101
|
Amoyel M, Anderson J, Suisse A, Glasner J, Bach EA. Socs36E Controls Niche Competition by Repressing MAPK Signaling in the Drosophila Testis. PLoS Genet 2016; 12:e1005815. [PMID: 26807580 PMCID: PMC4726490 DOI: 10.1371/journal.pgen.1005815] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/23/2015] [Indexed: 02/05/2023] Open
Abstract
The Drosophila testis is a well-established system for studying stem cell self-renewal and competition. In this tissue, the niche supports two stem cell populations, germ line stem cells (GSCs), which give rise to sperm, and somatic stem cells called cyst stem cells (CySCs), which support GSCs and their descendants. It has been established that CySCs compete with each other and with GSCs for niche access, and mutations have been identified that confer increased competitiveness to CySCs, resulting in the mutant stem cell and its descendants outcompeting wild type resident stem cells. Socs36E, which encodes a negative feedback inhibitor of the JAK/STAT pathway, was the first identified regulator of niche competition. The competitive behavior of Socs36E mutant CySCs was attributed to increased JAK/STAT signaling. Here we show that competitive behavior of Socs36E mutant CySCs is due in large part to unbridled Mitogen-Activated Protein Kinase (MAPK) signaling. In Socs36E mutant clones, MAPK activity is elevated. Furthermore, we find that clonal upregulation of MAPK in CySCs leads to their outcompetition of wild type CySCs and of GSCs, recapitulating the Socs36E mutant phenotype. Indeed, when MAPK activity is removed from Socs36E mutant clones, they lose their competitiveness but maintain self-renewal, presumably due to increased JAK/STAT signaling in these cells. Consistently, loss of JAK/STAT activity in Socs36E mutant clones severely impairs their self-renewal. Thus, our results enable the genetic separation of two essential processes that occur in stem cells. While some niche signals specify the intrinsic property of self-renewal, which is absolutely required in all stem cells for niche residence, additional signals control the ability of stem cells to compete with their neighbors. Socs36E is node through which these processes are linked, demonstrating that negative feedback inhibition integrates multiple aspects of stem cell behavior.
Collapse
Affiliation(s)
- Marc Amoyel
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Jason Anderson
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Annabelle Suisse
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Johanna Glasner
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Erika A Bach
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America.,The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York, New York, United States of America
| |
Collapse
|
102
|
Vanha-Aho LM, Valanne S, Rämet M. Cytokines in Drosophila immunity. Immunol Lett 2015; 170:42-51. [PMID: 26730849 DOI: 10.1016/j.imlet.2015.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022]
Abstract
Cytokines are a large and diverse group of small proteins that can affect many biological processes, but most commonly cytokines are known as mediators of the immune response. In the event of an infection, cytokines are produced in response to an immune stimulus, and they function as key regulators of the immune response. Cytokines come in many shapes and sizes, and although they vary greatly in structure, their functions have been well conserved in evolution. The immune signaling pathways that respond to cytokines are remarkably conserved from fly to man. Therefore, Drosophila melanogaster, provides an excellent platform for studying the biology and function of cytokines. In this review, we will describe the cytokines and cytokine-like molecules found in the fly and discuss their roles in host immunity.
Collapse
Affiliation(s)
- Leena-Maija Vanha-Aho
- Laboratory of Experimental Immunology, BioMediTech, 33014 University of Tampere, Finland.
| | - Susanna Valanne
- Laboratory of Experimental Immunology, BioMediTech, 33014 University of Tampere, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, BioMediTech, 33014 University of Tampere, Finland; PEDEGO Research Unit, and Medical Research Center Oulu, University of Oulu and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
103
|
Fisher KH, Stec W, Brown S, Zeidler MP. Mechanisms of JAK/STAT pathway negative regulation by the short coreceptor Eye Transformer/Latran. Mol Biol Cell 2015; 27:434-41. [PMID: 26658615 PMCID: PMC4751595 DOI: 10.1091/mbc.e15-07-0546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/01/2015] [Indexed: 11/30/2022] Open
Abstract
The short receptor Et/Lat negatively regulates Drosophila JAK/STAT signaling. It binds to intracellular components and the Domeless receptor but cannot bind ligands, thus generating a signaling-incompetent complex. Et/Lat is also more stable than Dome. The study provides insights into how short receptors negatively regulate signaling. Transmembrane receptors interact with extracellular ligands to transduce intracellular signaling cascades, modulate target gene expression, and regulate processes such as proliferation, apoptosis, differentiation, and homeostasis. As a consequence, aberrant signaling events often underlie human disease. Whereas the vertebrate JAK/STAT signaling cascade is transduced via multiple receptor combinations, the Drosophila pathway has only one full-length signaling receptor, Domeless (Dome), and a single negatively acting receptor, Eye Transformer/Latran (Et/Lat). Here we investigate the molecular mechanisms underlying Et/Lat activity. We demonstrate that Et/Lat negatively regulates the JAK/STAT pathway activity and can bind to Dome, thus reducing Dome:Dome homodimerization by creating signaling-incompetent Dome:Et/Lat heterodimers. Surprisingly, we find that Et/Lat is able to bind to both JAK and STAT92E but, despite the presence of putative cytokine-binding motifs, does not detectably interact with pathway ligands. We find that Et/Lat is trafficked through the endocytic machinery for lysosomal degradation but at a much slower rate than Dome, a difference that may enhance its ability to sequester Dome into signaling-incompetent complexes. Our data offer new insights into the molecular mechanism and regulation of Et/Lat in Drosophila that may inform our understanding of how short receptors function in other organisms.
Collapse
Affiliation(s)
- Katherine H Fisher
- Bateson Centre, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Wojciech Stec
- Bateson Centre, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Stephen Brown
- Sheffield RNAi Screening Facility, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Martin P Zeidler
- Bateson Centre, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
104
|
Matsuda R, Hosono C, Samakovlis C, Saigo K. Multipotent versus differentiated cell fate selection in the developing Drosophila airways. eLife 2015; 4. [PMID: 26633813 PMCID: PMC4775228 DOI: 10.7554/elife.09646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/02/2015] [Indexed: 12/03/2022] Open
Abstract
Developmental potentials of cells are tightly controlled at multiple levels. The embryonic Drosophila airway tree is roughly subdivided into two types of cells with distinct developmental potentials: a proximally located group of multipotent adult precursor cells (P-fate) and a distally located population of more differentiated cells (D-fate). We show that the GATA-family transcription factor (TF) Grain promotes the P-fate and the POU-homeobox TF Ventral veinless (Vvl/Drifter/U-turned) stimulates the D-fate. Hedgehog and receptor tyrosine kinase (RTK) signaling cooperate with Vvl to drive the D-fate at the expense of the P-fate while negative regulators of either of these signaling pathways ensure P-fate specification. Local concentrations of Decapentaplegic/BMP, Wingless/Wnt, and Hedgehog signals differentially regulate the expression of D-factors and P-factors to transform an equipotent primordial field into a concentric pattern of radially different morphogenetic potentials, which gradually gives rise to the distal-proximal organization of distinct cell types in the mature airway. DOI:http://dx.doi.org/10.7554/eLife.09646.001 Many organs are composed of tubes of different sizes, shapes and patterns that transport vital substances from one site to another. In the fruit fly species Drosophila melanogaster, oxygen is transported by a tubular network, which divides into finer tubes that allow the oxygen to reach every part of the body. Different parts of the fruit fly’s airways develop from different groups of tracheal precursor cells. P-fate cells form the most 'proximal' tubes (which are found next to the outer layer of the fly). These cells are 'multipotent' stem cells, and have the ability to specialize into many different types of cells during metamorphosis. The more 'distal' branches that emerge from the proximal tubes develop from D-fate cells. These are cells that generally acquire a narrower range of cell identities. By performing a genetic analysis of fruit fly embryos, Matsuda et al. have now identified several proteins and signaling molecules that control whether tracheal precursor cells become D-fate or P-fate cells. For example, several signaling pathways work with a protein called Ventral veinless to cause D-fate cells to develop instead of P-fate cells. However, molecules that prevent signaling occurring via these pathways help P-fate cells to form. Different amounts of the molecules that either promote or hinder these signaling processes are present in different parts of the fly embryo; this helps the airways of the fly to develop in the correct pattern. This work provides a comprehensive view of how cell types with different developmental potentials are positioned in a complex tubular network. This sets a basis for future studies addressing how the respiratory organs – and indeed the entire organism – are sustained. DOI:http://dx.doi.org/10.7554/eLife.09646.002
Collapse
Affiliation(s)
- Ryo Matsuda
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Chie Hosono
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Christos Samakovlis
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory, Solna, Sweden.,ECCPS, Justus Liebig University of Giessen, Giessen, Germany
| | - Kaoru Saigo
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
105
|
Huang XD, Wei GJ, He MX. Cloning and gene expression of signal transducers and activators of transcription (STAT) homologue provide new insights into the immune response and nucleus graft of the pearl oyster Pinctada fucata. FISH & SHELLFISH IMMUNOLOGY 2015; 47:847-854. [PMID: 26492994 DOI: 10.1016/j.fsi.2015.10.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 06/05/2023]
Abstract
The signal transducers and activators of the transcription (STAT) family play an important role in regulatory and cellular functions by regulating the expression of a variety of genes, including cytokines and growth factors. In the present study, a Pinctada fucata STAT protein, termed PfSTAT, was described. The deduced amino acid sequence of PfSTAT contains the conserved STAT_bind domain and the SH2 domain, and the additional Bin/Amphiphysin/Rvs (BAR) domain, but does not have STAT_alpha and STAT_int domains. Multiple sequence alignments revealed that PfSTAT showed relatively low identity with vertebrate and other invertebrate STATs, and phylogenetic analysis indicated that the evolution of STAT may have been more complex and ancient. Gene expression analysis revealed that PfSTAT is involved in the immune response to polyinosinic-polycytidylic acid (poly I:C) stimulation and in the nucleus insertion operation. This study contributes to a better understanding of PfSTAT in protecting the pearl oyster from disease or injury caused by grafting.
