51
|
Garcia K, Gingras AC, Harvey KF, Tanas MR. TAZ/YAP fusion proteins: mechanistic insights and therapeutic opportunities. Trends Cancer 2022; 8:1033-1045. [PMID: 36096997 PMCID: PMC9671862 DOI: 10.1016/j.trecan.2022.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022]
Abstract
The Hippo pathway is dysregulated in many different cancers, but point mutations in the pathway are rare. Transcriptional co-activator with PDZ-binding motif (TAZ) and Yes-associated protein (YAP) fusion proteins have emerged in almost all major cancer types and represent the most common genetic mechanism by which the two transcriptional co-activators are activated. Given that the N termini of TAZ or YAP are fused to the C terminus of another transcriptional regulator, the resultant fusion proteins hyperactivate a TEAD transcription factor-based transcriptome. Recent advances show that the C-terminal fusion partners confer oncogenic properties to TAZ/YAP fusion proteins by recruiting epigenetic modifiers that promote a hybrid TEAD-based transcriptome. Elucidating these cooperating epigenetic complexes represents a strategy to identify new therapeutic approaches for a pathway that has been recalcitrant to medical therapy.
Collapse
Affiliation(s)
- Keith Garcia
- Department of Pathology, University of Iowa, Iowa City, IA, USA; Cancer Biology Graduate Program, University of Iowa, Iowa City, IA, USA
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Munir R Tanas
- Department of Pathology, University of Iowa, Iowa City, IA, USA; Cancer Biology Graduate Program, University of Iowa, Iowa City, IA, USA; Pathology and Laboratory Medicine, Veterans Affairs Medical Center, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
52
|
Damkham N, Issaragrisil S, Lorthongpanich C. Role of YAP as a Mechanosensing Molecule in Stem Cells and Stem Cell-Derived Hematopoietic Cells. Int J Mol Sci 2022; 23:14634. [PMID: 36498961 PMCID: PMC9737411 DOI: 10.3390/ijms232314634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/11/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
Yes-associated protein (YAP) and WW domain-containing transcription regulator protein 1 (WWTR1, also known as TAZ) are transcriptional coactivators in the Hippo signaling pathway. Both are well-known regulators of cell proliferation and organ size control, and they have significant roles in promoting cell proliferation and differentiation. The roles of YAP and TAZ in stem cell pluripotency and differentiation have been extensively studied. However, the upstream mediators of YAP and TAZ are not well understood. Recently, a novel role of YAP in mechanosensing and mechanotransduction has been reported. The present review updates information on the regulation of YAP by mechanical cues such as extracellular matrix stiffness, fluid shear stress, and actin cytoskeleton tension in stem cell behaviors and differentiation. The review explores mesenchymal stem cell fate decisions, pluripotent stem cells (PSCs), self-renewal, pluripotency, and differentiation to blood products. Understanding how cells sense their microenvironment or niche and mimic those microenvironments in vitro could improve the efficiency of producing stem cell products and the efficacy of the products.
Collapse
Affiliation(s)
- Nattaya Damkham
- Siriraj Center of Excellence for Stem cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Bangkok Hematology Center, Wattanosoth Hospital, BDMS Center of Excellence for Cancer, Bangkok 10310, Thailand
| | - Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
53
|
Wang L, Xu W, Mei Y, Wang X, Liu W, Zhu Z, Ni Z. CHRDL2 promotes cell proliferation by activating the YAP/TAZ signaling pathway in gastric cancer. Free Radic Biol Med 2022; 193:158-170. [PMID: 36206931 DOI: 10.1016/j.freeradbiomed.2022.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 12/24/2022]
Abstract
The encoding product of Chordin-like 2 (CHRDL2) is a member of the chordin family of proteins, which has been shown to be aberrantly expressed in several types of solid tumors. The regulatory underlying mechanisms of CHRDL2, however, remain poorly understood in gastric cancer (GC). In the present study, we determined that CHRDL2 was abnormally upregulated in human gastric cancer tissues compared with adjacent normal tissues. We also showed that CHRDL2 was positively associated with T stage, the pathological stage, distant metastasis, and poor patient prognosis. Furthermore, the serum level of CHRDL2 was obviously higher in GC patients than normal people, and is positively correlated with later TNM stage, deeper T stage, later N stage and poorer differentiation. Moreover, we verified that overexpressing CHRDL2 promoted the proliferation and cell cycle transition of GC cells both in vitro and in vivo, whereas the opposite results were observed in CHRDL2-depleted cells. In addition, the phosphorylation levels of Yes-associated protein (YAP), transcriptional coactivator with PDZ-binding motif (TAZ) and the total levels MST2 were decreased in CHRDL2 overexpressing cells. Consistent with previous findings, we observed the converse results in CHRDL2-silenced GC cells. Additionally, knockdown of YAP and overexpression of STK3 (MST2) could reverse the effects of CHRDL2 overexpression-induced proliferation of GC cells in vitro. Taken together, CHRDL2 plays a key role by activating the YAP/TAZ pathway in gastric cancer. Therefore, CHRDL2 could serve as a potential therapeutic tool for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Lingquan Wang
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Xu
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu Mei
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xufeng Wang
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wentao Liu
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhenggang Zhu
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Zhentian Ni
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
54
|
Fu M, Hu Y, Lan T, Guan KL, Luo T, Luo M. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Ther 2022; 7:376. [PMID: 36347846 PMCID: PMC9643504 DOI: 10.1038/s41392-022-01191-9] [Citation(s) in RCA: 264] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022] Open
Abstract
As an evolutionarily conserved signalling network, the Hippo pathway plays a crucial role in the regulation of numerous biological processes. Thus, substantial efforts have been made to understand the upstream signals that influence the activity of the Hippo pathway, as well as its physiological functions, such as cell proliferation and differentiation, organ growth, embryogenesis, and tissue regeneration/wound healing. However, dysregulation of the Hippo pathway can cause a variety of diseases, including cancer, eye diseases, cardiac diseases, pulmonary diseases, renal diseases, hepatic diseases, and immune dysfunction. Therefore, therapeutic strategies that target dysregulated Hippo components might be promising approaches for the treatment of a wide spectrum of diseases. Here, we review the key components and upstream signals of the Hippo pathway, as well as the critical physiological functions controlled by the Hippo pathway. Additionally, diseases associated with alterations in the Hippo pathway and potential therapies targeting Hippo components will be discussed.
Collapse
Affiliation(s)
- Minyang Fu
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Yuan Hu
- Department of Pediatric Nephrology Nursing, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, China
| | - Tianxia Lan
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Ting Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| | - Min Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| |
Collapse
|
55
|
Ahmad US, Uttagomol J, Wan H. The Regulation of the Hippo Pathway by Intercellular Junction Proteins. Life (Basel) 2022; 12:1792. [PMID: 36362947 PMCID: PMC9696951 DOI: 10.3390/life12111792] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/23/2022] [Accepted: 11/03/2022] [Indexed: 08/24/2023] Open
Abstract
The Hippo pathway is an evolutionarily conserved pathway that serves to promote cell death and differentiation while inhibiting cellular proliferation across species. The downstream effectors of this pathway, yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), are considered vital in promoting the output of the Hippo pathway, with activation of upstream kinases negatively regulating YAP/TAZ activity. The upstream regulation of the Hippo pathway is not entirely understood on a molecular level. However, several studies have shown that numerous cellular and non-cellular mechanisms such as cell polarity, contact inhibition, soluble factors, mechanical forces, and metabolism can convey external stimuli to the intracellular kinase cascade, promoting the activation of key components of the Hippo pathway and therefore regulating the subcellular localisation and protein activity of YAP/TAZ. This review will summarise what we have learnt about the role of intercellular junction-associated proteins in the activation of this pathway, including adherens junctions and tight junctions, and in particular our latest findings about the desmosomal components, including desmoglein-3 (DSG3), in the regulation of YAP signalling, phosphorylation, and subcellular translocation.
Collapse
Affiliation(s)
- Usama Sharif Ahmad
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Jutamas Uttagomol
- Oral Diagnosis Department, Faculty of Dentistry, Naresuan University, Phitsanulok 65000, Thailand
| | - Hong Wan
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
56
|
Krasniqi E, Di Lisa FS, Di Benedetto A, Barba M, Pizzuti L, Filomeno L, Ercolani C, Tinari N, Grassadonia A, Santini D, Minelli M, Montemurro F, Fabbri MA, Mazzotta M, Gamucci T, D’Auria G, Botti C, Pelle F, Cavicchi F, Cappelli S, Cappuzzo F, Sanguineti G, Tomao S, Botticelli A, Marchetti P, Maugeri-Saccà M, De Maria R, Ciliberto G, Sperati F, Vici P. The Impact of the Hippo Pathway and Cell Metabolism on Pathological Complete Response in Locally Advanced Her2+ Breast Cancer: The TRISKELE Multicenter Prospective Study. Cancers (Basel) 2022; 14:cancers14194835. [PMID: 36230758 PMCID: PMC9563553 DOI: 10.3390/cancers14194835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/28/2022] [Indexed: 12/02/2022] Open
Abstract
The Hippo pathway and its two key effectors, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), are consistently altered in breast cancer. Pivotal regulators of cell metabolism such as the AMP-activated protein kinase (AMPK), Stearoyl-CoA-desaturase 1 (SCD1), and HMG-CoA reductase (HMGCR) are relevant modulators of TAZ/YAP activity. In this prospective study, we measured the tumor expression of TAZ, YAP, AMPK, SCD1, and HMGCR by immunohistochemistry in 65 Her2+ breast cancer patients who underwent trastuzumab-based neoadjuvant treatment. The aim of the study was to assess the impact of the immunohistochemical expression of the Hippo pathway transducers and cell metabolism regulators on pathological complete response. Low expression of cytoplasmic TAZ, both alone and in the context of a composite signature identified by machine learning including also low nuclear levels of YAP and HMGCR and high cytoplasmic levels of SCD1, was a predictor of residual disease in the univariate logistic regression. This finding was not confirmed in the multivariate model including estrogen receptor > 70% and body mass index > 20. However, our findings were concordant with overall survival data from the TCGA cohort. Our results, possibly affected by the relatively small sample size of this study population, deserve further investigation in adequately sized, ad hoc prospective studies.
