl A Jones
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Kimberly Friedman
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jon Seiler
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Angela Danner
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lisa Kercher
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ryan McBride
- Departments of Cell and Molecular Biology and Chemical Physiology, Scripps Research Institute, La Jolla, California, USA
| | - James C Paulson
- Departments of Cell and Molecular Biology and Chemical Physiology, Scripps Research Institute, La Jolla, California, USA
| | | | - Scott Krauss
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Stephen M Tompkins
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - David E Stallknecht
- Department of Population Health, University of Georgia, Athens, Georgia, USA
| | - Robert G Webster
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
84
|
|
85
|
Maisonnasse P, Bordet E, Bouguyon E, Bertho N. Broncho Alveolar Dendritic Cells and Macrophages Are Highly Similar to Their Interstitial Counterparts. PLoS One 2016; 11:e0167315. [PMID: 27992536 PMCID: PMC5167224 DOI: 10.1371/journal.pone.0167315] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/13/2016] [Indexed: 11/19/2022] Open
Abstract
In human medicine, bronchoalveolar lavage is the main non-traumatic procedure allowing an insight into the respiratory Dendritic Cells (DC) and Macrophages populations. However, it has never been demonstrated in a relevant model that alveolar DC subpopulations were comparable to their interstitial counterparts. In a precedent work we observed that respiratory pig DC and Macrophages were more similar to the human ones than to the mouse ones. In the present work, thanks to our animal model, we were able to collect the rare bronchoalveolar DC and compare them to their interstitial counterparts. We observed that DC presented very similar gene-expression patterns in the alveolar and interstitial compartments, validating the study of human bronchoalveolar DC as surrogate of their interstitium counterparts.
Collapse
Affiliation(s)
- Pauline Maisonnasse
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Domaine de Vilvert, Jouy-en-Josas, France
| | - Elise Bordet
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Domaine de Vilvert, Jouy-en-Josas, France
| | - Edwige Bouguyon
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Domaine de Vilvert, Jouy-en-Josas, France
| | - Nicolas Bertho
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Domaine de Vilvert, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
86
|
Pathogenesis and Transmission Assessments of Two H7N8 Influenza A Viruses Recently Isolated from Turkey Farms in Indiana Using Mouse and Ferret Models. J Virol 2016; 90:10936-10944. [PMID: 27681133 DOI: 10.1128/jvi.01646-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/21/2016] [Indexed: 01/14/2023] Open
Abstract
Avian influenza A H7 viruses have caused multiple outbreaks in domestic poultry throughout North America, resulting in occasional infections of humans in close contact with affected birds. In early 2016, the presence of H7N8 highly pathogenic avian influenza (HPAI) viruses and closely related H7N8 low-pathogenic avian influenza (LPAI) viruses was confirmed in commercial turkey farms in Indiana. These H7N8 viruses represent the first isolation of this subtype in domestic poultry in North America, and their virulence in mammalian hosts and the potential risk for human infection are largely unknown. In this study, we assessed the ability of H7N8 HPAI and LPAI viruses to replicate in vitro in human airway cells and in vivo in mouse and ferret models. Both H7N8 viruses replicated efficiently in vitro and in vivo, but they exhibited substantial differences in disease severity in mammals. In mice, while the H7N8 LPAI virus largely remained avirulent, the H7N8 HPAI virus exhibited greater infectivity, virulence, and lethality. Both H7N8 viruses replicated similarly in ferrets, but only the H7N8 HPAI virus caused moderate weight loss, lethargy, and mortality. The H7N8 LPAI virus displayed limited transmissibility in ferrets placed in direct contact with an inoculated animal, while no transmission of H7N8 HPAI virus was detected. Our results indicate that the H7N8 avian influenza viruses from Indiana are able to replicate in mammals and cause severe disease but with limited transmission. The recent appearance of H7N8 viruses in domestic poultry highlights the need for continued influenza surveillance in wild birds and close monitoring of the potential risk to human health. IMPORTANCE H7 influenza viruses circulate in wild birds in the United States, but when the virus emerges in domestic poultry populations, the frequency of human exposure and the potential for human infections increases. An H7N8 highly pathogenic avian influenza (HPAI) virus and an H7N8 low-pathogenic avian influenza (LPAI) virus were recently isolated from commercial turkey farms in Indiana. To determine the risk that these influenza viruses pose to humans, we assessed their pathogenesis and transmission in vitro and in mammalian models. We found that the H7N8 HPAI virus exhibited enhanced virulence, and although transmission was only observed with the H7N8 LPAI virus, the ability of this H7 virus to transmit in a mammalian host and quickly evolve to a more virulent strain is cause for concern. Our findings offer important insight into the potential for emerging H7 avian influenza viruses to acquire the ability to cause disease and transmit among mammals.