Collapse
Affiliation(s)
- Xian-De Huang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Guo-jian Wei
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Mao-xian He
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| |
Collapse
|
106
|
Li C, Li H, Chen Y, Chen Y, Wang S, Weng SP, Xu X, He J. Activation of Vago by interferon regulatory factor (IRF) suggests an interferon system-like antiviral mechanism in shrimp. Sci Rep 2015; 5:15078. [PMID: 26459861 PMCID: PMC4602278 DOI: 10.1038/srep15078] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/07/2015] [Indexed: 12/27/2022] Open
Abstract
There is a debate on whether invertebrates possess an antiviral immunity similar to the interferon (IFN) system of vertebrates. The Vago gene from arthropods encodes a viral-activated secreted peptide that restricts virus infection through activating the JAK-STAT pathway and is considered to be a cytokine functionally similar to IFN. In this study, the first crustacean IFN regulatory factor (IRF)-like gene was identified in Pacific white shrimp, Litopenaeus vannamei. The L. vannamei IRF showed similar protein nature to mammalian IRFs and could be activated during virus infection. As a transcriptional regulatory factor, L. vannamei IRF could activate the IFN-stimulated response element (ISRE)-containing promoter to regulate the expression of mammalian type I IFNs and initiate an antiviral state in mammalian cells. More importantly, IRF could bind the 5'-untranslated region of L. vannamei Vago4 gene and activate its transcription, suggesting that shrimp Vago may be induced in a similar manner to that of IFNs and supporting the opinion that Vago might function as an IFN-like molecule in invertebrates. These suggested that shrimp might possess an IRF-Vago-JAK/STAT regulatory axis, which is similar to the IRF-IFN-JAK/STAT axis of vertebrates, indicating that invertebrates might possess an IFN system-like antiviral mechanism.
Collapse
Affiliation(s)
- Chaozheng Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P.R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, P.R. China
| | - Haoyang Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P.R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, P.R. China
| | - Yixiao Chen
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P.R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, P.R. China
| | - Yonggui Chen
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, P.R. China
| | - Sheng Wang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P.R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, P.R. China
| | - Shao-Ping Weng
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P.R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, P.R. China
| | - Xiaopeng Xu
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P.R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, P.R. China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P.R. China
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, P.R. China
| |
Collapse
|
107
|
Yang H, Kronhamn J, Ekström JO, Korkut GG, Hultmark D. JAK/STAT signaling in Drosophila muscles controls the cellular immune response against parasitoid infection. EMBO Rep 2015; 16:1664-72. [PMID: 26412855 PMCID: PMC4687419 DOI: 10.15252/embr.201540277] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 08/28/2015] [Indexed: 11/09/2022] Open
Abstract
The role of JAK/STAT signaling in the cellular immune response of Drosophila is not well understood. Here, we show that parasitoid wasp infection activates JAK/STAT signaling in somatic muscles of the Drosophila larva, triggered by secretion of the cytokines Upd2 and Upd3 from circulating hemocytes. Deletion of upd2 or upd3, but not the related os (upd1) gene, reduced the cellular immune response, and suppression of the JAK/STAT pathway in muscle cells reduced the encapsulation of wasp eggs and the number of circulating lamellocyte effector cells. These results suggest that JAK/STAT signaling in muscles participates in a systemic immune defense against wasp infection.
Collapse
Affiliation(s)
- Hairu Yang
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Jesper Kronhamn
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Jens-Ola Ekström
- Department of Molecular Biology, Umeå University, Umeå, Sweden Institute of Biomedical Technology BMT Tampere University, Tampere, Finland
| | | | - Dan Hultmark
- Department of Molecular Biology, Umeå University, Umeå, Sweden Institute of Biomedical Technology BMT Tampere University, Tampere, Finland
| |
Collapse
|
108
|
Monahan AJ, Starz-Gaiano M. Socs36E limits STAT signaling via Cullin2 and a SOCS-box independent mechanism in the Drosophila egg chamber. Mech Dev 2015; 138 Pt 3:313-27. [PMID: 26277564 DOI: 10.1016/j.mod.2015.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 07/31/2015] [Accepted: 08/06/2015] [Indexed: 01/30/2023]
Abstract
The Suppressor of Cytokine Signaling (SOCS) proteins are critical, highly conserved feedback inhibitors of signal transduction cascades. The family of SOCS proteins is divided into two groups: ancestral and vertebrate-specific SOCS proteins. Vertebrate-specific SOCS proteins have been heavily studied as a result of their strong mutant phenotypes. However, the ancestral clade remains less studied, a potential result of genetic redundancies in mammals. Use of the genetically tractable organism Drosophila melanogaster enables in vivo assessment of signaling components and mechanisms with less concern about the functional redundancy observed in mammals. In this study, we investigated how the SOCS family member Suppressor of Cytokine Signaling at 36E (Socs36E) attenuates Janus Kinase/Signal Transducer and Activator of Transcription (Jak/STAT) activation during specification of motile border cells in Drosophila oogenesis. We found that Socs36E genetically interacts with the Cullin2 (Cul2) scaffolding protein. Like Socs36E, Cul2 is required to limit the number of motile cells in egg chambers. We demonstrated that loss of Cul2 in the follicle cells significantly increased nuclear STAT protein levels, which resulted in additional cells acquiring invasive properties. Further, reduction of Cul2 suppressed border cell migration defects that occur in a Stat92E-sensitized genetic background. Our data incorporated Cul2 into a previously described Jak/STAT-directed genetic regulatory network that is required to generate a discrete boundary between cell fates. We also found that Socs36E is able to attenuate STAT activity in the egg chamber when it does not have a functional SOCS box. Collectively, this work contributes mechanistic insight to a Jak/STAT regulatory genetic circuit, and suggests that Socs36E regulates Jak/STAT signaling via a Cul2-dependent mechanism, as well as by a Cullin-independent manner, in vivo.