Collapse
Affiliation(s)
- Eriseld Krasniqi
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Francesca Sofia Di Lisa
- Phase IV Clinical Studies Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Anna Di Benedetto
- Pathology Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Maddalena Barba
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
- Correspondence: or (M.B.); (C.E.); Tel.: +39-0652666762 (M.B.); +39-0652666134 (C.E.)
| | - Laura Pizzuti
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Lorena Filomeno
- Phase IV Clinical Studies Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Cristiana Ercolani
- Pathology Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
- Correspondence: or (M.B.); (C.E.); Tel.: +39-0652666762 (M.B.); +39-0652666134 (C.E.)
| | - Nicola Tinari
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology (CAST), G. D’Annunzio University, 66100 Chieti, Italy
| | - Antonino Grassadonia
- Department of Innovative Technologies in Medicine and Dentistry, Centre for Advanced Studies and Technology (CAST), G. D’Annunzio University, 66100 Chieti, Italy
| | - Daniele Santini
- “Sapienza” University of Rome, Polo Pontino, 04011 Aprilia, Italy
| | - Mauro Minelli
- Division of Oncology, San Giovanni Hospital, 00184 Rome, Italy
| | - Filippo Montemurro
- Breast Unit, Candiolo Cancer Institute, Fondazione del Piemonte per l’Oncologia-IRCCS (Istituti di Ricovero e Cura a Carattere Scientifico), 10060 Candiolo, Italy
| | | | - Marco Mazzotta
- Medical Oncology Unit, Belcolle Hospital, 01100 Viterbo, Italy
| | - Teresa Gamucci
- Medical Oncology, Sandro Pertini Hospital, 00157 Rome, Italy
| | | | - Claudio Botti
- Department of Surgery, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Fabio Pelle
- Department of Surgery, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Flavia Cavicchi
- Department of Surgery, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Sonia Cappelli
- Department of Surgery, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Federico Cappuzzo
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Giuseppe Sanguineti
- Department of Radiation Oncology, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Silverio Tomao
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Andrea Botticelli
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Paolo Marchetti
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy
| | - Marcello Maugeri-Saccà
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
- Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Ruggero De Maria
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS (Istituti di Ricovero e Cura a Carattere Scientifico), 00168 Rome, Italy
| | - Gennaro Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Francesca Sperati
- Clinical Trial Center, Biostatistics and Bioinformatics, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy
| | - Patrizia Vici
- Phase IV Clinical Studies Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| |
Collapse
|
57
|
Song Y, Pan S, Li K, Chen X, Wang ZP, Zhu X. Insight into the role of multiple signaling pathways in regulating cancer stem cells of gynecologic cancers. Semin Cancer Biol 2022; 85:219-233. [PMID: 34098106 DOI: 10.1016/j.semcancer.2021.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 12/29/2022]
Abstract
Mounting evidence has demonstrated that a myriad of developmental signaling pathways, such as the Wnt, Notch, Hedgehog and Hippo, are frequently deregulated and play a critical role in regulating cancer stem cell (CSC) activity in human cancers, including gynecologic malignancies. In this review article, we describe an overview of various signaling pathways in human cancers. We further discuss the developmental roles how these pathways regulate CSCs from experimental evidences in gynecologic cancers. Moreover, we mention several compounds targeting CSCs in gynecologic cancers to enhance the treatment outcomes. Therefore, these signaling pathways might be the potential targets for developing targeted therapy in gynecologic cancers.
Collapse
Affiliation(s)
- Yizuo Song
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Shuya Pan
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Kehan Li
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xin Chen
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Z Peter Wang
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.
| | - Xueqiong Zhu
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.
| |
Collapse
|
58
|
Ando T, Okamoto K, Shintani T, Yanamoto S, Miyauchi M, Gutkind JS, Kajiya M. Integrating Genetic Alterations and the Hippo Pathway in Head and Neck Squamous Cell Carcinoma for Future Precision Medicine. J Pers Med 2022; 12:jpm12101544. [PMID: 36294681 PMCID: PMC9604790 DOI: 10.3390/jpm12101544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/27/2022] Open
Abstract
Genetic alterations and dysregulation of signaling pathways are indispensable for the initiation and progression of cancer. Understanding the genetic, molecular, and signaling diversities in cancer patients has driven a dynamic change in cancer therapy. Patients can select a suitable molecularly targeted therapy or immune checkpoint inhibitor based on the driver gene alterations determined by sequencing of cancer tissue. This “precision medicine” approach requires detailed elucidation of the mechanisms connecting genetic alterations of driver genes and aberrant downstream signaling pathways. The regulatory mechanisms of the Hippo pathway and Yes-associated protein/transcriptional co-activator with PDZ binding motif (YAP/TAZ) that have central roles in cancer cell proliferation are not fully understood, reflecting their recent discovery. Nevertheless, emerging evidence has shown that various genetic alterations dysregulate the Hippo pathway and hyperactivate YAP/TAZ in cancers, including head and neck squamous cell carcinoma (HNSCC). Here, we summarize the latest evidence linking genetic alterations and the Hippo pathway in HNSCC, with the aim of contributing to the continued development of precision medicine.
Collapse
Affiliation(s)
- Toshinori Ando
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima 734-8551, Japan
- Correspondence: ; Tel.: +81-82-257-5727
| | - Kento Okamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Tomoaki Shintani
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Souichi Yanamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - J. Silvio Gutkind
- Moores Cancer Center, University of California, San Diego, CA 92093, USA
- Department of Pharmacology, University of California, San Diego, CA 92093, USA
| | - Mikihito Kajiya
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| |
Collapse
|
59
|
Damkham N, Lorthongpanich C, Klaihmon P, Lueangamornnara U, Kheolamai P, Trakarnsanga K, Issaragrisil S. YAP and TAZ play a crucial role in human erythrocyte maturation and enucleation. Stem Cell Res Ther 2022; 13:467. [PMID: 36076260 PMCID: PMC9461202 DOI: 10.1186/s13287-022-03166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Yes-associated protein (YAP) and WW domain-containing transcription regulator protein 1 (WWTR1, also known as TAZ) are two key transcription co-activators of the Hippo pathway. Both were originally characterized as organ size and cell proliferation regulators. Later studies demonstrated that the Hippo pathway may play a role in Drosophila and mammal hematopoiesis. However, the role of the Hippo pathway in human erythropoiesis has not yet been fully elucidated. METHODS The role of YAP and TAZ was studied in human erythropoiesis and hematopoietic stem cell (HSC) lineage determination by using mobilized peripheral blood (PB) and cord blood (CB)-derived HSC as a model. HSCs were isolated and cultured in an erythroid differentiation medium for erythroid differentiation and culture in methylcellulose assay for HSC lineage determination study. RESULTS YAP and TAZ were barely detectable in human HSCs, but became highly expressed in pro-erythroblasts and erythroblasts. Depletion or knockdown of YAP and/or TAZ did not affect the ability of HSC lineage specification to erythroid lineage in either methylcellulose assay or liquid culture. However, depletion of YAP and TAZ did impair erythroblast terminal differentiation to erythrocytes and their enucleation. Moreover, ectopic expression of YAP and TAZ in pro-erythroblasts did not exert an apparent effect on erythroid differentiation, expansion, or morphology. CONCLUSIONS This study demonstrated that YAP/TAZ plays important role in erythroid maturation and enucleation but is dispensable for lineage determination of human HSCs.
Collapse
Affiliation(s)
- Nattaya Damkham
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Siriraj, Bangkoknoi, Bangkok, 10700, Thailand
| | - Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Siriraj, Bangkoknoi, Bangkok, 10700, Thailand.
| | - Phatchanat Klaihmon
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Siriraj, Bangkoknoi, Bangkok, 10700, Thailand
| | - Usaneeporn Lueangamornnara
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pakpoom Kheolamai
- Division of Cell Biology, Department of Pre-Clinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Kongtana Trakarnsanga
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Siriraj, Bangkoknoi, Bangkok, 10700, Thailand.
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Bangkok Hematology Center, Wattanosoth Hospital, BDMS Center of Excellence for Cancer, Bangkok, Thailand.
| |
Collapse
|
60
|
Gu Y, Wang Y, Sha Z, He C, Zhu Y, Li J, Yu A, Zhong Z, Wang X, Sun Y, Lan F, Yu FX. Transmembrane protein KIRREL1 regulates Hippo signaling via a feedback loop and represents a therapeutic target in YAP/TAZ-active cancers. Cell Rep 2022; 40:111296. [PMID: 36044856 DOI: 10.1016/j.celrep.2022.111296] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/05/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
The Hippo tumor-suppressor pathway is frequently dysregulated in human cancers and represents a therapeutic target. However, strategies targeting the mammalian Hippo pathway are limited because of the lack of a well-established cell-surface regulator. Here, we show that transmembrane protein KIRREL1, by interacting with both SAV1 and LATS1/2, promotes LATS1/2 activation by MST1/2 (Hippo kinases), and LATS1/2 activation, in turn, inhibits activity of YAP/TAZ oncoproteins. Conversely, YAP/TAZ directly induce the expression of KIRREL1 in a TEAD1-4-dependent manner. Indeed, KIRREL1 expression positively correlates with canonical YAP/TAZ target gene expression in clinical tumor specimens and predicts poor prognosis. Moreover, transgenic expression of KIRREL1 effectively blocks tumorigenesis in a mouse intrahepatic cholangiocarcinoma model, indicating a tumor-suppressor role of KIRREL1. Hence, KIRREL1 constitutes a negative feedback mechanism regulating the Hippo pathway and serves as a cell-surface marker and potential drug target in cancers with YAP/TAZ dependency.
Collapse
Affiliation(s)
- Yuan Gu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032 China
| | - Yu Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhao Sha
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chenxi He
- Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuwen Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jian Li
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Aijuan Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhenxing Zhong
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xuefei Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032 China
| | - Yihong Sun
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032 China
| | - Fei Lan
- Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
61
|
Zhang H, Wang SQ, Wang L, Lin H, Zhu JB, Chen R, Li LF, Cheng YD, Duan CJ, Zhang CF. m6A methyltransferase METTL3-induced lncRNA SNHG17 promotes lung adenocarcinoma gefitinib resistance by epigenetically repressing LATS2 expression. Cell Death Dis 2022; 13:657. [PMID: 35902569 PMCID: PMC9334586 DOI: 10.1038/s41419-022-05050-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 06/14/2022] [Accepted: 06/28/2022] [Indexed: 01/21/2023]
Abstract
Gefitinib has been widely applied for the treatment of lung adenocarcinoma (LUAD). However, the long-term application of gefitinib usually leads to acquired drug resistance in tumour patients, resulting in clinical treatment failure. Small nucleolar host gene 17 (SNHG17) has been shown to play a regulatory role in LUAD progression. Nevertheless, the role of SNHG17 in LUAD gefitinib resistance remains elusive. The expression pattern of SNHG17 was examined in tissues and cell lines of gefitinib-sensitive and gefitinib-resistant LUAD, respectively. Gain- and loss-of-function experiments were employed to assess the biological functions of SNHG17 in cell proliferation and apoptosis, as well as aggressive phenotypes of LUAD cells. MeRIP-qPCR and colorimetric quantificational analysis were performed to detect m6A modifications and contents. Fluorescence in situ hybridisation (FISH) and subcellular fractionation analysis were used to reveal the distribution of SNHG17. RIP and ChIP assays were performed to further validate the SNHG17/EZH2/LATS2 regulatory axis. A xenograft tumour growth assay was conducted to evaluate the role of SNHG17 in LUAD gefitinib resistance in vivo. SNHG17 was upregulated in gefitinib-resistant LUAD tissues and cell lines. Functional assays showed that SNHG17 aggravated the malignant phenotypes of gefitinib-resistant LUAD cells. In addition, METTL3-mediated N6-methyladenosine modification could induce the upregulation of SNHG17by stabilising its RNA transcript. Mechanistically, SNHG17 epigenetically repressed the expression of LATS2 by recruiting EZH2 to the promoter region of LATS2. The regulatory role of the SNHG17/EZH2/LATS2 axis in LUAD gefitinib resistance was further supported in vivo. Collectively, our findings suggested that SNHG17 induced by METTL3 could promote LUAD gefitinib resistance by epigenetically repressing LATS2 expression.