Collapse
|
87
|
In vitro exposure system for study of aerosolized influenza virus. Virology 2016; 500:62-70. [PMID: 27771560 PMCID: PMC5221479 DOI: 10.1016/j.virol.2016.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 09/29/2016] [Accepted: 10/07/2016] [Indexed: 11/30/2022]
Abstract
Infection of adherent cell monolayers using a liquid inoculum represents an established method to reliably and quantitatively study virus infection, but poorly recapitulates the exposure and infection of cells in the respiratory tract that occurs during infection with aerosolized pathogens. To better simulate natural infection in vitro, we adapted a system that generates viral aerosols similar to those exhaled by infected humans to the inoculation of epithelial cell monolayers. Procedures for cellular infection and calculation of exposure dose were developed and tested using viruses characterized by distinct transmission and pathogenicity phenotypes: an HPAI H5N1, an LPAI H7N9, and a seasonal H3N2 virus. While all three aerosolized viruses were highly infectious in a human bronchial epithelial cell line (Calu-3) cultured submerged in media, differences between the viruses were observed in primary human alveolar epithelial cells and in Calu-3 cells cultured at air-liquid interface. This system provides a novel enhancement to traditional in vitro experiments, particularly those focused on the early stages of infection. Human respiratory epithelial cells were exposed to aerosolized influenza virus. Fewer than ten PFU were required to infect the Calu-3 human cell line. Infection route influenced susceptibility of primary alveolar cells to infection. Aerosolized virus was able to penetrate an apical mucin layer.
Collapse
|
88
|
Chan LLY, Bui CTH, Mok CKP, Ng MMT, Nicholls JM, Peiris JSM, Chan MCW, Chan RWY. Evaluation of the human adaptation of influenza A/H7N9 virus in PB2 protein using human and swine respiratory tract explant cultures. Sci Rep 2016; 6:35401. [PMID: 27739468 PMCID: PMC5064379 DOI: 10.1038/srep35401] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/27/2016] [Indexed: 12/30/2022] Open
Abstract
Novel avian H7N9 virus emerged in China in 2013 resulting in a case fatality rate of around 39% and continues to pose zoonotic and pandemic risk. Amino acid substitutions in PB2 protein were shown to influence the pathogenicity and transmissibility of H7N9 following experimental infection of ferrets and mice. In this study, we evaluated the role of amino acid substitution PB2-627K or compensatory changes at PB2-591K and PB2-701N, on the tropism and replication competence of H7N9 viruses for human and swine respiratory tracts using ex vivo organ explant cultures. Recombinant viruses of A/Shanghai/2/2013 (rgH7N9) and its mutants with PB2-K627E, PB2-K627E + Q591K and PB2-K627E + D701N were generated by plasmid-based reverse genetics. PB2-E627K was essential for efficient replication of rgH7N9 in ex vivo cultures of human and swine respiratory tracts. Mutant rgPB2-K627E + D701N replicated better than rgPB2-K627E in human lung but not as well as rgH7N9 virus. The rgPB2-K627E mutant failed to replicate in human type I-like pneumocytes (ATI) and peripheral blood monocyte-derived macrophages (PMϕ) at 37 °C while the compensatory mutant rgPB2-K627E + Q591K and rgPB2-K627E + D701N had partly restored replication competence in PMϕ. Our results demonstrate that PB2-E627K was important for efficient replication of influenza H7N9 in both human and swine respiratory tracts.