Collapse
Affiliation(s)
- Amanda J Monahan
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA.
| | - Michelle Starz-Gaiano
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
109
|
Song X, Zhang Z, Wang S, Li H, Zuo H, Xu X, Weng S, He J, Li C. A Janus Kinase in the JAK/STAT signaling pathway from Litopenaeus vannamei is involved in antiviral immune response. FISH & SHELLFISH IMMUNOLOGY 2015; 44:662-673. [PMID: 25839969 DOI: 10.1016/j.fsi.2015.03.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 06/04/2023]
Abstract
The JAK/STAT signaling pathways are conserved in evolution and mediate diversity immune responses to virus infection. In the present study, a Janus kinase (designated as LvJAK) gene was cloned and characterized from Litopenaeus vannamei. LvJAK contained the characteristic JAK homology domain (JH domain) from JH1 to JH7 and showed 19% identity (34% similarity) and 21% identity (35% similarity) to Drosophila Hopscotch protein and Human JAK2 protein, respectively. The mRNA of LvJAK was highly expressed in hepatopancreas of L. vannamei and its expression level was prominently upregulated after the stimulation of Poly (I:C) and white spot syndrome virus (WSSV) challenges. There were 10 putative STAT binding motifs in the promoter region of LvJAK, and it could be regulated by LvJAK self or (and) LvSTAT, suggesting that LvJAK is the JAK/STAT pathway target gene and could function as a positive regulator to form a positive feedback loop. In addition, the silencing of LvJAK caused higher mortality rate and virus load, suggesting that LvJAK could play an important role in defense against WSSV. This is the first report about the complete set of JAK/STAT proteins in shrimp and the results provide the evidence of the positive feedback loop mediated by JAK protein present in the JAK/STAT pathway in invertebrates.
Collapse
Affiliation(s)
- Xuan Song
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Zijian Zhang
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Sheng Wang
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Haoyang Li
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Hongliang Zuo
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Xiaopeng Xu
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China.
| | - Chaozheng Li
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China.
| |
Collapse
|
110
|
Yan M, Li C, Su Z, Liang Q, Li H, Liang S, Weng S, He J, Xu X. Identification of a JAK/STAT pathway receptor domeless from Pacific white shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2015; 44:26-32. [PMID: 25659232 DOI: 10.1016/j.fsi.2015.01.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 01/15/2015] [Accepted: 01/25/2015] [Indexed: 06/04/2023]
Abstract
The Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathway was known to participate in dozens of immune responses in organisms. Domeless, first identified in Drosophila melanogaster, is a unique receptor involved in invertebrate JAK/STAT pathway. In this study, a cytokine receptor (LvDOME) was identified in Litopenaeus vannamei. The LvDOME cDNA was 5178bp in length with an Open Reading Frame (ORF) of 4191bp. LvDOME contained two cytokine binding modules (CBMs) and three fibronectin-type-III-like (FNIII) domains, similar to most vertebrate IL-6 receptors. LvDOME was expressed highest in shrimp muscle and could be up-regulated in the late stage of white spot syndrome virus (WSSV) infection. LvDOME could significantly enhance the activity of the WSSV wsv069 gene promoter through acting on the STAT-binding motif, suggesting LvDOME could activate the JAK/STAT pathway. Moreover, knockdown of LvDOME resulted in lower cumulative mortality of shrimps and less WSSV copies, suggesting LvDOME may be hijacked by WSSV to benefit virus replication. To our knowledge, this is the first report on the receptor of JAK/STAT pathway in shrimp.
Collapse
Affiliation(s)
- Muting Yan
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Chaozheng Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Ziqi Su
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Qianhui Liang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Haoyang Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Shizhong Liang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China.
| | - Xiaopeng Xu
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
111
|
Ren W, Zhang Y, Li M, Wu L, Wang G, Baeg GH, You J, Li Z, Lin X. Windpipe controls Drosophila intestinal homeostasis by regulating JAK/STAT pathway via promoting receptor endocytosis and lysosomal degradation. PLoS Genet 2015; 11:e1005180. [PMID: 25923769 PMCID: PMC4414558 DOI: 10.1371/journal.pgen.1005180] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/27/2015] [Indexed: 01/12/2023] Open
Abstract
The adult intestinal homeostasis is tightly controlled by proper proliferation and differentiation of intestinal stem cells. The JAK/STAT (Janus Kinase/Signal Transducer and Activator of Transcription) signaling pathway is essential for the regulation of adult stem cell activities and maintenance of intestinal homeostasis. Currently, it remains largely unknown how JAK/STAT signaling activities are regulated in these processes. Here we have identified windpipe (wdp) as a novel component of the JAK/STAT pathway. We demonstrate that Wdp is positively regulated by JAK/STAT signaling in Drosophila adult intestines. Loss of wdp activity results in the disruption of midgut homeostasis under normal and regenerative conditions. Conversely, ectopic expression of Wdp inhibits JAK/STAT signaling activity. Importantly, we show that Wdp interacts with the receptor Domeless (Dome), and promotes its internalization for subsequent lysosomal degradation. Together, these data led us to propose that Wdp acts as a novel negative feedback regulator of the JAK/STAT pathway in regulating intestinal homeostasis. Effective tissue homeostasis requires a proper balance between the removal of dead cells and production of new cells. Due to environmental challenges, the Drosophila midgut epithelial cells are damaged from time to time and intestinal stem cells (ISC) can accelerate their proliferative rate to replace the lost midgut epithelium. The JAK/STAT pathway plays essential roles in these progresses. Upon damage, Upd ligands produced by dying enterocytes (ECs) activate JAK/STAT signaling in ISCs to promote their proliferation and differentiation. However, after damage how JAK/STAT signaling is switched from a highly active state to a homeostatic state is not yet fully understood. In this study, we identified the leucine rich repeats (LRR) protein Windpipe (Wdp) as a novel negative feedback regulator of JAK/STAT signaling during intestinal development. Wdp expression was induced by high levels of JAK/STAT signaling in intestines. And loss of Wdp leads to midgut homeostasis loss and increased ISC proliferation. Furthermore, we found Wdp in turn negatively regulates JAK/STAT signaling activity through promoting Domeless receptor endocytosis and lysosomal degradation. In this way, high levels of JAK/STAT signaling is switched off by Wdp, which ensure ISCs return to the homeostatic state after tissue damage.
Collapse
Affiliation(s)
- Wenyan Ren
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Min Li
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical College, Wenzhou, China
| | - Longfei Wu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Guolun Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gyeong-Hun Baeg
- Department of Anatomy, National University of Singapore, Singapore
| | - Jia You
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Zhouhua Li
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Capital Normal University, Beijing, China
- * E-mail: (ZL); (XL)
| | - Xinhua Lin
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail: (ZL); (XL)
| |
Collapse
|
112
|
IL-6 as a keystone cytokine in health and disease. Nat Immunol 2015; 16:448-57. [DOI: 10.1038/ni.3153] [Citation(s) in RCA: 1716] [Impact Index Per Article: 171.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/19/2015] [Indexed: 02/07/2023]
|
113
|
Merkling SH, Bronkhorst AW, Kramer JM, Overheul GJ, Schenck A, Van Rij RP. The epigenetic regulator G9a mediates tolerance to RNA virus infection in Drosophila. PLoS Pathog 2015; 11:e1004692. [PMID: 25880195 PMCID: PMC4399909 DOI: 10.1371/journal.ppat.1004692] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/21/2015] [Indexed: 01/01/2023] Open
Abstract
Little is known about the tolerance mechanisms that reduce the negative effects of microbial infection on host fitness. Here, we demonstrate that the histone H3 lysine 9 methyltransferase G9a regulates tolerance to virus infection by shaping the response of the evolutionary conserved Jak-Stat pathway in Drosophila. G9a-deficient mutants are more sensitive to RNA virus infection and succumb faster to infection than wild-type controls, which was associated with strongly increased Jak-Stat dependent responses, but not with major differences in viral load. Genetic experiments indicate that hyperactivated Jak-Stat responses are associated with early lethality in virus-infected flies. Our results identify an essential epigenetic mechanism underlying tolerance to virus infection. Multicellular organisms deploy various strategies to fight microbial infections. Invading pathogens may be eradicated directly by antimicrobial effectors of the immune system. Another strategy consists of increasing the tolerance of the host to infection, for example, by limiting the adverse effects of the immune response. The molecular mechanisms underlying this novel concept remain largely uncharacterized. Here, we demonstrate that the epigenetic regulator G9a mediates tolerance to virus infection in Drosophila. We found that G9a-deficient flies succumb faster than control flies to infection with RNA viruses, but that the viral burden did not significantly differ. Unexpectedly, mutant flies express higher levels of genes that are regulated by the Jak-Stat signaling pathway, which in other studies was found to be important for antiviral defense. Exploiting the genetic toolbox in Drosophila, we demonstrate that Jak-Stat hyperactivation induces early mortality after virus infection. Precise control of immune pathways is essential to ensure efficient immunity, while preventing damage due to excessive immune responses. Our results indicate that G9a, an epigenetic modifier, dampens Jak-Stat responses to prevent immunopathology. Therefore, we propose epigenetic regulation of immunity as a new paradigm for disease tolerance.