Collapse
Affiliation(s)
- Heng Zhang
- grid.216417.70000 0001 0379 7164Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan Province P. R. China ,grid.216417.70000 0001 0379 7164Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008 Hunan Province P. R. China ,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagosis&Treatment, 410008 Changsha, Hunan Province P. R. China ,grid.452223.00000 0004 1757 7615National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008 Hunan Province P. R. China
| | - Shao-Qiang Wang
- grid.449428.70000 0004 1797 7280Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029 Shandong Province P. R. China
| | - Li Wang
- grid.452708.c0000 0004 1803 0208Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan Province P. R. China ,grid.452708.c0000 0004 1803 0208Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan Province P. R. China
| | - Hang Lin
- grid.216417.70000 0001 0379 7164Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan Province P. R. China
| | - Jie-Bo Zhu
- grid.216417.70000 0001 0379 7164Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan Province P. R. China
| | - Ri Chen
- grid.216417.70000 0001 0379 7164Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan Province P. R. China
| | - Lin-Feng Li
- grid.216417.70000 0001 0379 7164Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan Province P. R. China
| | - Yuan-Da Cheng
- grid.216417.70000 0001 0379 7164Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan Province P. R. China
| | - Chao-Jun Duan
- grid.216417.70000 0001 0379 7164Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan Province P. R. China
| | - Chun-Fang Zhang
- grid.216417.70000 0001 0379 7164Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan Province P. R. China ,grid.216417.70000 0001 0379 7164Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008 Hunan Province P. R. China ,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagosis&Treatment, 410008 Changsha, Hunan Province P. R. China ,grid.452223.00000 0004 1757 7615National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008 Hunan Province P. R. China
| |
Collapse
|
62
|
Kong D, Zhao S, Xu W, Dong J, Ma X. Fat body-derived Spz5 remotely facilitates tumor-suppressive cell competition through Toll-6-α-Spectrin axis-mediated Hippo activation. Cell Rep 2022; 39:110980. [PMID: 35732124 DOI: 10.1016/j.celrep.2022.110980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/19/2022] [Accepted: 05/27/2022] [Indexed: 11/03/2022] Open
Abstract
Tumor-suppressive cell competition is an evolutionarily conserved process that selectively removes precancerous cells to maintain tissue homeostasis. Using the polarity-deficiency-induced cell competition model in Drosophila, we identify Toll-6, a Toll-like receptor family member, as a driver of tension-mediated cell competition through α-Spectrin (α-Spec)-Yorkie (Yki) cascade. Toll-6 aggregates along the boundary between wild-type and polarity-deficient clones, where Toll-6 physically interacts with the cytoskeleton network protein α-Spec to increase mechanical tension, resulting in actomyosin-dependent Hippo pathway activation and the elimination of scrib mutant cells. Furthermore, we show that Spz5 secreted from fat body, the key innate organ in fly, facilitates the elimination of scrib clones by binding to Toll-6. These findings uncover mechanisms by which fat bodies remotely regulate tumor-suppressive cell competition of polarity-deficient tumors through inter-organ crosstalk and identified the Toll-6-α-Spec axis as an essential guardian that prevents tumorigenesis via tension-mediated cell elimination.
Collapse
Affiliation(s)
- Du Kong
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Sihua Zhao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Wenyan Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Jinxi Dong
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Xianjue Ma
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China.
| |
Collapse
|
63
|
O-GlcNAcylation: An Emerging Protein Modification Regulating the Hippo Pathway. Cancers (Basel) 2022; 14:cancers14123013. [PMID: 35740678 PMCID: PMC9221189 DOI: 10.3390/cancers14123013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The contact point between the Hippo pathway, which serves as a central hub for various external environments, and O-GlcNAcylation, which is a non-canonical glycosylation process acting as a dynamic regulator in various signal transduction pathways, has recently been identified. This review aims to summarize the function of O-GlcNAcylation as an intrinsic and extrinsic regulator of the Hippo pathway. Abstract The balance between cellular proliferation and apoptosis and the regulation of cell differentiation must be established to maintain tissue homeostasis. These cellular responses involve the kinase cascade-mediated Hippo pathway as a crucial regulator. Hence, Hippo pathway dysregulation is implicated in diverse diseases, including cancer. O-GlcNAcylation is a non-canonical glycosylation that affects multiple signaling pathways through its interplay with phosphorylation in the nucleus and cytoplasm. An abnormal increase in the O-GlcNAcylation levels in various cancer cells is a potent factor in Hippo pathway dysregulation. Intriguingly, Hippo pathway dysregulation also disrupts O-GlcNAc homeostasis, leading to a persistent elevation of O-GlcNAcylation levels, which is potentially pathogenic in several diseases. Therefore, O-GlcNAcylation is gaining attention as a protein modification that regulates the Hippo pathway. This review presents a framework on how O-GlcNAcylation regulates the Hippo pathway and forms a self-perpetuating cycle with it. The pathological significance of this self-perpetuating cycle and clinical strategies for targeting O-GlcNAcylation that causes Hippo pathway dysregulation are also discussed.
Collapse
|
64
|
Unraveling the Biology of Epithelioid Hemangioendothelioma, a TAZ-CAMTA1 Fusion Driven Sarcoma. Cancers (Basel) 2022; 14:cancers14122980. [PMID: 35740643 PMCID: PMC9221450 DOI: 10.3390/cancers14122980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Epithelioid hemangioendothelioma (EHE) is a rare vascular cancer that involves a gain-of-function gene fusion involving TAZ, a transcriptional coactivator, and one of two end effectors of the Hippo pathway. Although the activity of TAZ and/or YAP, a paralog of TAZ, is consistently altered in many cancers, genetic alterations involving YAP/TAZ are rare, and the precise mechanisms by which YAP/TAZ are activated are not well understood in most cancers. Because WWTR1(TAZ)–CAMTA1 is the only genetic alteration in approximately half of EHE, EHE is a genetically clean and homogenous system for understanding how the dysregulation of TAZ promotes tumorigenesis. Therefore, by using EHE as a model system, we hope to elucidate the essential biological pathways mediated by TAZ and identify mechanisms to target them. The findings of EHE research can be applied to other cancers that are addicted to high YAP/TAZ activity. Abstract The activities of YAP and TAZ, the end effectors of the Hippo pathway, are consistently altered in cancer, and this dysregulation drives aggressive tumor phenotypes. While the actions of these two proteins aid in tumorigenesis in the majority of cancers, the dysregulation of these proteins is rarely sufficient for initial tumor development. Herein, we present a unique TAZ-driven cancer, epithelioid hemangioendothelioma (EHE), which harbors a WWTR1(TAZ)–CAMTA1 gene fusion in at least 90% of cases. Recent investigations have elucidated the mechanisms by which YAP/TAP-fusion oncoproteins function and drive tumorigenesis. This review presents a critical evaluation of this recent work, with a particular focus on how the oncoproteins alter the normal activity of TAZ and YAP, and, concurrently, we generate a framework for how we can target the gene fusions in patients. Since EHE represents a paradigm of YAP/TAZ dysregulation in cancer, targeted therapies for EHE may also be effective against other YAP/TAZ-dependent cancers.
Collapse
|
65
|
Kumar Ghosh S, Chatterjee T, Mitra S, Chakravarty A, Chakravarty S, Kumar Basak A. Benzaldehyde-induced developmental genotoxicity triggers both neural and non-neuronal cells including the cells of immunity in Drosophila melanogaster. Biol Futur 2022; 73:245-257. [DOI: 10.1007/s42977-022-00116-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
|
66
|
Cai JH, Sun YT, Bao S. HucMSCs-exosomes containing miR-21 promoted estrogen production in ovarian granulosa cells via LATS1-mediated phosphorylation of LOXL2 and YAP. Gen Comp Endocrinol 2022; 321-322:114015. [PMID: 35271888 DOI: 10.1016/j.ygcen.2022.114015] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND Premature ovarian failure (POF) is one of the common disorders found in women leading to 1% female infertility. Clinical features of POF are hypoestrogenism or estrogen deficiency. With the development of regenerative medicine, human mesenchymal stem cells (hMSCs) therapy brings new prospects for POF. This research aims to reveal the therapeutic effects and potential mechanisms of human umbilical cord mesenchymal stem cells (hucMSCs)-derived exosomes on POF. METHODS The mRNA and protein expressions in hucMSCs and ovarian granulosa cells (KGN and SVOG cells) were assessed using qRT-PCR and western blot. ELISA assay was performed to evaluate estradiol (E2) secretion in granulosa cells. The binding relationship between miR-21 and LATS1 was verified by dual-luciferase reporter assay and RNA binding protein immunoprecipitation assay (RIP) assay. Additionally, Immunoprecipitation assay was carried out to confirm Lysyl oxidase like 2 (LOXL2) was phosphorylated by large tumor suppressor 1 (LATS1). Finally, the binding relationships between Yes-associated protein (YAP), StAR and LOXL2 were verified by dual-luciferase reporter assay and/or chromatin immunoprecipitation assay (ChIP) assay. RESULTS Here our results displayed that miR-21 was overexpressed in hucMSCs and hucMSCs-derived exosomes, compared with that ovarian granulosa cells. hucMSC-exo with overexpressing miR-21 could markedly promote the secretion of estrogen in ovarian granulosa cells. LATS1 overexpression in ovarian granulosa cells reduced the secretion of estrogen. We subsequently confirmed that LATS1 was the target of miR-21. In addition, LATS1 could regulate StAR expression by phosphorylating LOXL2 and YAP. CONCLUSION miR-21 carried by hucMSCs-derived exosomes could downregulate LATS1, thereby reducing phosphorylated LOXL2 and YAP, and ultimately promoting estrogen secretion in ovarian granulosa cells.