Collapse
Affiliation(s)
- Louisa L. Y. Chan
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Christine T. H. Bui
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chris K. P. Mok
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- The HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mandy M. T. Ng
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - John M. Nicholls
- Department of Pathology, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - J. S. Malik Peiris
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- The HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Michael C. W. Chan
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Renee W. Y. Chan
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
89
|
He XP, Zeng YL, Tang XY, Li N, Zhou DM, Chen GR, Tian H. Rapid Identification of the Receptor-Binding Specificity of Influenza A Viruses by Fluorogenic Glycofoldamers. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiao-Peng He
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; 130 Meilong Rd. Shanghai 200237 PR China
| | - Ya-Li Zeng
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; 130 Meilong Rd. Shanghai 200237 PR China
| | - Xin-Ying Tang
- Vaccine Research Center; Key Laboratory of Molecular Virology & Immunology; Institut Pasteur of Shanghai; Chinese Academy of Sciences; Shanghai 200031 China
| | - Na Li
- National Center for Protein Science Shanghai; Shanghai Institutes of Biological Sciences; Chinese Academy of Sciences; Shanghai 200031 China
| | - Dong-Ming Zhou
- Vaccine Research Center; Key Laboratory of Molecular Virology & Immunology; Institut Pasteur of Shanghai; Chinese Academy of Sciences; Shanghai 200031 China
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; 130 Meilong Rd. Shanghai 200237 PR China
| | - He Tian
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; 130 Meilong Rd. Shanghai 200237 PR China
| |
Collapse
|
90
|
He XP, Zeng YL, Tang XY, Li N, Zhou DM, Chen GR, Tian H. Rapid Identification of the Receptor-Binding Specificity of Influenza A Viruses by Fluorogenic Glycofoldamers. Angew Chem Int Ed Engl 2016; 55:13995-13999. [DOI: 10.1002/anie.201606488] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Xiao-Peng He
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; 130 Meilong Rd. Shanghai 200237 PR China
| | - Ya-Li Zeng
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; 130 Meilong Rd. Shanghai 200237 PR China
| | - Xin-Ying Tang
- Vaccine Research Center; Key Laboratory of Molecular Virology & Immunology; Institut Pasteur of Shanghai; Chinese Academy of Sciences; Shanghai 200031 China
| | - Na Li
- National Center for Protein Science Shanghai; Shanghai Institutes of Biological Sciences; Chinese Academy of Sciences; Shanghai 200031 China
| | - Dong-Ming Zhou
- Vaccine Research Center; Key Laboratory of Molecular Virology & Immunology; Institut Pasteur of Shanghai; Chinese Academy of Sciences; Shanghai 200031 China
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; 130 Meilong Rd. Shanghai 200237 PR China
| | - He Tian
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; 130 Meilong Rd. Shanghai 200237 PR China
| |
Collapse
|
91
|
Complexities in Ferret Influenza Virus Pathogenesis and Transmission Models. Microbiol Mol Biol Rev 2016; 80:733-44. [PMID: 27412880 DOI: 10.1128/mmbr.00022-16] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ferrets are widely employed to study the pathogenicity, transmissibility, and tropism of influenza viruses. However, inherent variations in inoculation methods, sampling schemes, and experimental designs are often overlooked when contextualizing or aggregating data between laboratories, leading to potential confusion or misinterpretation of results. Here, we provide a comprehensive overview of parameters to consider when planning an experiment using ferrets, collecting data from the experiment, and placing results in context with previously performed studies. This review offers information that is of particular importance for researchers in the field who rely on ferret data but do not perform the experiments themselves. Furthermore, this review highlights the breadth of experimental designs and techniques currently available to study influenza viruses in this model, underscoring the wide heterogeneity of protocols currently used for ferret studies while demonstrating the wealth of information which can benefit risk assessments of emerging influenza viruses.