Collapse
Affiliation(s)
- Sarah H. Merkling
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alfred W. Bronkhorst
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jamie M. Kramer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gijs J. Overheul
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald P. Van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
114
|
Woodcock K, Kierdorf K, Pouchelon C, Vivancos V, Dionne M, Geissmann F. Macrophage-derived upd3 cytokine causes impaired glucose homeostasis and reduced lifespan in Drosophila fed a lipid-rich diet. Immunity 2015; 42:133-44. [PMID: 25601202 PMCID: PMC4304720 DOI: 10.1016/j.immuni.2014.12.023] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 11/11/2014] [Accepted: 12/22/2014] [Indexed: 12/16/2022]
Abstract
Long-term consumption of fatty foods is associated with obesity, macrophage activation and inflammation, metabolic imbalance, and a reduced lifespan. We took advantage of Drosophila genetics to investigate the role of macrophages and the pathway(s) that govern their response to dietary stress. Flies fed a lipid-rich diet presented with increased fat storage, systemic activation of JAK-STAT signaling, reduced insulin sensitivity, hyperglycemia, and a shorter lifespan. Drosophila macrophages produced the JAK-STAT-activating cytokine upd3, in a scavenger-receptor (crq) and JNK-dependent manner. Genetic depletion of macrophages or macrophage-specific silencing of upd3 decreased JAK-STAT activation and rescued insulin sensitivity and the lifespan of Drosophila, but did not decrease fat storage. NF-κB signaling made no contribution to the phenotype observed. These results identify an evolutionarily conserved “scavenger receptor-JNK-type 1 cytokine” cassette in macrophages, which controls glucose metabolism and reduces lifespan in Drosophila maintained on a lipid-rich diet via activation of the JAK-STAT pathway. Chronic lipid-rich diet results in JAK-STAT activation in Drosophila Chronic JAK-STAT activation reduces lifespan and insulin sensitivity Lipid-rich diet induces JNK pathway-dependent production of upd3 by macrophages Macrophage upd3 controls JAK-STAT activation, survival, and insulin sensitivity
Collapse
Affiliation(s)
- Katie J. Woodcock
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), Division of Immunity, Infection, and Inflammatory diseases, King’s College London, London SE1 1UL, UK
| | - Katrin Kierdorf
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), Division of Immunity, Infection, and Inflammatory diseases, King’s College London, London SE1 1UL, UK
| | - Clara A. Pouchelon
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), Division of Immunity, Infection, and Inflammatory diseases, King’s College London, London SE1 1UL, UK
| | - Valérie Vivancos
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), Division of Immunity, Infection, and Inflammatory diseases, King’s College London, London SE1 1UL, UK
| | - Marc S. Dionne
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), Division of Immunity, Infection, and Inflammatory diseases, King’s College London, London SE1 1UL, UK
| | - Frédéric Geissmann
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), Division of Immunity, Infection, and Inflammatory diseases, King’s College London, London SE1 1UL, UK
- Corresponding author
| |
Collapse
|
115
|
Stokes BA, Yadav S, Shokal U, Smith LC, Eleftherianos I. Bacterial and fungal pattern recognition receptors in homologous innate signaling pathways of insects and mammals. Front Microbiol 2015; 6:19. [PMID: 25674081 PMCID: PMC4309185 DOI: 10.3389/fmicb.2015.00019] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/07/2015] [Indexed: 12/12/2022] Open
Abstract
In response to bacterial and fungal infections in insects and mammals, distinct families of innate immune pattern recognition receptors (PRRs) initiate highly complex intracellular signaling cascades. Those cascades induce a variety of immune functions that restrain the spread of microbes in the host. Insect and mammalian innate immune receptors include molecules that recognize conserved microbial molecular patterns. Innate immune recognition leads to the recruitment of adaptor molecules forming multi-protein complexes that include kinases, transcription factors, and other regulatory molecules. Innate immune signaling cascades induce the expression of genes encoding antimicrobial peptides and other key factors that mount and regulate the immune response against microbial challenge. In this review, we summarize our current understanding of the bacterial and fungal PRRs for homologous innate signaling pathways of insects and mammals in an effort to provide a framework for future studies.
Collapse
Affiliation(s)
- Bethany A Stokes
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University Washington, DC, USA
| | - Shruti Yadav
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University Washington, DC, USA
| | - Upasana Shokal
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University Washington, DC, USA
| | - L C Smith
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University Washington, DC, USA
| | - Ioannis Eleftherianos
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University Washington, DC, USA
| |
Collapse
|
116
|
|
117
|
Doherty J, Sheehan AE, Bradshaw R, Fox AN, Lu TY, Freeman MR. PI3K signaling and Stat92E converge to modulate glial responsiveness to axonal injury. PLoS Biol 2014; 12:e1001985. [PMID: 25369313 PMCID: PMC4219656 DOI: 10.1371/journal.pbio.1001985] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 09/22/2014] [Indexed: 11/18/2022] Open
Abstract
Activation of glial cells following axon injury is mediated by a positive feedback loop downstream of the glial phagocytic receptor Draper, allowing the strength of the response to match the severity of injury. Glial cells are exquisitely sensitive to neuronal injury but mechanisms by which glia establish competence to respond to injury, continuously gauge neuronal health, and rapidly activate reactive responses remain poorly defined. Here, we show glial PI3K signaling in the uninjured brain regulates baseline levels of Draper, a receptor essential for Drosophila glia to sense and respond to axonal injury. After injury, Draper levels are up-regulated through a Stat92E-modulated, injury-responsive enhancer element within the draper gene. Surprisingly, canonical JAK/STAT signaling does not regulate draper expression. Rather, we find injury-induced draper activation is downstream of the Draper/Src42a/Shark/Rac1 engulfment signaling pathway. Thus, PI3K signaling and Stat92E are critical in vivo regulators of glial responsiveness to axonal injury. We provide evidence for a positive auto-regulatory mechanism whereby signaling through the injury-responsive Draper receptor leads to Stat92E-dependent, transcriptional activation of the draper gene. We propose that Drosophila glia use this auto-regulatory loop as a mechanism to adjust their reactive state following injury. Acute injuries of the central nervous system (CNS) trigger a robust reaction from glial cells—a non-neuronal population of cells that regulate and support neural development and physiology. Although this process occurs after all types of CNS trauma in mammals, how it is activated and its precise role in recovery remain poorly understood. Using the fruit fly Drosophila melanogaster as a model, we previously identified a cell surface receptor called Draper, which is required for the activation of glia after local axon injury (“axotomy”) and for the removal of degenerating axonal debris by phagocytosis. Here, we show that regulation of Draper protein levels and glial activation through the Draper signaling pathway are mediated by the well-conserved PI3K and signal transducer and activator of transcription (STAT) signaling cascades. We find that STAT transcriptional activity is activated in glia in response to axotomy, and identify an injury-responsive regulatory element within the draper gene that appears to be directly modulated by STAT. Interestingly, the intensity of STAT activity in glial cells after axotomy correlates tightly with the number of local severed axons, indicating that Drosophila glia are able to fine-tune their response to neuronal injury according to its severity. In summary, we propose that the initial phagocytic competence of glia is regulated by setting Draper baseline levels (via PI3K), whereas injury-activated glial phagocytic activity is modulated through a positive feedback loop that requires STAT-dependent activation of draper. We speculate that the level of activation of this cascade is determined by glial cell recognition of Draper ligands present on degenerating axon material, thereby matching the levels of glial reactivity to the amount of injured axonal material.
Collapse
Affiliation(s)
- Johnna Doherty
- Department of Neurobiology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Amy E. Sheehan
- Department of Neurobiology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Rachel Bradshaw
- Department of Neurobiology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - A. Nicole Fox
- Department of Neurobiology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Tsai-Yi Lu
- Department of Neurobiology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Marc R. Freeman
- Department of Neurobiology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
118
|
Basement membrane and cell integrity of self-tissues in maintaining Drosophila immunological tolerance. PLoS Genet 2014; 10:e1004683. [PMID: 25329560 PMCID: PMC4199487 DOI: 10.1371/journal.pgen.1004683] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 08/18/2014] [Indexed: 12/20/2022] Open
Abstract
The mechanism underlying immune system recognition of different types of pathogens has been extensively studied over the past few decades; however, the mechanism by which healthy self-tissue evades an attack by its own immune system is less well-understood. Here, we established an autoimmune model of melanotic mass formation in Drosophila by genetically disrupting the basement membrane. We found that the basement membrane endows otherwise susceptible target tissues with self-tolerance that prevents autoimmunity, and further demonstrated that laminin is a key component for both structural maintenance and the self-tolerance checkpoint function of the basement membrane. Moreover, we found that cell integrity, as determined by cell-cell interaction and apicobasal polarity, functions as a second discrete checkpoint. Target tissues became vulnerable to blood cell encapsulation and subsequent melanization only after loss of both the basement membrane and cell integrity.