Collapse
Affiliation(s)
- Jun-Hong Cai
- Central Laboratory, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province 570311, People's Republic of China
| | - Yu-Ting Sun
- Hainan Medical University, Haikou, Hainan Province 571199, People's Republic of China
| | - Shan Bao
- Department of Gynaecology and Obstetrics, Hainan Affiliated Hospital of Hainan Medical University/Hainan General Hospital, Haikou, Hainan Province 570311, People's Republic of China.
| |
Collapse
|
67
|
Vitamin B6 Deficiency Promotes Loss of Heterozygosity (LOH) at the Drosophila warts (wts) Locus. Int J Mol Sci 2022; 23:ijms23116087. [PMID: 35682766 PMCID: PMC9181336 DOI: 10.3390/ijms23116087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
The active form of vitamin B6, pyridoxal 5'-phosphate (PLP), is a cofactor for more than 200 enzymes involved in many metabolic pathways. Moreover, PLP has antioxidant properties and quenches the reactive oxygen species (ROS). Accordingly, PLP deficiency causes chromosome aberrations in Drosophila, yeast, and human cells. In this work, we investigated whether PLP depletion can also cause loss of heterozygosity (LOH) of the tumor suppressor warts (wts) in Drosophila. LOH is usually initiated by DNA breakage in heterozygous cells for a tumor suppressor mutation and can contribute to oncogenesis inducing the loss of the wild-type allele. LOH at the wts locus results in epithelial wts homozygous tumors easily detectable on adult fly cuticle. Here, we found that PLP depletion, induced by two PLP inhibitors, promotes LOH of wts locus producing significant frequencies of wts tumors (~7% vs. 2.3%). In addition, we identified the mitotic recombination as a possible mechanism through which PLP deficiency induces LOH. Moreover, LOH of wts locus, induced by PLP inhibitors, was rescued by PLP supplementation. These data further confirm the role of PLP in genome integrity maintenance and indicate that vitamin B6 deficiency may impact on cancer also by promoting LOH.
Collapse
|
68
|
Seeneevassen L, Dubus P, Gronnier C, Varon C. Hippo in Gastric Cancer: From Signalling to Therapy. Cancers (Basel) 2022; 14:cancers14092282. [PMID: 35565411 PMCID: PMC9105983 DOI: 10.3390/cancers14092282] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
The Hippo pathway is one of the most important ones in mammals. Its key functions in cell proliferation, tissue growth, repair, and homeostasis make it the most crucial one to be controlled. Many means have been deployed for its regulation, since this pathway is not only composed of core regulatory components, but it also communicates with and regulates various other pathways, making this signalisation even more complex. Its role in cancer has been studied more and more over the past few years, and it presents YAP/TAZ as the major oncogenic actors. In this review, we relate how vital this pathway is for different organs, and how regulatory mechanisms have been bypassed to lead to cancerous states. Most studies present an upregulation status of YAP/TAZ, and urge the need to target them. A focus is made here on gastric carcinogenesis, its main dysregulations, and the major strategies adopted and tested to counteract Hippo pathway disbalance in this disease. Hippo pathway targeting can be achieved by various means, which are described in this review. Many studies have tested different potential molecules, which are detailed hereby. Though not all tested in gastric cancer, they could represent a real interest.
Collapse
Affiliation(s)
- Lornella Seeneevassen
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000 Bordeaux, France; (L.S.); (P.D.); (C.G.)
| | - Pierre Dubus
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000 Bordeaux, France; (L.S.); (P.D.); (C.G.)
- Department of Histology and Pathology, CHU Bordeaux, F-33000 Bordeaux, France
| | - Caroline Gronnier
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000 Bordeaux, France; (L.S.); (P.D.); (C.G.)
- Department of Digestive Surgery, Haut-Lévêque Hospital, CHU Bordeaux, F-33000 Bordeaux, France
| | - Christine Varon
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000 Bordeaux, France; (L.S.); (P.D.); (C.G.)
- Correspondence:
| |
Collapse
|
69
|
Pan D. The unfolding of the Hippo signaling pathway. Dev Biol 2022; 487:1-9. [PMID: 35405135 DOI: 10.1016/j.ydbio.2022.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022]
Abstract
The development of a functional organ requires not only patterning mechanisms that confer proper identities to individual cells, but also growth-regulatory mechanisms that specify the final size of the organ. At the turn of the 21st century, comprehensive genetic screens in model organisms had successfully uncovered the major signaling pathways that mediate pattern formation in metazoans. In contrast, signaling pathways dedicated to growth control were less explored. The past two decades has witnessed the emergence of the Hippo signaling pathway as a central mediator of organ size control through coordinated regulation of cell proliferation and apoptosis. Here I reflect on the early discoveries in Drosophila that elucidated the core kinase cascade and transcriptional machinery of the Hippo pathway, highlight its deep evolutionary conservation from humans to unicellular relatives of metazoan, and discuss the complex regulation of Hippo signaling by upstream inputs. This historical perspective underscores the importance of model organisms in uncovering fundamental and universal mechanisms of life processes.
Collapse
Affiliation(s)
- Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9040, USA.
| |
Collapse
|
70
|
Kim CL, Lim SB, Kim K, Jeong HS, Mo JS. Phosphorylation analysis of the Hippo-YAP pathway using Phos-tag. J Proteomics 2022; 261:104582. [DOI: 10.1016/j.jprot.2022.104582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
|
71
|
Tsai CR, Martin JF. Hippo signaling in cardiac fibroblasts during development, tissue repair, and fibrosis. Curr Top Dev Biol 2022; 149:91-121. [PMID: 35606063 PMCID: PMC10898347 DOI: 10.1016/bs.ctdb.2022.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The evolutionarily conserved Hippo signaling pathway plays key roles in regulating the balance between cell proliferation and apoptosis, cell differentiation, organ size control, tissue repair, and regeneration. Recently, the Hippo pathway has been shown to regulate heart fibrosis, defined as excess extracellular matrix (ECM) deposition and increased tissue stiffness. Cardiac fibroblasts (CFs) are the primary cell type that produces, degrades, and remodels the ECM during homeostasis, aging, inflammation, and tissue repair and regeneration. Here, we review the available evidence from the current literature regarding how the Hippo pathway regulates the formation and function of CFs during heart development and tissue repair.
Collapse
Affiliation(s)
- Chang-Ru Tsai
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, United States
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, United States; Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, TX, United States.
| |
Collapse
|
72
|
Chen T, Sun D, Wang Q, Zhou T, Tan J, Xu C, Cheng H, Shen W. α-Hederin Inhibits the Proliferation of Hepatocellular Carcinoma Cells via Hippo-Yes-Associated Protein Signaling Pathway. Front Oncol 2022; 12:839603. [PMID: 35311132 PMCID: PMC8927085 DOI: 10.3389/fonc.2022.839603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/10/2022] [Indexed: 12/30/2022] Open
Abstract
Aims Yes-associated protein (YAP), a downstream protein in the Hippo signaling pathway, plays an important role in tumor proliferation, including in hepatocellular carcinoma (HCC). α-hederin, a monodesmosidic triterpenoid saponin isolated from Fructus akebiae, displayed anti-cancer effects on several cancer cell lines but the precise mechanism has not been ascertained. In the present study, we explored the effects of α-hederin on cell proliferation and apoptosis in human HCC cell lines and the underlying mechanisms. Main Method Cell proliferation and apoptosis were assessed using 5-ethynyl-2’-deoxyuridine staining, colony formation, flow cytometry. The expression patterns of components of Hippo signaling pathway and apoptotic genes were further examined via RT-qPCR and immunoblotting. A xenograft tumor model in nude mice was used to evaluate the anti-HCC effects of α-hederin in vivo. Results α-hederin promoted the apoptosis and inhibited the proliferation of SMMC-7721 and HepG2 cells in vitro, and remarkably inhibited the tumor size and weight in the xenograft mouse model. Additionally, α-hederin increased the expression of pro-apoptosis proteins and suppressed the expression of anti-apoptosis proteins. Moreover, α-hederin treatment upregulated the expression of Hippo signaling pathway-related proteins and genes, while, effectively reduced the level of nuclear YAP, which resulted in the inhibition of proliferation and the induction of apoptosis of HCC cells. Finally, the effects of α-hederin on HCC cell proliferation and apoptosis were alleviated by XMU-MP-1, a Mst1/2 inhibitor in vitro. Significance We identified α-hederin is a novel agonist of Hippo signaling pathway and possesses an anti-HCC efficacy through inhibiting YAP activity.
Collapse
Affiliation(s)
- Tongqing Chen
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu, China
| | - Dongdong Sun
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu, China
| | - Qijuan Wang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu, China
| | - Tingting Zhou
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu, China
| | - Jiani Tan
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu, China
| | - Changliang Xu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu, China
| | - Haibo Cheng
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu, China
| | - Weixing Shen
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu, China
| |
Collapse
|
73
|
Ramaccini D, Pedriali G, Perrone M, Bouhamida E, Modesti L, Wieckowski MR, Giorgi C, Pinton P, Morciano G. Some Insights into the Regulation of Cardiac Physiology and Pathology by the Hippo Pathway. Biomedicines 2022; 10:biomedicines10030726. [PMID: 35327528 PMCID: PMC8945338 DOI: 10.3390/biomedicines10030726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/16/2022] Open
Abstract
The heart is one of the most fascinating organs in living beings. It beats up to 100,000 times a day throughout the lifespan, without resting. The heart undergoes profound anatomical, biochemical, and functional changes during life, from hypoxemic fetal stages to a completely differentiated four-chambered cardiac muscle. In the middle, many biological events occur after and intersect with each other to regulate development, organ size, and, in some cases, regeneration. Several studies have defined the essential roles of the Hippo pathway in heart physiology through the regulation of apoptosis, autophagy, cell proliferation, and differentiation. This molecular route is composed of multiple components, some of which were recently discovered, and is highly interconnected with multiple known prosurvival pathways. The Hippo cascade is evolutionarily conserved among species, and in addition to its regulatory roles, it is involved in disease by drastically changing the heart phenotype and its function when its components are mutated, absent, or constitutively activated. In this review, we report some insights into the regulation of cardiac physiology and pathology by the Hippo pathway.
Collapse
Affiliation(s)
- Daniela Ramaccini
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
| | - Gaia Pedriali
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
| | - Mariasole Perrone
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
| | - Esmaa Bouhamida
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
| | - Lorenzo Modesti
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
| | - Paolo Pinton
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
- Correspondence: (P.P.); (G.M.); Tel.: +39-0532-455-802 (P.P.); +39-0532-455-804 (G.M.)
| | - Giampaolo Morciano
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
- Correspondence: (P.P.); (G.M.); Tel.: +39-0532-455-802 (P.P.); +39-0532-455-804 (G.M.)
| |
Collapse
|
74
|
The Hippo pathway in cancer: YAP/TAZ and TEAD as therapeutic targets in cancer. Clin Sci (Lond) 2022; 136:197-222. [PMID: 35119068 PMCID: PMC8819670 DOI: 10.1042/cs20201474] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
Tumorigenesis is a highly complex process, involving many interrelated and cross-acting signalling pathways. One such pathway that has garnered much attention in the field of cancer research over the last decade is the Hippo signalling pathway. Consisting of two antagonistic modules, the pathway plays an integral role in both tumour suppressive and oncogenic processes, generally via regulation of a diverse set of genes involved in a range of biological functions. This review discusses the history of the pathway within the context of cancer and explores some of the most recent discoveries as to how this critical transducer of cellular signalling can influence cancer progression. A special focus is on the various recent efforts to therapeutically target the key effectors of the pathway in both preclinical and clinical settings.