Collapse
|
92
|
Maisonnasse P, Bouguyon E, Piton G, Ezquerra A, Urien C, Deloizy C, Bourge M, Leplat JJ, Simon G, Chevalier C, Vincent-Naulleau S, Crisci E, Montoya M, Schwartz-Cornil I, Bertho N. The respiratory DC/macrophage network at steady-state and upon influenza infection in the swine biomedical model. Mucosal Immunol 2016; 9:835-49. [PMID: 26530136 DOI: 10.1038/mi.2015.105] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/12/2015] [Indexed: 02/04/2023]
Abstract
Human and mouse respiratory tracts show anatomical and physiological differences, which will benefit from alternative experimental models for studying many respiratory diseases. Pig has been recognized as a valuable biomedical model, in particular for lung transplantation or pathologies such as cystic fibrosis and influenza infection. However, there is a lack of knowledge about the porcine respiratory immune system. Here we segregated and studied six populations of pig lung dendritic cells (DCs)/macrophages (Mθs) as follows: conventional DCs (cDC) 1 and cDC2, inflammatory monocyte-derived DCs (moDCs), monocyte-derived Mθs, and interstitial and alveolar Mθs. The three DC subsets present migratory and naive T-cell stimulation capacities. As observed in human and mice, porcine cDC1 and cDC2 were able to induce T-helper (Th)1 and Th2 responses, respectively. Interestingly, porcine moDCs increased in the lung upon influenza infection, as observed in the mouse model. Pig cDC2 shared some characteristics observed in human but not in mice, such as the expression of FCɛRIα and Langerin, and an intra-epithelial localization. This work, by unraveling the extended similarities of the porcine and human lung DC/Mθ networks, highlights the relevance of pig, both as an exploratory model of DC/Mθ functions and as a model for human inflammatory lung pathologies.
Collapse
Affiliation(s)
- P Maisonnasse
- Virologie et Immunologie Moléculaires UR892, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - E Bouguyon
- Virologie et Immunologie Moléculaires UR892, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - G Piton
- INRA, UMR Génétique Animale et Biologie Intégrative (GABI), Equipe Génétique Immunité Santé, Jouy-en-Josas, France.,Laboratoire de Radiobiologie et Etude du genome, CEA, Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Jouy-en-Josas, France
| | - A Ezquerra
- Dpto. de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - C Urien
- Virologie et Immunologie Moléculaires UR892, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - C Deloizy
- Virologie et Immunologie Moléculaires UR892, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - M Bourge
- I2BC, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - J-J Leplat
- INRA, UMR Génétique Animale et Biologie Intégrative (GABI), Equipe Génétique Immunité Santé, Jouy-en-Josas, France.,Laboratoire de Radiobiologie et Etude du genome, CEA, Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Jouy-en-Josas, France
| | - G Simon
- Anses, Laboratoire de Ploufragan/Plouzané, Unité Virologie Immunologie Porcines, BP53, Ploufragan, France.,Université Européenne de Bretagne, Rennes, France
| | - C Chevalier
- Virologie et Immunologie Moléculaires UR892, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - S Vincent-Naulleau
- INRA, UMR Génétique Animale et Biologie Intégrative (GABI), Equipe Génétique Immunité Santé, Jouy-en-Josas, France.,Laboratoire de Radiobiologie et Etude du genome, CEA, Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Jouy-en-Josas, France
| | - E Crisci
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - M Montoya
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain.,The Pirbright Institute, Surrey, UK
| | - I Schwartz-Cornil
- Virologie et Immunologie Moléculaires UR892, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - N Bertho
- Virologie et Immunologie Moléculaires UR892, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| |
Collapse
|
93
|
Sridhar S. Heterosubtypic T-Cell Immunity to Influenza in Humans: Challenges for Universal T-Cell Influenza Vaccines. Front Immunol 2016; 7:195. [PMID: 27242800 PMCID: PMC4871858 DOI: 10.3389/fimmu.2016.00195] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/03/2016] [Indexed: 11/25/2022] Open
Abstract
Influenza A virus (IAV) remains a significant global health issue causing annual epidemics, pandemics, and sporadic human infections with highly pathogenic avian or swine influenza viruses. Current inactivated and live vaccines are the mainstay of the public health response to influenza, although vaccine efficacy is lower against antigenically distinct viral strains. The first pandemic of the twenty-first century underlined the urgent need to develop new vaccines capable of protecting against a broad range of influenza strains. Such “universal” influenza vaccines are based on the idea of heterosubtypic immunity, wherein immune responses to epitopes conserved across IAV strains can confer protection against subsequent infection and disease. T-cells recognizing conserved antigens are a key contributor in reducing viral load and limiting disease severity during heterosubtypic infection in animal models. Recent studies undertaken during the 2009 H1N1 pandemic provided key insights into the role of cross-reactive T-cells in mediating heterosubtypic protection in humans. This review focuses on human influenza to discuss the epidemiological observations that underpin cross-protective immunity, the role of T-cells as key players in mediating heterosubtypic immunity including recent data from natural history cohort studies and the ongoing clinical development of T-cell-inducing universal influenza vaccines. The challenges and knowledge gaps for developing vaccines to generate long-lived protective T-cell responses is discussed.