Collapse
|
119
|
Pleiotropy of the Drosophila JAK pathway cytokine Unpaired 3 in development and aging. Dev Biol 2014; 395:218-31. [PMID: 25245869 DOI: 10.1016/j.ydbio.2014.09.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 09/10/2014] [Accepted: 09/12/2014] [Indexed: 12/22/2022]
Abstract
The Janus kinase (JAK) pathway is an essential, highly re-utilized developmental signaling cascade found in most metazoans. In vertebrates, the JAK intracellular cascade mediates signaling by dozens of cytokines and growth factors. In Drosophila, the Unpaired (Upd) family, encoded by three tandemly duplicated genes, is the only class of ligands associated with JAK stimulation. Unpaired has a central role in activation of JAK for most pathway functions, while Unpaired 2 regulates body size through insulin signaling. We show here that the third member of the family, unpaired 3 (upd3), overlaps upd in expression in some tissues and is essential for a subset of JAK-mediated developmental functions. First, consistent with the known requirements of JAK signaling in gametogenesis, we find that mutants of upd3 show an age-dependent impairment of fertility in both sexes. In oogenesis, graded JAK activity stimulated by Upd specifies the fates of the somatic follicle cells. As upd3 mutant females age, defects arise that can be attributed to perturbations of the terminal follicle cells, which require the highest levels of JAK activation. Therefore, in oogenesis, the activities of Upd and Upd3 both appear to quantitatively contribute to specification of those follicle cell fates. Furthermore, the sensitization of upd3 mutants to age-related decline in fertility can be used to investigate reproductive senescence. Second, loss of Upd3 during imaginal development results in defects of adult structures, including reduced eye size and abnormal wing and haltere posture. The outstretched wing and small eye phenotypes resemble classical alleles referred to as outstretched (os) mutations that have been previously ascribed to upd. However, we show that os alleles affect expression of both upd and upd3 and map to untranscribed regions, suggesting that they disrupt regulatory elements shared by both genes. Thus the upd region serves as a genetically tractable model for coordinate regulation of tandemly duplicated gene families that are commonly found in higher eukaryotes.
Collapse
|
120
|
Src kinase function controls progenitor cell pools during regeneration and tumor onset in the Drosophila intestine. Oncogene 2014; 34:2371-84. [DOI: 10.1038/onc.2014.163] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 03/28/2014] [Accepted: 03/29/2014] [Indexed: 12/11/2022]
|
121
|
Chen Q, Giedt M, Tang L, Harrison DA. Tools and methods for studying the Drosophila JAK/STAT pathway. Methods 2014; 68:160-72. [DOI: 10.1016/j.ymeth.2014.03.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 12/29/2022] Open
|
122
|
Myllymäki H, Rämet M. JAK/STAT Pathway inDrosophilaImmunity. Scand J Immunol 2014; 79:377-85. [DOI: 10.1111/sji.12170] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/21/2014] [Indexed: 12/24/2022]
Affiliation(s)
- H. Myllymäki
- Laboratory of Experimental Immunology; BioMediTech; University of Tampere; Tampere Finland
| | - M. Rämet
- Laboratory of Experimental Immunology; BioMediTech; University of Tampere; Tampere Finland
- Department of Pediatrics; Tampere University Hospital; Tampere Finland
- Department of Pediatrics; Medical Research Center Oulu; University of Oulu; Oulu Finland
- Department of Children and Adolescents; Oulu University Hospital; Oulu Finland
| |
Collapse
|
123
|
A comparison of midline and tracheal gene regulation during Drosophila development. PLoS One 2014; 9:e85518. [PMID: 24465586 PMCID: PMC3896416 DOI: 10.1371/journal.pone.0085518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 11/28/2013] [Indexed: 11/19/2022] Open
Abstract
Within the Drosophila embryo, two related bHLH-PAS proteins, Single-minded and Trachealess, control development of the central nervous system midline and the trachea, respectively. These two proteins are bHLH-PAS transcription factors and independently form heterodimers with another bHLH-PAS protein, Tango. During early embryogenesis, expression of Single-minded is restricted to the midline and Trachealess to the trachea and salivary glands, whereas Tango is ubiquitously expressed. Both Single-minded/Tango and Trachealess/Tango heterodimers bind to the same DNA sequence, called the CNS midline element (CME) within cis-regulatory sequences of downstream target genes. While Single-minded/Tango and Trachealess/Tango activate some of the same genes in their respective tissues during embryogenesis, they also activate a number of different genes restricted to only certain tissues. The goal of this research is to understand how these two related heterodimers bind different enhancers to activate different genes, thereby regulating the development of functionally diverse tissues. Existing data indicates that Single-minded and Trachealess may bind to different co-factors restricted to various tissues, causing them to interact with the CME only within certain sequence contexts. This would lead to the activation of different target genes in different cell types. To understand how the context surrounding the CME is recognized by different bHLH-PAS heterodimers and their co-factors, we identified and analyzed novel enhancers that drive midline and/or tracheal expression and compared them to previously characterized enhancers. In addition, we tested expression of synthetic reporter genes containing the CME flanked by different sequences. Taken together, these experiments identify elements overrepresented within midline and tracheal enhancers and suggest that sequences immediately surrounding a CME help dictate whether a gene is expressed in the midline or trachea.
Collapse
|
124
|
Xu J, Cherry S. Viruses and antiviral immunity in Drosophila. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:67-84. [PMID: 23680639 PMCID: PMC3826445 DOI: 10.1016/j.dci.2013.05.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/26/2013] [Accepted: 05/02/2013] [Indexed: 05/10/2023]
Abstract
Viral pathogens present many challenges to organisms, driving the evolution of a myriad of antiviral strategies to combat infections. A wide variety of viruses infect invertebrates, including both natural pathogens that are insect-restricted, and viruses that are transmitted to vertebrates. Studies using the powerful tools in the model organism Drosophila have expanded our understanding of antiviral defenses against diverse viruses. In this review, we will cover three major areas. First, we will describe the tools used to study viruses in Drosophila. Second, we will survey the major viruses that have been studied in Drosophila. And lastly, we will discuss the well-characterized mechanisms that are active against these diverse pathogens, focusing on non-RNAi mediated antiviral mechanisms. Antiviral RNAi is discussed in another paper in this issue.
Collapse
Affiliation(s)
- Jie Xu
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
125
|
Morelli E, Ginefra P, Mastrodonato V, Beznoussenko GV, Rusten TE, Bilder D, Stenmark H, Mironov AA, Vaccari T. Multiple functions of the SNARE protein Snap29 in autophagy, endocytic, and exocytic trafficking during epithelial formation in Drosophila. Autophagy 2014; 10:2251-68. [PMID: 25551675 PMCID: PMC4502674 DOI: 10.4161/15548627.2014.981913] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/27/2014] [Accepted: 07/14/2014] [Indexed: 11/19/2022] Open
Abstract
How autophagic degradation is linked to endosomal trafficking routes is little known. Here we screened a collection of uncharacterized Drosophila mutants affecting membrane transport to identify new genes that also have a role in autophagy. We isolated a loss of function mutant in Snap29 (Synaptosomal-associated protein 29 kDa), the gene encoding the Drosophila homolog of the human protein SNAP29 and have characterized its function in vivo. Snap29 contains 2 soluble NSF attachment protein receptor (SNARE) domains and a asparagine-proline-phenylalanine (NPF motif) at its N terminus and rescue experiments indicate that both SNARE domains are required for function, whereas the NPF motif is in part dispensable. We find that Snap29 interacts with SNARE proteins, localizes to multiple trafficking organelles, and is required for protein trafficking and for proper Golgi apparatus morphology. Developing tissue lacking Snap29 displays distinctive epithelial architecture defects and accumulates large amounts of autophagosomes, highlighting a major role of Snap29 in autophagy and secretion. Mutants for autophagy genes do not display epithelial architecture or secretion defects, suggesting that the these alterations of the Snap29 mutant are unlikely to be caused by the impairment of autophagy. In contrast, we find evidence of elevated levels of hop-Stat92E (hopscotch-signal transducer and activator of transcription protein at 92E) ligand, receptor, and associated signaling, which might underlie the epithelial defects. In summary, our findings support a role of Snap29 at key steps of membrane trafficking, and predict that signaling defects may contribute to the pathogenesis of cerebral dysgenesis, neuropathy, ichthyosis, and palmoplantar keratoderma (CEDNIK), a human congenital syndrome due to loss of Snap29.