Collapse
|
75
|
O-GlcNAcylation regulation of cellular signaling in cancer. Cell Signal 2022; 90:110201. [PMID: 34800629 PMCID: PMC8712408 DOI: 10.1016/j.cellsig.2021.110201] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 02/03/2023]
Abstract
O-GlcNAcylation is a post-translational modification occurring on serine/threonine residues of nuclear and cytoplasmic proteins, mediated by the enzymes OGT and OGA which catalyze the addition or removal of the UDP-GlcNAc moieties, respectively. Structural changes brought by this modification lead to alternations of protein stability, protein-protein interactions, and phosphorylation. Importantly, O-GlcNAcylation is a nutrient sensor by coupling nutrient sensing with cellular signaling. Elevated levels of OGT and O-GlcNAc have been reported in a variety of cancers and has been linked to regulation of multiple cancer signaling pathways. In this review, we discuss the most recent findings on the role of O-GlcNAcylation as a metabolic sensor in signaling pathways and immune response in cancer.
Collapse
|
76
|
Zarka M, Haÿ E, Cohen-Solal M. YAP/TAZ in Bone and Cartilage Biology. Front Cell Dev Biol 2022; 9:788773. [PMID: 35059398 PMCID: PMC8764375 DOI: 10.3389/fcell.2021.788773] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
YAP and TAZ were initially described as the main regulators of organ growth during development and more recently implicated in bone biology. YAP and TAZ are regulated by mechanical and cytoskeletal cues that lead to the control of cell fate in response to the cellular microenvironment. The mechanical component represents a major signal for bone tissue adaptation and remodelling, so YAP/TAZ contributes significantly in bone and cartilage homeostasis. Recently, mice and cellular models have been developed to investigate the precise roles of YAP/TAZ in bone and cartilage cells, and which appear to be crucial. This review provides an overview of YAP/TAZ regulation and function, notably providing new insights into the role of YAP/TAZ in bone biology.
Collapse
Affiliation(s)
- Mylène Zarka
- INSERM UMR 1132 BIOSCAR, Hôpital Lariboisière, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| | - Eric Haÿ
- INSERM UMR 1132 BIOSCAR, Hôpital Lariboisière, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| | - Martine Cohen-Solal
- INSERM UMR 1132 BIOSCAR, Hôpital Lariboisière, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| |
Collapse
|
77
|
Luo J, Li P. Context-dependent transcriptional regulations of YAP/TAZ in stem cell and differentiation. Stem Cell Res Ther 2022; 13:10. [PMID: 35012640 PMCID: PMC8751096 DOI: 10.1186/s13287-021-02686-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
Hippo pathway is initially identified as a master regulator for cell proliferation and organ size control, and the subsequent researches show this pathway is also involved in development, tissue regeneration and homeostasis, inflammation, immunity and cancer. YAP/TAZ, the downstream effectors of Hippo pathway, usually act as coactivators and are dependent on other transcription factors to mediate their transcriptional outputs. In this review, we will first provide an overview on the core components and regulations of Hippo pathway in mammals, and then systematically summarize the identified transcriptional factors or partners that are responsible for the transcriptional output of YAP/TAZ in stem cell and differentiation. More than that, we will discuss the potential applications and future directions based on these findings.
Collapse
Affiliation(s)
- Juan Luo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Peng Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China.
| |
Collapse
|
78
|
Pipchuk A, Yang X. Monitoring Hippo Signaling Pathway Activity Using a Luciferase-Based Large Tumor Suppressor (LATS) Biosensor. Methods Mol Biol 2022; 2525:155-169. [PMID: 35836066 DOI: 10.1007/978-1-0716-2473-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Kinase cascades are a fundamental feature of cellular signaling and play a vital role in disease progression. Thus, tools to monitor the activity of kinase cascades are of high importance. Our group has developed a split-luciferase biosensor system to monitor the activity of the Hippo pathway, a kinase cascade that regulates a wide variety of cellular processes. We have applied this biosensor for high-throughput screening to discover novel upstream kinase regulators of Hippo signaling. In this chapter, we describe our approach to designing, validating, and using the biosensor for screening procedures, which provides an example for the reader should they wish to design a similar biosensor system for their own purposes.
Collapse
Affiliation(s)
- Alexander Pipchuk
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
79
|
Zhang H, Cheng Z, Li W, Hu J, Zhao L, Chen D, Gao J, Chen J, Yan Y, Lin L, Shi A. WTS-1/LATS regulates endocytic recycling by restraining F-actin assembly in a synergistic manner. J Cell Sci 2021; 134:273738. [PMID: 34817059 DOI: 10.1242/jcs.259085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/16/2021] [Indexed: 12/30/2022] Open
Abstract
The disruption of endosomal actin architecture negatively affects endocytic recycling. However, the underlying homeostatic mechanisms that regulate actin organization during recycling remain unclear. In this study, we identified a synergistic endosomal actin assembly restricting mechanism in C. elegans involving WTS-1, the homolog of LATS kinases, which is a core component of the Hippo pathway. WTS-1 resides on the sorting endosomes and colocalizes with the actin polymerization regulator PTRN-1 [the homolog of the calmodulin-regulated spectrin-associated proteins (CAMSAPs)]. We observed an increase in PTRN-1-labeled structures in WTS-1-deficient cells, indicating that WTS-1 can limit the endosomal localization of PTRN-1. Accordingly, the actin overaccumulation phenotype in WTS-1-depleted cells was mitigated by the associated PTRN-1 loss. We further demonstrated that recycling defects and actin overaccumulation in WTS-1-deficient cells were reduced by the overexpression of constitutively active UNC-60A(S3A) (a cofilin protein homolog), which aligns with the role of LATS as a positive regulator of cofilin activity. Altogether, our data confirmed previous findings, and we propose an additional model, that WTS-1 acts alongside the UNC-60A-mediated actin disassembly to restrict the assembly of endosomal F-actin by curbing PTRN-1 dwelling on endosomes, preserving recycling transport.
Collapse
Affiliation(s)
- Hanchong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zihang Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jie Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Linyue Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Dan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jinghu Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yanling Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Long Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
80
|
Casati G, Giunti L, Iorio AL, Marturano A, Galli L, Sardi I. Hippo Pathway in Regulating Drug Resistance of Glioblastoma. Int J Mol Sci 2021; 22:ijms222413431. [PMID: 34948224 PMCID: PMC8705144 DOI: 10.3390/ijms222413431] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) represents the most common and malignant tumor of the Central Nervous System (CNS), affecting both children and adults. GBM is one of the deadliest tumor types and it shows a strong multidrug resistance (MDR) and an immunosuppressive microenvironment which remain a great challenge to therapy. Due to the high recurrence of GBM after treatment, the understanding of the chemoresistance phenomenon and how to stimulate the antitumor immune response in this pathology is crucial. The deregulation of the Hippo pathway is involved in tumor genesis, chemoresistance and immunosuppressive nature of GBM. This pathway is an evolutionarily conserved signaling pathway with a kinase cascade core, which controls the translocation of YAP (Yes-Associated Protein)/TAZ (Transcriptional Co-activator with PDZ-binding Motif) into the nucleus, leading to regulation of organ size and growth. With this review, we want to highlight how chemoresistance and tumor immunosuppression work in GBM and how the Hippo pathway has a key role in them. We linger on the role of the Hippo pathway evaluating the effect of its de-regulation among different human cancers. Moreover, we consider how different pathways are cross-linked with the Hippo signaling in GBM genesis and the hypothetical mechanisms responsible for the Hippo pathway activation in GBM. Furthermore, we describe various drugs targeting the Hippo pathway. In conclusion, all the evidence described largely support a strong involvement of the Hippo pathway in gliomas progression, in the activation of chemoresistance mechanisms and in the development of an immunosuppressive microenvironment. Therefore, this pathway is a promising target for the treatment of high grade gliomas and in particular of GBM.
Collapse
Affiliation(s)
- Giacomo Casati
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital, 50139 Florence, Italy; (L.G.); (A.L.I.); (A.M.); (I.S.)
- Correspondence:
| | - Laura Giunti
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital, 50139 Florence, Italy; (L.G.); (A.L.I.); (A.M.); (I.S.)
| | - Anna Lisa Iorio
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital, 50139 Florence, Italy; (L.G.); (A.L.I.); (A.M.); (I.S.)
| | - Arianna Marturano
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital, 50139 Florence, Italy; (L.G.); (A.L.I.); (A.M.); (I.S.)
| | - Luisa Galli
- Infectious Disease Unit, Department of Health Sciences, University of Florence, 50139 Florence, Italy;
| | - Iacopo Sardi
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital, 50139 Florence, Italy; (L.G.); (A.L.I.); (A.M.); (I.S.)