Collapse
|
94
|
de Jonge J, Isakova-Sivak I, van Dijken H, Spijkers S, Mouthaan J, de Jong R, Smolonogina T, Roholl P, Rudenko L. H7N9 Live Attenuated Influenza Vaccine Is Highly Immunogenic, Prevents Virus Replication, and Protects Against Severe Bronchopneumonia in Ferrets. Mol Ther 2016; 24:991-1002. [PMID: 26796670 PMCID: PMC4881767 DOI: 10.1038/mt.2016.23] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/22/2015] [Indexed: 12/19/2022] Open
Abstract
Avian influenza viruses continue to cross the species barrier, and if such viruses become transmissible among humans, it would pose a great threat to public health. Since its emergence in China in 2013, H7N9 has caused considerable morbidity and mortality. In the absence of a universal influenza vaccine, preparedness includes development of subtype-specific vaccines. In this study, we developed and evaluated in ferrets an intranasal live attenuated influenza vaccine (LAIV) against H7N9 based on the A/Leningrad/134/17/57 (H2N2) cold-adapted master donor virus. We demonstrate that the LAIV is attenuated and safe in ferrets and induces high hemagglutination- and neuraminidase-inhibiting and virus-neutralizing titers. The antibodies against hemagglutinin were also cross-reactive with divergent H7 strains. To assess efficacy, we used an intratracheal challenge ferret model in which an acute severe viral pneumonia is induced that closely resembles viral pneumonia observed in severe human cases. A single- and two-dose strategy provided complete protection against severe pneumonia and prevented virus replication. The protective effect of the two-dose strategy appeared better than the single dose only on the microscopic level in the lungs. We observed, however, an increased lymphocytic infiltration after challenge in single-vaccinated animals and hypothesize that this a side effect of the model.
Collapse
Affiliation(s)
- Jørgen de Jonge
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Harry van Dijken
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Sanne Spijkers
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Current address: BioNovion, Oss, the Netherlands
| | - Justin Mouthaan
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Current address: Genmab, Utrecht, the Netherlands
| | - Rineke de Jong
- Department of Virology, Central Veterinary Institute of Wageningen UR, Lelystad, the Netherlands
| | - Tatiana Smolonogina
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Paul Roholl
- Microscope Consultancy, Weesp, the Netherlands
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
95
|
Mammalian Pathogenesis and Transmission of H7N9 Influenza Viruses from Three Waves, 2013-2015. J Virol 2016; 90:4647-4657. [PMID: 26912620 DOI: 10.1128/jvi.00134-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/18/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Three waves of human infection with H7N9 influenza viruses have concluded to date, but only viruses within the first wave (isolated between March and September 2013) have been extensively studied in mammalian models. While second- and third-wave viruses remain closely linked phylogenetically and antigenically, even subtle molecular changes can impart critical shifts in mammalian virulence. To determine if H7N9 viruses isolated from humans during 2013 to 2015 have maintained the phenotype first identified among 2013 isolates, we assessed the ability of first-, second-, and third-wave H7N9 viruses isolated from humans to cause disease in mice and ferrets and to transmit among ferrets. Similar to first-wave viruses, H7N9 viruses from 2013 to 2015 were highly infectious in