Collapse
Key Words
- Atg, autophagy-related
- CEDNIK, cerebral dysgenesis, neuropathy, ichthyosis, and palmoplantar keratoderma
- CFP, cyan fluorescent protein
- E(spl)mβ-HLH, enhancer of split mβ, helix-loop-helix
- EM, electron microscopy
- ESCRT, endosomal sorting complex required for transport
- FE, follicular epithelium
- GFP, green fluorescent protein
- MENE, mutant eye no eclosion
- MVB, multivesicular body
- N, Notch
- NECD, N extracellular domain
- NPF, asparagine-proline-phenylalanine
- Notch
- SNARE
- SNARE, soluble NSF attachment protein receptor
- Snap29
- Snap29, synaptosomal-associated protein 29 kDa
- Socs36E, suppressor of cytokine signaling at 36E
- Syb, Synaptobrevin
- Syx, syntaxin
- V-ATPase, vacuolar H+-ATPase
- Vamp, vesicle-associated membrane protein
- Vps25, vacuolar protein sorting 25
- WT, wild type
- autophagy
- dome
- dome, domeless
- histone H3, His3
- hop-Stat92E, hopscotch-signal transducer and activator of transcription protein at 92E
- os, outstretched
- ref(2)P, refractory to sigma P
- trafficking
- usnp
Collapse
Affiliation(s)
- Elena Morelli
- IFOM - The FIRC Institute of Molecular Oncology; Milan, Italy
| | | | | | | | - Tor Erik Rusten
- Centre for Cancer Biomedicine; Oslo University Hospital; Oslo, Norway
| | - David Bilder
- Department of Molecular and Cell Biology; University of California; Berkeley, CA USA
| | - Harald Stenmark
- Centre for Cancer Biomedicine; Oslo University Hospital; Oslo, Norway
| | | | - Thomas Vaccari
- IFOM - The FIRC Institute of Molecular Oncology; Milan, Italy
| |
Collapse
|
126
|
The role of innate immunity in conditioning mosquito susceptibility to West Nile virus. Viruses 2013; 5:3142-70. [PMID: 24351797 PMCID: PMC3967165 DOI: 10.3390/v5123142] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/13/2013] [Accepted: 12/09/2013] [Indexed: 01/02/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) represent an emerging threat to human and livestock health globally. In particular, those transmitted by mosquitoes present the greatest challenges to disease control efforts. An understanding of the molecular basis for mosquito innate immunity to arbovirus infection is therefore critical to investigations regarding arbovirus evolution, virus-vector ecology, and mosquito vector competence. In this review, we discuss the current state of understanding regarding mosquito innate immunity to West Nile virus. We draw from the literature with respect to other virus-vector pairings to attempt to draw inferences to gaps in our knowledge about West Nile virus and relevant vectors.
Collapse
|
127
|
Lebedeva LA, Shaposhnikov AV, Panov VV, Shidlovskii YV. Biological functions of Jak/Stat signaling pathway in Drosophila. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413080103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
128
|
Kingsolver MB, Huang Z, Hardy RW. Insect antiviral innate immunity: pathways, effectors, and connections. J Mol Biol 2013; 425:4921-36. [PMID: 24120681 DOI: 10.1016/j.jmb.2013.10.006] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/01/2013] [Accepted: 10/02/2013] [Indexed: 11/28/2022]
Abstract
Insects are infected by a wide array of viruses some of which are insect restricted and pathogenic, and some of which are transmitted by biting insects to vertebrates. The medical and economic importance of these viruses heightens the need to understand the interaction between the infecting pathogen and the insect immune system in order to develop transmission interventions. The interaction of the virus with the insect host innate immune system plays a critical role in the outcome of infection. The major mechanism of antiviral defense is the small, interfering RNA pathway that responds through the detection of virus-derived double-stranded RNA to suppress virus replication. However, other innate antimicrobial pathways such as Imd, Toll, and Jak-STAT and the autophagy pathway have also been shown to play important roles in antiviral immunity. In this review, we provide an overview of the current understanding of the main insect antiviral pathways and examine recent findings that further our understanding of the roles of these pathways in facilitating a systemic and specific response to infecting viruses.
Collapse
|
129
|
Wong JJL, Li S, Lim EKH, Wang Y, Wang C, Zhang H, Kirilly D, Wu C, Liou YC, Wang H, Yu F. A Cullin1-based SCF E3 ubiquitin ligase targets the InR/PI3K/TOR pathway to regulate neuronal pruning. PLoS Biol 2013; 11:e1001657. [PMID: 24068890 PMCID: PMC3775723 DOI: 10.1371/journal.pbio.1001657] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 08/08/2013] [Indexed: 11/19/2022] Open
Abstract
Pruning that selectively eliminates unnecessary axons/dendrites is crucial for sculpting the nervous system during development. During Drosophila metamorphosis, dendrite arborization neurons, ddaCs, selectively prune their larval dendrites in response to the steroid hormone ecdysone, whereas mushroom body γ neurons specifically eliminate their axon branches within dorsal and medial lobes. However, it is unknown which E3 ligase directs these two modes of pruning. Here, we identified a conserved SCF E3 ubiquitin ligase that plays a critical role in pruning of both ddaC dendrites and mushroom body γ axons. The SCF E3 ligase consists of four core components Cullin1/Roc1a/SkpA/Slimb and promotes ddaC dendrite pruning downstream of EcR-B1 and Sox14, but independently of Mical. Moreover, we demonstrate that the Cullin1-based E3 ligase facilitates ddaC dendrite pruning primarily through inactivation of the InR/PI3K/TOR pathway. We show that the F-box protein Slimb forms a complex with Akt, an activator of the InR/PI3K/TOR pathway, and promotes Akt ubiquitination. Activation of the InR/PI3K/TOR pathway is sufficient to inhibit ddaC dendrite pruning. Thus, our findings provide a novel link between the E3 ligase and the InR/PI3K/TOR pathway during dendrite pruning.
Collapse
Affiliation(s)
- Jack Jing Lin Wong
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore
- Graduate School for Integrated Sciences and Engineering, Centre for Life Sciences, National University of Singapore (NUS), Singapore
| | - Song Li
- Graduate School for Integrated Sciences and Engineering, Centre for Life Sciences, National University of Singapore (NUS), Singapore
- Neuroscience and Behavioral Disorder Program, Duke–NUS Graduate Medical School Singapore, Singapore
| | - Edwin Kok Hao Lim
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore
| | - Yan Wang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore
| | - Cheng Wang
- Neuroscience and Behavioral Disorder Program, Duke–NUS Graduate Medical School Singapore, Singapore
| | - Heng Zhang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore
| | - Daniel Kirilly
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore
| | - Chunlai Wu
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Yih-Cherng Liou
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore
- Graduate School for Integrated Sciences and Engineering, Centre for Life Sciences, National University of Singapore (NUS), Singapore
| | - Hongyan Wang
- Graduate School for Integrated Sciences and Engineering, Centre for Life Sciences, National University of Singapore (NUS), Singapore
- Neuroscience and Behavioral Disorder Program, Duke–NUS Graduate Medical School Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Fengwei Yu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore
- Graduate School for Integrated Sciences and Engineering, Centre for Life Sciences, National University of Singapore (NUS), Singapore
- Neuroscience and Behavioral Disorder Program, Duke–NUS Graduate Medical School Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- * E-mail:
| |
Collapse
|
130
|
Wells RE, Barry JD, Warrington SJ, Cuhlmann S, Evans P, Huber W, Strutt D, Zeidler MP. Control of tissue morphology by Fasciclin III-mediated intercellular adhesion. Development 2013; 140:3858-68. [PMID: 23946443 PMCID: PMC3915571 DOI: 10.1242/dev.096214] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Morphogenesis is dependent on the orchestration of multiple developmental processes to generate mature functional organs. However, the signalling pathways that coordinate morphogenesis and the mechanisms that translate these signals into tissue shape changes are not well understood. Here, we demonstrate that changes in intercellular adhesion mediated by the transmembrane protein Fasciclin III (FasIII) represent a key mediator of morphogenesis. Using the embryonic Drosophila hindgut as an in vivo model for organogenesis, we show that the tightening of hindgut curvature that normally occurs between embryonic stage 12 and 15 to generate the characteristic shepherd’s crook shape is dependent on localised JAK/STAT pathway activation. This localised pathway activity drives the expression of FasIII leading to its subcellular lateralisation at a stage before formation of septate junctions. Additionally, we show that JAK/STAT- and FasIII-dependent morphogenesis also regulates folds within the third instar wing imaginal disc. We show that FasIII forms homophilic intercellular interactions that promote intercellular adhesion in vivo and in cultured cells. To explore these findings, we have developed a mathematical model of the developing hindgut, based on the differential interfacial tension hypothesis (DITH) linking intercellular adhesion and localised surface tension. Our model suggests that increased intercellular adhesion provided by FasIII can be sufficient to drive the tightening of tube curvature observed. Taken together, these results identify a conserved molecular mechanism that directly links JAK/STAT pathway signalling to intercellular adhesion and that sculpts both tubular and planar epithelial shape.