| |
Collapse
|
81
|
Wang N, Yang Q, Wang J, Shi R, Li M, Gao J, Xu W, Yang Y, Chen Y, Chen S. Integration of Transcriptome and Methylome Highlights the Roles of Cell Cycle and Hippo Signaling Pathway in Flatfish Sexual Size Dimorphism. Front Cell Dev Biol 2021; 9:743722. [PMID: 34926443 PMCID: PMC8675331 DOI: 10.3389/fcell.2021.743722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/29/2021] [Indexed: 01/14/2023] Open
Abstract
Sexual size dimorphism (SSD) is the difference in segments or body size between sexes prevalent in various species. Understanding the genetic architecture of SSD has remained a significant challenge owing to the complexity of growth mechanisms and the sexual influences among species. The Chinese tongue sole (Cynoglossus semilaevis), which exhibits a female-biased SSD and sex reversal from female to pseudomale, is an ideal model for exploring SSD mechanism at the molecular level. The present study aimed to integrate transcriptome and methylome analysis to unravel the genetic and epigenetic changes in female, male, and pseudomale C. semilaevis. The somatotropic and reproductive tissues (brain, liver, gonad, and muscle) transcriptomes were characterized by RNA-seq technology. Transcriptomic analysis unravelled numerous differentially expressed genes (DEGs) involved in cell growth and death-related pathways. The gonad and muscle methylomes were further employed for screening differentially methylated genes (DMGs). Relatively higher DNA methylation levels were observed in the male and pseudomale individuals. In detail, hypermethylation of the chromosome W was pronounced in the pseudomale group than in the female group. Furthermore, weighted gene co-expression network analysis showed that turquoise and brown modules positively and negatively correlated with the female-biased SSD, respectively. A combined analysis of the module genes and DMGs revealed the female-biased mRNA transcripts and hypomethylated levels in the upstream and downstream regions across the cell cycle-related genes. Moreover, the male and pseudomale-biased gene expression in the hippo signaling pathway were positively correlated with their hypermethylation levels in the gene body. These findings implied that the activation of the cell cycle and the inhibition of the hippo signaling pathway were implicated in C. semilaevis female-biased SSD. In addition, the dynamic expression pattern of the epigenetic regulatory factors, including dnmt1, dnmt3a, dnmt3b, and uhrf1, among the different sexes correspond with their distinct DNA methylation levels. Herein, we provide valuable clues for understanding female-biased SSD in C. semilaevis.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, China
| | - Qian Yang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Jialin Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Rui Shi
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Ming Li
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jin Gao
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wenteng Xu
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, China
| | - Yingming Yang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, China
| | - Yadong Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, China
| | - Songlin Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, China
| |
Collapse
|
82
|
Kaur S, Najm MZ, Khan MA, Akhter N, Shingatgeri VM, Sikenis M, Sadaf , Aloliqi AA. Drug-Resistant Breast Cancer: Dwelling the Hippo Pathway to Manage the Treatment. BREAST CANCER: TARGETS AND THERAPY 2021; 13:691-700. [PMID: 34938116 PMCID: PMC8685960 DOI: 10.2147/bctt.s343329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/29/2021] [Indexed: 12/02/2022]
Abstract
Breast cancer can be categorized as a commonly occurring cancer among women with a high mortality rate. Due to the repetitive treatment cycles, it has been noted that the patients develop resistance towards the chemotherapeutic drugs and remain unresponsive towards them. Therefore, many researchers are studying various signaling pathways involved in drug resistance for cancer treatment to overcome the obstacle. Hippo signaling is a widely studied pathway involved in tumor progression and controlling cell proliferation. Hence, understanding the aspects of the gene involved Hippo pathway would provide an insight into the mechanism behind the resistance and result in the development of new treatments. Here, we review the Hippo signaling pathway in humans and how the expression of different components leads to the regulation of resistance against some of the common chemo-drugs used in breast cancer treatment. The article will also discuss the chemotherapeutics that became ineffective due to the resistance and the mechanism following the process.
Collapse
|
83
|
Sang Q, Wang G, Morton DB, Wu H, Xie B. The ZO-1 protein Polychaetoid as an upstream regulator of the Hippo pathway in Drosophila. PLoS Genet 2021; 17:e1009894. [PMID: 34748546 PMCID: PMC8610254 DOI: 10.1371/journal.pgen.1009894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/23/2021] [Accepted: 10/19/2021] [Indexed: 01/15/2023] Open
Abstract
The generation of a diversity of photoreceptor (PR) subtypes with different spectral sensitivities is essential for color vision in animals. In the Drosophila eye, the Hippo pathway has been implicated in blue- and green-sensitive PR subtype fate specification. Specifically, Hippo pathway activation promotes green-sensitive PR fate at the expense of blue-sensitive PRs. Here, using a sensitized triple heterozygote-based genetic screening approach, we report the identification of the single Drosophila zonula occludens-1 (ZO-1) protein Polychaetoid (Pyd) as a new regulator of the Hippo pathway during the blue- and green-sensitive PR subtype binary fate choice. We demonstrate that Pyd acts upstream of the core components and the upstream regulator Pez in the Hippo pathway. Furthermore, We found that Pyd represses the activity of Su(dx), a E3 ligase that negatively regulates Pez and can physically interact with Pyd, during PR subtype fate specification. Together, our results identify a new mechanism underlying the Hippo signaling pathway in post-mitotic neuronal fate specification. The Hippo signaling pathway was originally discovered for its critical role in tissue growth and organ size control. Its evolutionarily conserved roles in various biological processes, including cell differentiation, stem cell regeneration and homeostasis, innate immune biology, as well as tumorigenesis, have been subsequently found in other species. During the development of the Drosophila eye, the Hippo pathway promotes green- and represses blue-sensitive photoreceptor (PR) subtype fate specification. Taking advantage of this binary PR fate choice, we screened Drosophila chromosomal deficiency lines to seek new regulators of the Hippo signaling pathway. We identified the Drosophila membrane-associated ZO-1 protein Pyd as an upstream regulator of the Hippo pathway to specify PR subtypes. Our results have demonstrated that Pyd represses Su(dx)’s activity in the Hippo pathway to specify PR subtypes. Our results demonstrate a new mechanism underlying the Hippo signaling pathway in post-mitotic neuronal fate specification.
Collapse
Affiliation(s)
- Qingliang Sang
- Integrative Biomedical and Diagnostic Sciences Department, School of Dentistry, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Gang Wang
- Integrative Biomedical and Diagnostic Sciences Department, School of Dentistry, Oregon Health and Science University, Portland, Oregon, United States of America
| | - David B. Morton
- Integrative Biomedical and Diagnostic Sciences Department, School of Dentistry, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Hui Wu
- Integrative Biomedical and Diagnostic Sciences Department, School of Dentistry, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Baotong Xie
- Integrative Biomedical and Diagnostic Sciences Department, School of Dentistry, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
84
|
Xu Y, Wang X, Yu M, Ruan Y, Zhang J, Tian Y, Xiong J, Liu L, Cheng Y, Yang Y, Ren B, Chen G, Zhang Y, Zhao B, Wang J, Wang J, Jian R, Liu Y, Wang J. Identification, subcellular localization, and functional comparison of novel Yap splicing isoforms in mouse embryonic stem cells. IUBMB Life 2021; 73:1432-1445. [PMID: 34687583 DOI: 10.1002/iub.2571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/11/2021] [Indexed: 11/06/2022]
Abstract
Hippo signaling pathway is involved in many biological processes including the fate decision of embryonic stem cells (ESCs). Yes-associated protein (Yap) function as a key effector of Hippo pathway, but its role in ESCs is still controversial. So far, only two isoforms of Yap have been identified and they have both overlapping and distinct functions. Here, we identify six novel isoforms of mouse Yap, bringing the total number of isoforms to eight. According to the differences in the first exon, they are divided into two subtypes (a and b). Isoform-a and isoform-b exhibit different subcellular localizations. Moreover, isoform-a can fully reverse the impaired self-renewal phenotype induced by Yap knockout (KO). Upon overexpression, isoform-a moderately promotes mESCs self-renewal and markedly delays differentiation. On the contrary, no significant pro-self-renewal phenotype is observed when isoform-b overexpressed in wildtype (WT) mESCs or re-expressed in Yap KO cell lines. These finding not only help to clarify the role of Yap in mESCs, but also lay the foundation for advancing functional researches of Yap in other processes.
Collapse
Affiliation(s)
- Yixiao Xu
- Southwest Hospital/Southwest Eye Hospital, Army Medical University, Chongqing, China.,Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China
| | - Xueyue Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China.,Department of Pediatrics, The General Hospital of PLA Tibet Military Area Command, Lhasa, China
| | - Meng Yu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China.,Joint Surgery Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yan Ruan
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China
| | - Junlei Zhang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China
| | - Yanping Tian
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China
| | - Jiaxiang Xiong
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Lianlian Liu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China
| | - Yuda Cheng
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China
| | - Yi Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Bangqi Ren
- Southwest Hospital/Southwest Eye Hospital, Army Medical University, Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Guangxing Chen
- Joint Surgery Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yue Zhang
- Southwest Hospital/Southwest Eye Hospital, Army Medical University, Chongqing, China.,Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China
| | - Binyu Zhao
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China.,Department of Physiology, Army Medical University, Chongqing, China
| | - Jiaqi Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China.,Institute of Immunology PLA and Department of Immunology, Army Medical University, Chongqing, China
| | - Jiangjun Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China.,Department of Cell Biology, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Rui Jian
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China
| | - Yong Liu
- Southwest Hospital/Southwest Eye Hospital, Army Medical University, Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Jiali Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China
| |
Collapse
|
85
|
Unni M, Reddy PC, Pal M, Sagi I, Galande S. Identification of Components of the Hippo Pathway in Hydra and Potential Role of YAP in Cell Division and Differentiation. Front Genet 2021; 12:676182. [PMID: 34691138 PMCID: PMC8526868 DOI: 10.3389/fgene.2021.676182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/15/2021] [Indexed: 11/22/2022] Open
Abstract
The Hippo signaling pathway has been shown to be involved in regulating cellular identity, cell/tissue size maintenance and mechanotransduction. The Hippo pathway consists of a kinase cascade which determines the nucleo-cytoplasmic localization of YAP in the cell. YAP is the effector protein in the Hippo pathway, which acts as a transcriptional cofactor for TEAD. Phosphorylation of YAP upon activation of the Hippo pathway prevents it from entering the nucleus and abrogates its function in the transcription of the target genes. In Cnidaria, the information on the regulatory roles of the Hippo pathway is virtually lacking. Here, we report the existence of a complete set of Hippo pathway core components in Hydra for the first time. By studying their phylogeny and domain organization, we report evolutionary conservation of the components of the Hippo pathway. Protein modelling suggested the conservation of YAP-TEAD interaction in Hydra. Further, we characterized the expression pattern of the homologs of yap, hippo, mob and sav in Hydra using whole-mount RNA in situ hybridization and report their possible role in stem cell maintenance. Immunofluorescence assay revealed that Hvul_YAP expressing cells occur in clusters in the body column and are excluded in the terminally differentiated regions. Actively proliferating cells marked by Ki67 exhibit YAP colocalization in their nuclei. Strikingly, a subset of these colocalized cells is actively recruited to the newly developing bud. Disruption of the YAP-TEAD interaction increased the budding rate indicating a critical role of YAP in regulating cell proliferation in Hydra. Collectively, we posit that the Hippo pathway is an essential signaling system in Hydra; its components are ubiquitously expressed in the Hydra body column and play a crucial role in Hydra tissue homeostasis.
Collapse
Affiliation(s)
- Manu Unni
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Puli Chandramouli Reddy
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Mrinmoy Pal
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
- Department of Life Sciences, Shiv Nadar University, Delhi-NCR, India
| |
Collapse
|
86
|
Sharma A, Mir R, Galande S. Epigenetic Regulation of the Wnt/β-Catenin Signaling Pathway in Cancer. Front Genet 2021; 12:681053. [PMID: 34552611 PMCID: PMC8450413 DOI: 10.3389/fgene.2021.681053] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Studies over the past four decades have elucidated the role of Wnt/β-catenin mediated regulation in cell proliferation, differentiation and migration. These processes are fundamental to embryonic development, regeneration potential of tissues, as well as cancer initiation and progression. In this review, we focus on the epigenetic players which influence the Wnt/β-catenin pathway via modulation of its components and coordinated regulation of the Wnt target genes. The role played by crosstalk with other signaling pathways mediating tumorigenesis is also elaborated. The Hippo/YAP pathway is particularly emphasized due to its extensive crosstalk via the Wnt destruction complex. Further, we highlight the recent advances in developing potential therapeutic interventions targeting the epigenetic machinery based on the characterization of these regulatory networks for effective treatment of various cancers and also for regenerative therapies.