mice, with lethality comparable to that of the well-studied A/Anhui/1/2013 virus. Second- and third-wave viruses caused moderate disease in ferrets, transmitted efficiently to cohoused, naive contact animals, and demonstrated limited transmissibility by respiratory droplets. All H7N9 viruses replicated efficiently in human bronchial epithelial cells, with subtle changes in pH fusion threshold identified between H7N9 viruses examined. Our results indicate that despite increased genetic diversity and geographical distribution since their initial detection in 2013, H7N9 viruses have maintained a pathogenic phenotype in mammals and continue to represent an immediate threat to public health. IMPORTANCE H7N9 influenza viruses, first isolated in 2013, continue to cause human infection and represent an ongoing public health threat. Now entering the fourth wave of human infection, H7N9 viruses continue to exhibit genetic diversity in avian hosts, necessitating continuous efforts to monitor their pandemic potential. However, viruses isolated post-2013 have not been extensively studied, limiting our understanding of potential changes in virus-host adaptation. In order to ensure that current research with first-wave H7N9 viruses still pertains to more recently isolated strains, we compared the relative virulence and transmissibility of H7N9 viruses isolated during the second and third waves, through 2015, in the mouse and ferret models. Our finding that second- and third-wave viruses generally exhibit disease in mammals comparable to that of first-wave viruses strengthens our ability to extrapolate research from the 2013 viruses to current public health efforts. These data further contribute to our understanding of molecular determinants of pathogenicity, transmissibility, and tropism.
Collapse
|
96
|
Thornburg NJ, Zhang H, Bangaru S, Sapparapu G, Kose N, Lampley RM, Bombardi RG, Yu Y, Graham S, Branchizio A, Yoder SM, Rock MT, Creech CB, Edwards KM, Lee D, Li S, Wilson IA, García-Sastre A, Albrecht RA, Crowe JE. H7N9 influenza virus neutralizing antibodies that possess few somatic mutations. J Clin Invest 2016; 126:1482-94. [PMID: 26950424 PMCID: PMC4811156 DOI: 10.1172/jci85317] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/21/2016] [Indexed: 01/08/2023] Open
Abstract
Avian H7N9 influenza viruses are group 2 influenza A viruses that have been identified as the etiologic agent for a current major outbreak that began in China in 2013 and may pose a pandemic threat. Here, we examined the human H7-reactive antibody response in 75 recipients of a monovalent inactivated A/Shanghai/02/2013 H7N9 vaccine. After 2 doses of vaccine, the majority of donors had memory B cells that secreted IgGs specific for H7 HA, with dominant responses against single HA subtypes, although frequencies of H7-reactive B cells ranged widely between donors. We isolated 12 naturally occurring mAbs with low half-maximal effective concentrations for binding, 5 of which possessed neutralizing and HA-inhibiting activities. The 5 neutralizing mAbs exhibited narrow breadth of reactivity with influenza H7 strains. Epitope-mapping studies using neutralization escape mutant analysis, deuterium exchange mass spectrometry, and x-ray crystallography revealed that these neutralizing mAbs bind near the receptor-binding pocket on HA. All 5 neutralizing mAbs possessed low numbers of somatic mutations, suggesting the clones arose from naive B cells. The most potent mAb, H7.167, was tested as a prophylactic treatment in a mouse intranasal virus challenge study, and systemic administration of the mAb markedly reduced viral lung titers.