Collapse
Affiliation(s)
- Richard E Wells
- MRC Centre for Developmental and Biomedical Genetics, The University of Sheffield, Firth Court, Sheffield S10 2TN, UK
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Hombría JCG, Sotillos S. JAK-STAT pathway in Drosophila morphogenesis: From organ selector to cell behavior regulator. JAKSTAT 2013; 2:e26089. [PMID: 24069568 PMCID: PMC3772120 DOI: 10.4161/jkst.26089] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 11/19/2022] Open
Abstract
One of the main contributions of Drosophila to the JAK-STAT field is the study of morphogenesis. JAK-STAT signaling controls the formation of many different structures through surprisingly different morphogenetic behaviors that include induction of cell rearrangements, invagination, folding of tissues, modulation of cell shape, and migration. This variability may be explained by the many transcription factors and signaling molecules STAT regulates at early stages of development. But is STAT just acting as an upstream inducer of morphogenesis or does it have a more direct role in controlling cell behaviors? Here we review what is known about how the canonical phosphorylation of STAT contributes to shaping the embryonic and imaginal structures.
Collapse
|
132
|
Zeidler MP, Bausek N. The Drosophila JAK-STAT pathway. JAKSTAT 2013; 2:e25353. [PMID: 24069564 PMCID: PMC3772116 DOI: 10.4161/jkst.25353] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 02/03/2023] Open
Abstract
The conservation of signaling cascades between humans and Drosophila, over more than 500 million years of evolutionary time, means that the genetic tractability of the fly can be used to its full advantage to understand the functional requirements for JAK-STAT pathway signaling across species. Here we review the background to how the pathway was first identified and the first characterization of JAK-STAT pathway phenotypes in the Drosophila system, highlighting the molecular, functional, and disease-related conservation of the pathway.
Collapse
Affiliation(s)
- Martin P Zeidler
- MRC Centre for Development and Biomedical Genetics and the Department of Biomedical Science; The University of Sheffield; Sheffield, UK
| | | |
Collapse
|
133
|
Stec W, Vidal O, Zeidler MP. Drosophila SOCS36E negatively regulates JAK/STAT pathway signaling via two separable mechanisms. Mol Biol Cell 2013; 24:3000-9. [PMID: 23885117 PMCID: PMC3771960 DOI: 10.1091/mbc.e13-05-0275] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The low-complexity Drosophila genome includes previously uncharacterized SOCS36E, an ancestral SOCS4/5 homologue. It is shown that SOCS36E suppresses JAK/STAT signaling through two separate mechanisms: via receptor stability, mediated by the conserved SOCS-box domain, and via suppression of receptor phosphorylation that requires the N-terminal domain. Conserved from humans to Drosophila, the Janus kinase/signal transducer and activators of transcription (JAK/STAT) signaling cascade is essential for multiple developmental and homeostatic processes, with regulatory molecules controlling pathway activity also highly conserved. We characterize the Drosophila JAK/STAT pathway regulator SOCS36E and show that it functions via two independent mechanisms. First, we show that Drosophila Elongin B/C and Cullin-5 act via the SOCS-box of SOCS36E to reduce pathway activity specifically in response to ligand stimulation—a process that involves endocytic trafficking and lysosomal degradation of the Domeless (Dome) receptor. Second, SOCS36E also suppresses both stimulated and basal pathway activity via an Elongin/Cullin-independent mechanism that is mediated by the N-terminus of SOCS36E, which is required for the physical interaction of SOCS36E with Dome. Although some human SOCS proteins contain N-terminal kinase-inhibitory domains, we do not identify such a region in SOCS36E and propose a model wherein the N-terminal of SOCS36E blocks access to tyrosine residues in Dome. Our biochemical analysis of a SOCS-family regulator from a lower organism highlights the fundamental conserved roles played by regulatory mechanisms in signal transduction.
Collapse
Affiliation(s)
- Wojciech Stec
- MRC Centre for Development and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | | | |
Collapse
|
134
|
Kucherenko MM, Shcherbata HR. Steroids as external temporal codes act via microRNAs and cooperate with cytokines in differential neurogenesis. Fly (Austin) 2013; 7:173-83. [PMID: 23839338 PMCID: PMC4049850 DOI: 10.4161/fly.25241] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The generation of neuronal cell diversity is controlled by interdependent mechanisms, including cell intrinsic programs and environmental cues. During development, the astonishing variety of neurons is originated according to a precise timetable that is managed by a complex network of genes specifying individual types of neurons. Different neurons express specific sets of transcription factors, and they can be recognized by morphological characteristics and spatial localization, but, most importantly, they connect to each other and form functional units in a stereotyped fashion. This connectivity depends, mostly, on selective cell adhesion that is strictly regulated. While intrinsic factors specifying neuronal temporal identity have been extensively studied, an extrinsic temporal factor controlling neuronal temporal identity switch has not been shown. Our data demonstrate that pulses of steroid hormone act as a temporal cue to fine-tune neuronal cell differentiation. Here we also provide evidence that extrinsic JAK/STAT cytokine signaling acts as a spatial code in the process. Particularly, in Drosophila mushroom bodies, neuronal identity transition is controlled by steroid-dependent microRNAs that regulate spatially distributed cytokine-dependent signaling factors that in turn modulate cell adhesion. A new era of neuronal plasticity assessment via managing external temporal cues such as hormones and cytokines that specify individual types of neurons might open new possibilities for brain regenerative therapeutics.
Collapse
Affiliation(s)
- Mariya M Kucherenko
- Max Planck Research Group of Gene Expression and Signaling; Max Planck Institute for Biophysical Chemistry; Goettingen, Germany
| | | |
Collapse
|
135
|
Zoranovic T, Grmai L, Bach EA. Regulation of proliferation, cell competition, and cellular growth by the Drosophila JAK-STAT pathway. JAKSTAT 2013; 2:e25408. [PMID: 24069565 PMCID: PMC3772117 DOI: 10.4161/jkst.25408] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/06/2013] [Accepted: 06/14/2013] [Indexed: 01/08/2023] Open
Abstract
The JAK-STAT pathway is a key regulator of tissue size in Drosophila melanogaster. Here we provide an overview of its roles in processes that regulate the size of Drosophila imaginal discs, epithelia of diploid cells that proliferate and acquire specific fates in the larvae and that become functional in the adult. Drosophila has a single JAK and a single STAT gene, which has facilitated genetic dissection of this pathway. Moreover, the sophisticated genetic tools available in flies for clonal growth assays have made Drosophila an ideal organism in which to dissect the multiple roles of the JAK-STAT pathway in growth control. Studies in flies have revealed JAK-STAT pathway activity as a central node for diverse signals that control proliferation and mass accumulation. In addition, recent work has establish a new role for the pathway in cell competition, a process thought to be akin to the early stages of transformation in which more robust cells kill and take the place of less robust ones.