Collapse
Affiliation(s)
- Ankita Sharma
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Rafeeq Mir
- Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India.,Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| |
Collapse
|
87
|
Bornhorst D, Abdelilah-Seyfried S. Strong as a Hippo's Heart: Biomechanical Hippo Signaling During Zebrafish Cardiac Development. Front Cell Dev Biol 2021; 9:731101. [PMID: 34422841 PMCID: PMC8375320 DOI: 10.3389/fcell.2021.731101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
The heart is comprised of multiple tissues that contribute to its physiological functions. During development, the growth of myocardium and endocardium is coupled and morphogenetic processes within these separate tissue layers are integrated. Here, we discuss the roles of mechanosensitive Hippo signaling in growth and morphogenesis of the zebrafish heart. Hippo signaling is involved in defining numbers of cardiac progenitor cells derived from the secondary heart field, in restricting the growth of the epicardium, and in guiding trabeculation and outflow tract formation. Recent work also shows that myocardial chamber dimensions serve as a blueprint for Hippo signaling-dependent growth of the endocardium. Evidently, Hippo pathway components act at the crossroads of various signaling pathways involved in embryonic zebrafish heart development. Elucidating how biomechanical Hippo signaling guides heart morphogenesis has direct implications for our understanding of cardiac physiology and pathophysiology.
Collapse
Affiliation(s)
- Dorothee Bornhorst
- Stem Cell Program, Division of Hematology and Oncology, Boston Children's Hospital, Boston, MA, United States.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| | - Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,Institute of Molecular Biology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
88
|
Pojer JM, Manning SA, Kroeger B, Kondo S, Harvey KF. The Hippo pathway uses different machinery to control cell fate and organ size. iScience 2021; 24:102830. [PMID: 34355153 PMCID: PMC8322298 DOI: 10.1016/j.isci.2021.102830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 06/01/2021] [Accepted: 07/07/2021] [Indexed: 11/21/2022] Open
Abstract
The Hippo pathway is a conserved signaling network that regulates organ growth and cell fate. One such cell fate decision is that of R8 photoreceptor cells in the Drosophila eye, where Hippo specifies whether cells sense blue or green light. We show that only a subset of proteins that control organ growth via the Hippo pathway also regulate R8 cell fate choice, including the STRIPAK complex, Tao, Pez, and 14-3-3 proteins. Furthermore, key Hippo pathway proteins were primarily cytoplasmic in R8 cells rather than localized to specific membrane domains, as in cells of growing epithelial organs. Additionally, Warts was the only Hippo pathway protein to be differentially expressed between R8 subtypes, while central Hippo pathway proteins were expressed at dramatically lower levels in adult and pupal eyes than in growing larval eyes. Therefore, we reveal several important differences in Hippo signaling in the contexts of organ growth and cell fate.
Collapse
Affiliation(s)
- Jonathan M. Pojer
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Samuel A. Manning
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Benjamin Kroeger
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Shu Kondo
- Laboratory of Invertebrate Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, Japan
| | - Kieran F. Harvey
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
89
|
Cellular feedback dynamics and multilevel regulation driven by the hippo pathway. Biochem Soc Trans 2021; 49:1515-1527. [PMID: 34374419 PMCID: PMC8421037 DOI: 10.1042/bst20200253] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
The Hippo pathway is a dynamic cellular signalling nexus that regulates differentiation and controls cell proliferation and death. If the Hippo pathway is not precisely regulated, the functionality of the upstream kinase module is impaired, which increases nuclear localisation and activity of the central effectors, the transcriptional co-regulators YAP and TAZ. Pathological YAP and TAZ hyperactivity consequently cause cancer, fibrosis and developmental defects. The Hippo pathway controls an array of fundamental cellular processes, including adhesion, migration, mitosis, polarity and secretion of a range of biologically active components. Recent studies highlight that spatio-temporal regulation of Hippo pathway components are central to precisely controlling its context-dependent dynamic activity. Several levels of feedback are integrated into the Hippo pathway, which is further synergized with interactors outside of the pathway that directly regulate specific Hippo pathway components. Likewise, Hippo core kinases also ‘moonlight’ by phosphorylating multiple substrates beyond the Hippo pathway and thereby integrates further flexibility and robustness in the cellular decision-making process. This topic is still in its infancy but promises to reveal new fundamental insights into the cellular regulation of this therapeutically important pathway. We here highlight recent advances emphasising feedback dynamics and multilevel regulation of the Hippo pathway with a focus on mitosis and cell migration, as well as discuss potential productive future research avenues that might reveal novel insights into the overall dynamics of the pathway.
Collapse
|
90
|
Yoon HS, Fujino K, Liu S, Takano T, Tsugama D. NDR/LATS-family protein kinase genes are indispensable for embryogenesis in Arabidopsis. FEBS Open Bio 2021; 11:2600-2606. [PMID: 34320276 PMCID: PMC8409290 DOI: 10.1002/2211-5463.13257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 11/10/2022] Open
Abstract
NDR/LATS‐family protein kinases are conserved among eukaryotes. These protein kinases in yeast and animals phosphorylate specific targets and regulate the cell cycle. Arabidopsis thaliana has eight NDR/LATS‐family protein kinase genes (NDR1‐8), of which NDR2, NDR4, and NDR5 are involved in regulating pollen development. However, the functions of the other NDR/LATS‐family protein kinase genes in plants are unclear. Here, we show that three putative phosphorylation sites of an Arabidopsis basic leucine zipper transcription factor, VIP1, correspond to NDR/LATS‐family protein kinase phosphorylation motifs and that two of these three sites are phosphorylated by NDR2, NDR3, or NDR8 in vitro. Expression of NDR1‐8 was detected in various tissues. An NDR4 NDR6 NDR7 NDR8 quadruple mutation caused embryonic lethality These results suggest that different NDR/LATS‐family protein kinases in plants have distinct physiological roles.
Collapse
Affiliation(s)
- Hyuk Sung Yoon
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo-shi, Japan
| | - Kaien Fujino
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo-shi, Japan
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, China
| | - Tetsuo Takano
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo-shi, Japan
| | - Daisuke Tsugama
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo-shi, Japan
| |
Collapse
|
91
|
Nguyen-Lefebvre AT, Selzner N, Wrana JL, Bhat M. The hippo pathway: A master regulator of liver metabolism, regeneration, and disease. FASEB J 2021; 35:e21570. [PMID: 33831275 DOI: 10.1096/fj.202002284rr] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/04/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
The liver is the only visceral organ in the body with a tremendous capacity to regenerate in response to insults that induce inflammation, cell death, and injury. Liver regeneration is a complicated process involving a well-orchestrated activation of non-parenchymal cells in the injured area and proliferation of undamaged hepatocytes. Furthermore, the liver has a Hepatostat, defined as adjustment of its volume to that required for homeostasis. Understanding the mechanisms that control different steps of liver regeneration is critical to informing therapies for liver repair, to help patients with liver disease. The Hippo signaling pathway is well known for playing an essential role in the control and regulation of liver size, regeneration, stem cell self-renewal, and liver cancer. Thus, the Hippo pathway regulates dynamic cell fates in liver, and in absence of its downstream effectors YAP and TAZ, liver regeneration is severely impaired, and the proliferative expansion of liver cells blocked. We will mainly review upstream mechanisms activating the Hippo signaling pathway following partial hepatectomy in mouse model and patients, its roles during different steps of liver regeneration, metabolism, and cancer. We will also discuss how targeting the Hippo signaling cascade might improve liver regeneration and suppress liver tumorigenesis.
Collapse
Affiliation(s)
- Anh Thu Nguyen-Lefebvre
- Department of Medicine, Multi-Organ Transplant Program, Toronto General Hospital, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Nazia Selzner
- Department of Medicine, Multi-Organ Transplant Program, Toronto General Hospital, Toronto, ON, Canada
| | | | - Mamatha Bhat
- Department of Medicine, Multi-Organ Transplant Program, Toronto General Hospital, Toronto, ON, Canada
| |
Collapse
|
92
|
Non-Coding RNAs and Splicing Activity in Testicular Germ Cell Tumors. Life (Basel) 2021; 11:life11080736. [PMID: 34440480 PMCID: PMC8399856 DOI: 10.3390/life11080736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 01/22/2023] Open
Abstract
Testicular germ cell tumors (TGCTs) are the most common tumors in adolescent and young men. Recently, genome-wide studies have made it possible to progress in understanding the molecular mechanisms underlying the development of tumors. It is becoming increasingly clear that aberrant regulation of RNA metabolism can drive tumorigenesis and influence chemotherapeutic response. Notably, the expression of non-coding RNAs as well as specific splice variants is deeply deregulated in human cancers. Since these cancer-related RNA species are considered promising diagnostic, prognostic and therapeutic targets, understanding their function in cancer development is becoming a major challenge. Here, we summarize how the different expression of RNA species repertoire, including non-coding RNAs and protein-coding splicing variants, impacts on TGCTs’ onset and progression and sustains therapeutic resistance. Finally, the role of transcription-associated R-loop misregulation in the maintenance of genomic stability in TGCTs is also discussed.
Collapse
|
93
|
Li FL, Guan KL. The two sides of Hippo pathway in cancer. Semin Cancer Biol 2021; 85:33-42. [PMID: 34265423 DOI: 10.1016/j.semcancer.2021.07.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 02/08/2023]
Abstract
The Hippo signaling pathway was originally characterized by genetic studies in Drosophila to regulate tissue growth and organ size, and the core components of this pathway are highly conserved in mammals. Studies over the past two decades have revealed critical physiological and pathological functions of the Hippo tumor-suppressor pathway, which is tightly regulated by a broad range of intracellular and extracellular signals. These properties enable the Hippo pathway to serve as an important controller in organismal development and adult tissue homeostasis. Dysregulation of the Hippo signaling has been observed in many cancer types, suggesting the possibility of cancer treatment by targeting the Hippo pathway. The general consensus is that Hippo has tumor suppressor function. However, growing evidence also suggests that the function of the Hippo pathway in malignancy is cancer context dependent as recent studies indicating tumor promoting function of LATS. This article surveys the Hippo pathway signaling mechanisms and then reviews both the tumor suppressing and promoting function of this pathway. A comprehensive understanding of the dual roles of the Hippo pathway in cancer will benefit future therapeutic targeting of the Hippo pathway for cancer treatment.