Collapse
MESH Headings
- Adult
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Binding Sites, Antibody/genetics
- Binding Sites, Antibody/immunology
- Epitope Mapping
- Epitopes/genetics
- Epitopes/immunology
- Female
- Humans
- Influenza A Virus, H7N9 Subtype/genetics
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Male
- Mice
- Middle Aged
- Mutation
Collapse
Affiliation(s)
- Natalie J. Thornburg
- The Vanderbilt Vaccine Center and
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee, USA
| | - Heng Zhang
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | | | - Gopal Sapparapu
- The Vanderbilt Vaccine Center and
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | | | | | | - Sandra M. Yoder
- The Vanderbilt Vaccine Center and
- Vanderbilt Vaccine Research Program, Vanderbilt University, Nashville, Tennessee, USA
| | - Michael T. Rock
- The Vanderbilt Vaccine Center and
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Vaccine Research Program, Vanderbilt University, Nashville, Tennessee, USA
| | - C. Buddy Creech
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Vaccine Research Program, Vanderbilt University, Nashville, Tennessee, USA
| | - Kathryn M. Edwards
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Vaccine Research Program, Vanderbilt University, Nashville, Tennessee, USA
| | - David Lee
- Department of Medicine and Biomedical Sciences Graduate Program, School of Medicine, UCSD, San Diego, California, USA
| | - Sheng Li
- Department of Medicine and Biomedical Sciences Graduate Program, School of Medicine, UCSD, San Diego, California, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Adolfo García-Sastre
- Department of Microbiology
- Global Health and Emerging Pathogens Institute, and
- Department of Medicine, Division of Infectious Diseases at Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, USA
| | - Randy A. Albrecht
- Department of Microbiology
- Global Health and Emerging Pathogens Institute, and
| | - James E. Crowe
- The Vanderbilt Vaccine Center and
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee, USA
- Departments of Pathology, Microbiology, and Immunology, and
| |
Collapse
|
97
|
Lin Q, Lin Z, Chiu APY, He D. Seasonality of Influenza A(H7N9) Virus in China-Fitting Simple Epidemic Models to Human Cases. PLoS One 2016; 11:e0151333. [PMID: 26963937 PMCID: PMC4786326 DOI: 10.1371/journal.pone.0151333] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/26/2016] [Indexed: 11/18/2022] Open
Abstract
Background Three epidemic waves of influenza A(H7N9) (hereafter ‘H7N9’) human cases have occurred between March 2013 and July 2015 in China. However, the underlying transmission mechanism remains unclear. Our main objective is to use mathematical models to study how seasonality, secular changes and environmental transmission play a role in the spread of H7N9 in China. Methods Data on human cases and chicken cases of H7N9 infection were downloaded from the EMPRES-i Global Animal Disease Information System. We modelled on chicken-to-chicken transmission, assuming a constant ratio of 10−6 human case per chicken case, and compared the model fit with the observed human cases. We developed three different modified Susceptible-Exposed-Infectious-Recovered-Susceptible models: (i) a non-periodic transmission rate model with an environmental class, (ii) a non-periodic transmission rate model without an environmental class, and (iii) a periodic transmission rate model with an environmental class. We then estimated the key epidemiological parameters and compared the model fit using Akaike Information Criterion and Bayesian Information Criterion. Results Our results showed that a non-periodic transmission rate model with an environmental class provided the best model fit to the observed human cases in China during the study period. The estimated parameter values were within biologically plausible ranges. Conclusions This study highlighted the importance of considering secular changes and environmental transmission in the modelling of human H7N9 cases. Secular changes were most likely due to control measures such as Live Poultry Markets closures that were implemented during the initial phase of the outbreaks in China. Our results suggested that environmental transmission via viral shedding of infected chickens had contributed to the spread of H7N9 human cases in China.
Collapse
Affiliation(s)
- Qianying Lin
- Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong (SAR) China
| | - Zhigui Lin
- School of Mathematical Science, Yangzhou University, Yangzhou, 225002, People Republic of China
| | - Alice P. Y. Chiu
- Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong (SAR) China
- * E-mail:
| | - Daihai He
- Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong (SAR) China
| |
Collapse
|
98
|
Abstract
This year, the National Science Advisory Board for Biosecurity (NSABB) will be making recommendations to the U.S. Government regarding the ongoing saga of gain-of-function (GOF) experiments with highly infectious respiratory pathogens, such as influenza virus, severe acute respiratory syndrome (SARS) coronavirus, and Middle East respiratory syndrome (MERS) coronavirus.