Collapse
Affiliation(s)
- Fu-Long Li
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Kun-Liang Guan
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
94
|
Abstract
The lymphatic vasculature plays important role in regulating fluid homeostasis, intestinal lipid absorption, and immune surveillance in humans. Malfunction of lymphatic vasculature leads to several human diseases. Understanding the fundamental mechanism in lymphatic vascular development not only expand our knowledge, but also provide a new therapeutic insight. Recently, Hippo-YAP/TAZ signaling pathway, a key mechanism of organ size and tissue homeostasis, has emerged as a critical player that regulate lymphatic specification, sprouting, and maturation. In this review, we discuss the mechanistic regulation and pathophysiological significant of Hippo pathway in lymphatic vascular development.
Collapse
Affiliation(s)
- Boksik Cha
- Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Sungjin Moon
- Department of Biological Science, Kangwon National University, Chuncheon 24341, Korea
| | - Wantae Kim
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
95
|
Xie J, Wang Y, Ai D, Yao L, Jiang H. The role of the Hippo pathway in heart disease. FEBS J 2021; 289:5819-5833. [PMID: 34174031 DOI: 10.1111/febs.16092] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/18/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022]
Abstract
Heart disease, including coronary artery disease, myocardial infarction, heart failure, cardiac hypertrophy, and cardiomyopathies, is the leading causes of death worldwide. The Hippo pathway is a central controller for organ size and tissue growth, which plays a pivotal role in determining cardiomyocytes and nonmyocytes proliferation, regeneration, differentiation, and apoptosis. In this review, we summarize the effects of the Hippo pathway on heart disease and propose potential intervention targets. Especially, we discuss the molecular mechanisms of the Hippo pathway involved in maintaining cardiac homeostasis by regulating cardiomyocytes and nonmyocytes function in the heart. Based on this, we conclude that the Hippo pathway is a promising therapeutic target for cardiovascular therapy, which will bring new perspectives for their treatments.
Collapse
Affiliation(s)
- Jiahong Xie
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yuxin Wang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ding Ai
- Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, China
| | - Liu Yao
- Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, China
| | - Hongfeng Jiang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
96
|
Kwon H, Kim J, Jho EH. Role of the Hippo pathway and mechanisms for controlling cellular localization of YAP/TAZ. FEBS J 2021; 289:5798-5818. [PMID: 34173335 DOI: 10.1111/febs.16091] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/05/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022]
Abstract
The Hippo pathway is a crucial signaling mechanism that inhibits the growth of cells and organs during development and in disease. When the Hippo pathway is activated, YAP/TAZ transcriptional coactivators are phosphorylated by upstream kinases, preventing nuclear localization of YAP/TAZ. However, when the Hippo pathway is inhibited, YAP/TAZ localize mainly in the nucleus and induce the expression of target genes related to cell proliferation. Abnormal proliferation of cells is one of the hallmarks of cancer initiation, and activation of Hippo pathway dampens such cell proliferation. Various types of diseases including cancer can occur due to the dysregulation of the Hippo pathway. Therefore, a better understanding of the Hippo pathway signaling mechanisms, and in particular how YAP/TAZ exist in the nucleus, may lead to the identification of new therapeutic targets for treating cancer and other diseases. In this review, we summarize the overall Hippo pathway and discuss mechanisms related to nuclear localization of YAP/TAZ.
Collapse
Affiliation(s)
- Hyeryun Kwon
- Department of Life Science, University of Seoul, Korea
| | - Jiyoung Kim
- Department of Life Science, University of Seoul, Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Korea
| |
Collapse
|
97
|
Morciano G, Vezzani B, Missiroli S, Boncompagni C, Pinton P, Giorgi C. An Updated Understanding of the Role of YAP in Driving Oncogenic Responses. Cancers (Basel) 2021; 13:cancers13123100. [PMID: 34205830 PMCID: PMC8234554 DOI: 10.3390/cancers13123100] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary In 2020, the global cancer database GLOBOCAN estimated 19.3 million new cancer cases worldwide. The discovery of targeted therapies may help prognosis and outcome of the patients affected, but the understanding of the plethora of highly interconnected pathways that modulate cell transformation, proliferation, invasion, migration and survival remains an ambitious goal. Here we propose an updated state of the art of YAP as the key protein driving oncogenic response via promoting all those steps at multiple levels. Of interest, the role of YAP in immunosuppression is a field of evolving research and growing interest and this summary about the current pharmacological therapies impacting YAP serves as starting point for future studies. Abstract Yes-associated protein (YAP) has emerged as a key component in cancer signaling and is considered a potent oncogene. As such, nuclear YAP participates in complex and only partially understood molecular cascades that are responsible for the oncogenic response by regulating multiple processes, including cell transformation, tumor growth, migration, and metastasis, and by acting as an important mediator of immune and cancer cell interactions. YAP is finely regulated at multiple levels, and its localization in cells in terms of cytoplasm–nucleus shuttling (and vice versa) sheds light on interesting novel anticancer treatment opportunities and putative unconventional functions of the protein when retained in the cytosol. This review aims to summarize and present the state of the art knowledge about the role of YAP in cancer signaling, first focusing on how YAP differs from WW domain-containing transcription regulator 1 (WWTR1, also named as TAZ) and which upstream factors regulate it; then, this review focuses on the role of YAP in different cancer stages and in the crosstalk between immune and cancer cells as well as growing translational strategies derived from its inhibitory and synergistic effects with existing chemo-, immuno- and radiotherapies.
Collapse
|
98
|
Budel SJ, Penning MM, Penning LC. Hippo signaling pathway in companion animal diseases, an under investigated signaling cascade. Vet Q 2021; 41:172-180. [PMID: 33945400 PMCID: PMC8128184 DOI: 10.1080/01652176.2021.1923085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The Hippo pathway is a highly conserved kinase cascade in mammals with the proteins YAP and TAZ as its most important downstream effectors that shuttle between cytoplasma and nucleus. It has a crucial role in processes such as embryogenesis, organ size control, homeostasis and tissue regeneration, where mechanosensing and/or cell-cell interactions are involved. As the pathway is associated with many essential functions in the body, its dysregulation is related to many diseases. In contrast to human pathology, a PubMed-search on Hippo, YAP/TAZ and companion animals (horse, equine, dog, canine, cat, feline) retrieved few publications. Because of its high level of functional conservation, it is anticipated that also in veterinary sciences aberrant Hippo YAP/TAZ signaling would be implicated in animal pathologies. Publications on Hippo YAP/TAZ in companion animals are mainly in cats and dogs and related to oncology. Here, we emphasize the important role of YAP/TAZ in liver diseases. First the liver has a remarkable regeneration capacity and a strict size control and the liver has a moderate liver cell renewal (homeostasis). The last years numerous papers show the importance of YAP/TAZ in hepatocellular carcinoma (HCC), hepatocyte differentiation and bile duct epithelial (BEC) cell survival. YAP/TAZ signaling is involved in activation of hepatic stellate cells crucial in fibrogenesis. The availability of drugs (e.g. verteporfin) targeting the YAP/TAZ pathway are described as is their potential usage in veterinary medicine. The aim of this overview is to stimulate researchers' and clinicians' interest in the potential role of Hippo YAP/TAZ signaling in veterinary medicine.
Collapse
Affiliation(s)
- Shaydee J Budel
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marloes M Penning
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Louis C Penning
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
99
|
Pojer JM, Saiful Hilmi AJ, Kondo S, Harvey KF. Crumbs and the apical spectrin cytoskeleton regulate R8 cell fate in the Drosophila eye. PLoS Genet 2021; 17:e1009146. [PMID: 34097697 PMCID: PMC8211197 DOI: 10.1371/journal.pgen.1009146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 06/17/2021] [Accepted: 05/11/2021] [Indexed: 12/31/2022] Open
Abstract
The Hippo pathway is an important regulator of organ growth and cell fate. In the R8 photoreceptor cells of the Drosophila melanogaster eye, the Hippo pathway controls the fate choice between one of two subtypes that express either the blue light-sensitive Rhodopsin 5 (Hippo inactive R8 subtype) or the green light-sensitive Rhodopsin 6 (Hippo active R8 subtype). The degree to which the mechanism of Hippo signal transduction and the proteins that mediate it are conserved in organ growth and R8 cell fate choice is currently unclear. Here, we identify Crumbs and the apical spectrin cytoskeleton as regulators of R8 cell fate. By contrast, other proteins that influence Hippo-dependent organ growth, such as the basolateral spectrin cytoskeleton and Ajuba, are dispensable for the R8 cell fate choice. Surprisingly, Crumbs promotes the Rhodopsin 5 cell fate, which is driven by Yorkie, rather than the Rhodopsin 6 cell fate, which is driven by Warts and the Hippo pathway, which contrasts with its impact on Hippo activity in organ growth. Furthermore, neither the apical spectrin cytoskeleton nor Crumbs appear to regulate the Hippo pathway through mechanisms that have been observed in growing organs. Together, these results show that only a subset of Hippo pathway proteins regulate the R8 binary cell fate decision and that aspects of Hippo signalling differ between growing organs and post-mitotic R8 cells.
Collapse
Affiliation(s)
- Jonathan M. Pojer
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Abdul Jabbar Saiful Hilmi
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Shu Kondo
- Laboratory of Invertebrate Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kieran F. Harvey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
100
|
Maldonado-Velez G, Firulli AB. Mechanisms Underlying Cardiomyocyte Development: Can We Exploit Them to Regenerate the Heart? Curr Cardiol Rep 2021; 23:81. [PMID: 34081213 DOI: 10.1007/s11886-021-01510-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW It is well established that the adult mammalian cardiomyocytes retain a low capacity for cell cycle activity; however, it is insufficient to effectively respond to myocardial injury and facilitate cardiac regenerative repair. Lessons learned from species in which cardiomyocytes do allow for proliferative regeneration/repair have shed light into the mechanisms underlying cardiac regeneration post-injury. Importantly, many of these mechanisms are conserved across species, including mammals, and efforts to tap into these mechanisms effectively within the adult heart are currently of great interest. RECENT FINDINGS Targeting the endogenous gene regulatory networks (GRNs) shown to play roles in the cardiac regeneration of conducive species is seen as a strong approach, as delivery of a single or combination of genes has promise to effectively enhance cell cycle activity and CM proliferation in adult hearts post-myocardial infarction (MI). In situ re-induction of proliferative gene regulatory programs within existing, local, non-damaged cardiomyocytes helps overcome significant technical hurdles, such as successful engraftment of implanted cells or achieving complete cardiomyocyte differentiation from cell-based approaches. Although many obstacles currently exist and need to be overcome to successfully translate these approaches to clinical settings, the current efforts presented here show great promise.
Collapse
Affiliation(s)
- Gabriel Maldonado-Velez
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN, 46202-5225, USA
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN, 46202-5225, USA.
| |
Collapse
|