Collapse
Affiliation(s)
- Michael J. Imperiale
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
99
|
Lu J, Liu W, Xia R, Dai Q, Bao C, Tang F, Zhu Y, Wang Q. Effects of closing and reopening live poultry markets on the epidemic of human infection with avian influenza A virus. J Biomed Res 2016; 30:112-119. [PMID: 28276666 PMCID: PMC4820888 DOI: 10.7555/jbr.30.20150054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/03/2015] [Accepted: 10/26/2015] [Indexed: 11/03/2022] Open
Abstract
Live poultry markets (LPMs) are crucial places for human infection of influenza A (H7N9 virus). In Yangtze River Delta, LPMs were closed after the outbreak of human infection with avian influenza A (H7N9) virus, and then reopened when no case was found. Our purpose was to quantify the effect of LPMs' operations in this region on the transmission of influenza A (H7N9) virus. We obtained information about dates of symptom onset and locations for all human influenza A (H7N9) cases reported from Shanghai, Jiangsu and Zhejiang provinces by May 31, 2014, and acquired dates of closures and reopening of LPMs from official media. A two-phase Bayesian model was fitted by Markov Chain Monte Carlo methods to process the spatial and temporal influence of human cases. A total of 235 cases of influenza A (H7N9) were confirmed in Shanghai, Jiangsu and Zhejiang by May 31, 2014. Using these data, our analysis showed that, after LPM closures, the influenza A (H7N9) outbreak disappeared within two weeks in Shanghai, one week in Jiangsu, and one week in Zhejiang, respectively. Local authorities reopened LPMs when there was no outbreak of influenza A (H7N9), which did not lead to reemergence of human influenza A (H7N9). LPM closures were effective in controlling the H7N9 outbreak. Reopening of LPM in summer did not increase the risk of human infection with H7N9. Our findings showed that LPMs should be closed immediately in areas where the H7N9 virus is confirmed in LPM. When there is no outbreak of H7N9 virus, LPMs can be reopened to satisfy the Chinese traditional culture of buying live poultry. In the long term, local authorities should take a cautious attitude in permanent LPM closure.
Collapse
Affiliation(s)
- Jian Lu
- School of Information Science and Engineering, Southeast University, Nanjing, Jiangsu 211111, China
| | - Wendong Liu
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China
| | - Rui Xia
- School of Information Science and Engineering, Southeast University, Nanjing, Jiangsu 211111, China
| | - Qigang Dai
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China
| | - Changjun Bao
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China
| | - Fenyang Tang
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China
| | - Yefei Zhu
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China
- Center of Laboratory Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China;
| | - Qiao Wang
- School of Information Science and Engineering, Southeast University, Nanjing, Jiangsu 211111, China;
| |
Collapse
|
100
|
Chen GW, Kuo SM, Yang SL, Gong YN, Hsiao MR, Liu YC, Shih SR, Tsao KC. Genomic Signatures for Avian H7N9 Viruses Adapting to Humans. PLoS One 2016; 11:e0148432. [PMID: 26845764 PMCID: PMC4742285 DOI: 10.1371/journal.pone.0148432] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 01/18/2016] [Indexed: 11/19/2022] Open
Abstract
An avian influenza A H7N9 virus emerged in March 2013 and caused a remarkable number of human fatalities. Genome variability in these viruses may provide insights into host adaptability. We scanned over 140 genomes of the H7N9 viruses isolated from humans and identified 104 positions that exhibited seven or more amino acid substitutions. Approximately half of these substitutions were identified in the influenza ribonucleoprotein (RNP) complex. Although PB2 627K of the avian virus promotes replication in humans, 45 of the 147 investigated PB2 sequences retained the E signature at this position, which is an avian characteristic. We discovered 10 PB2 substitutions that covaried with K627E. An RNP activity assay showed that Q591K, D701N, and M535L restored the polymerase activity in human cells when 627K transformed to an avian-like E. Genomic analysis of the human-isolated avian influenza virus is crucial in assessing genome variability, because relationships between position-specific variations can be observed and explored. In this study, we observed alternative positions that can potentially compensate for PB2 627K, a well-known marker for cross-species infection. An RNP assay suggested Q591K, D701N, and M535L as potential markers for an H7N9 virus capable of infecting humans.
Collapse
Affiliation(s)
- Guang-Wu Chen
- Department of Computer Science and Information Engineering, School of Electrical and Computer Engineering, College of Engineering, Chang Gung University, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- * E-mail: (GWC); (KCT)
| | - Shu-Ming Kuo
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Li Yang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yu-Nong Gong
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Mei-Ren Hsiao
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Chun Liu
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuo-Chien Tsao
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- * E-mail: (GWC); (KCT)
| |
Collapse
|