Collapse
Affiliation(s)
- Tamara Zoranovic
- Department of Biochemistry and Molecular Pharmacology; New York University School of Medicine; New York, NY USA
| | | | | |
Collapse
|
136
|
Shaposhnikov AV, Komar’kov IF, Lebedeva LA, Shidlovskii YV. Molecular components of JAK/STAT signaling pathway and its interaction with transcription machinery. Mol Biol 2013. [DOI: 10.1134/s0026893313030126] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
137
|
Localised JAK/STAT pathway activation is required for Drosophila wing hinge development. PLoS One 2013; 8:e65076. [PMID: 23741461 PMCID: PMC3669132 DOI: 10.1371/journal.pone.0065076] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/22/2013] [Indexed: 01/02/2023] Open
Abstract
Extensive morphogenetic remodelling takes place during metamorphosis from a larval to an adult insect body plan. These changes are particularly intricate in the generation of the dipteran wing hinge, a complex structure that is derived from an apparently simple region of the wing imaginal disc. Using the characterisation of original outstretched alleles of the unpaired locus as a starting point, we demonstrate the role of JAK/STAT pathway signalling in the process of wing hinge development. We show that differences in JAK/STAT signalling within the proximal most of three lateral folds present in the wing imaginal disc is required for fold morphology and the subsequent differentiation of the first and second auxiliary sclerites as well as the posterior notal wing process. Changes in these domains are consistent with the established fate map of the wing disc. We show that outstretched wing posture phenotypes arise from the loss of a region of Unpaired expression in the proximal wing fold and demonstrate that this results in a decrease in JAK/STAT pathway activity. Finally we show that reduction of JAK/STAT pathway activity within the proximal wing fold is sufficient to phenocopy the outstretched phenotype. Taken together, we suggest that localised Unpaired expression and hence JAK/STAT pathway activity, is required for the morphogenesis of the adult wing hinge, providing new insights into the link between signal transduction pathways, patterning and development.
Collapse
|
138
|
Oldefest M, Nowinski J, Hung CW, Neelsen D, Trad A, Tholey A, Grötzinger J, Lorenzen I. Upd3--an ancestor of the four-helix bundle cytokines. Biochem Biophys Res Commun 2013; 436:66-72. [PMID: 23707937 DOI: 10.1016/j.bbrc.2013.04.107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 04/29/2013] [Indexed: 11/19/2022]
Abstract
The unpaired-like protein 3 (Upd3) is one of the three cytokines of Drosophila melanogaster supposed to activate the JAK/STAT signaling pathway (Janus tyrosine kinases/signal transducer and activator of transcription). This activation occurs via the type-I cytokine receptor domeless, an orthologue of gp130, the common signal transducer of all four-helix bundle interleukin-6 (IL-6) type cytokines. Both receptors are known to exist as preformed dimers in the plasma membrane and initiate the acute-phase response. These facts indicate an evolutionary relation between vertebrate IL-6 and the Drosophila protein Upd3. Here we presented data which strengthen this notion. Upd3 was recombinantly expressed, a renaturation and purification protocol was established which allows to obtain high amounts of biological active protein. This protein is, like human IL-6, a monomeric-α helical cytokine, implicating that Upd3 is an "ancestor" of the four-helix bundle cytokines.
Collapse
Affiliation(s)
- Mirja Oldefest
- Biochemisches Institut der Christian-Albrechts-Universität Kiel, Olshausenstr. 40, 24118 Kiel, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Sotillos S, Krahn M, Espinosa-Vázquez JM, Hombría JCG. Src kinases mediate the interaction of the apical determinant Bazooka/PAR3 with STAT92E and increase signalling efficiency in Drosophila ectodermal cells. Development 2013; 140:1507-16. [DOI: 10.1242/dev.092320] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Intercellular communication depends on the correct organization of the signal transduction complexes. In many signalling pathways, the mechanisms controlling the overall cell polarity also localize components of these pathways to different domains of the plasma membrane. In the Drosophila ectoderm, the JAK/STAT pathway components are highly polarized with apical localization of the receptor, the associated kinase and the STAT92E protein itself. The apical localization of STAT92E is independent of the receptor complex and is due to its direct association with the apical determining protein Bazooka (Baz). Here, we find that Baz-STAT92E interaction depends on the presence of the Drosophila Src kinases. In the absence of Src, STAT92E cannot bind to Baz in cells or in whole embryos, and this correlates with an impairment of JAK/STAT signalling function. We believe that the requirement of Src proteins for STAT92E apical localization is mediated through Baz, as we can co-precipitate Src with Baz but not with STAT92E. This is the first time that a functional link between cell polarity, the JAK/STAT signalling pathway and the Src kinases has been established in a whole organism.
Collapse
Affiliation(s)
- Sol Sotillos
- Centro Andaluz de Biología del Desarrollo, CSIC/JA/UPO, Ctra de Utrera Km1, 41013 Sevilla, Spain
| | - Michael Krahn
- Stem Cell Biology, Department of Anatomy and Cell Biology, University of Goettingen, Justus-von-Liebig-Weg 11, 37 077 Goettingen, Germany
| | | | | |
Collapse
|
140
|
Hatini V, Kula-Eversole E, Nusinow D, Del Signore SJ. Essential roles for stat92E in expanding and patterning the proximodistal axis of the Drosophila wing imaginal disc. Dev Biol 2013; 378:38-50. [PMID: 23499656 DOI: 10.1016/j.ydbio.2013.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/17/2013] [Accepted: 02/20/2013] [Indexed: 12/26/2022]
Abstract
The Drosophila wing imaginal disc is subdivided along the proximodistal axis into the distal pouch, the hinge, the surrounding pleura, and the notum. While the genetic pathways that specify the identity of each of these domains have been well studied, the mechanisms that coordinate the relative expansion of these domains are not well understood. Here we investigated the role of the stat92E signal transducer and activator of transcription in wing proximodistal development. We find that stat92E is active ubiquitously in early wing imaginal discs, where it acts to inhibit the induction of ectopic wing fields. Subsequently, stat92E activity is down regulated in the notum and distal pouch. These dynamics coincide with and contribute to the proportional subdivision and expansion of these primordia. As development proceeds, stat92E activity becomes restricted to the hinge, where it promotes normal expansion of the hinge, and restricts expansion of the notum. We also find that stat92E is required autonomously to specify dorsal pleura identity and inhibit notum identity to properly subdivide the body wall. Our data suggest that stat92E activity is regulated along the proximodistal axis to pattern this axis and control the relative expansion of the pouch, hinge, and notum.
Collapse
Affiliation(s)
- Victor Hatini
- Tufts University School of Medicine, Department of Anatomy & Cellular Biology, Program in Cell, Molecular and Developmental Biology, 150 Harrison Avenue, Boston, MA 02111, USA.
| | | | | | | |
Collapse
|
141
|
Hayashi Y, Sexton TR, Dejima K, Perry DW, Takemura M, Kobayashi S, Nakato H, Harrison DA. Glypicans regulate JAK/STAT signaling and distribution of the Unpaired morphogen. Development 2013; 139:4162-71. [PMID: 23093424 DOI: 10.1242/dev.078055] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In Drosophila, ligands of the Unpaired (Upd) family activate the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway. The JAK/STAT pathway controls many developmental events, including multiple functions in the ovary. These include an early role in the germarium for specification of stalk cells and a later role in the vitellarium to pattern the follicular epithelium surrounding each cyst. In this latter role, graded JAK/STAT activation specifies three distinct anterior follicular cell fates, suggesting that Upd is a morphogen in this system. Consistent with the JAK/STAT activation pattern in the vitellarium, Upd forms a concentration gradient on the apical surface of the follicular epithelium with a peak at its source, the polar cells. Like many morphogens, signaling and distribution of Upd are regulated by the heparan sulfate proteoglycans (HSPGs) Dally and Dally-like. Mutations in these glypican genes and in heparan sulfate biosynthetic genes result in disruption of JAK/STAT signaling, loss or abnormal formation of the stalk and significant reduction in the accumulation of extracellular Upd. Conversely, forced expression of Dally causes ectopic accumulation of Upd in follicular cells. Furthermore, biochemical studies reveal that Upd and Dally bind each other on the surface of the cell membrane. Our findings demonstrate that Drosophila glypicans regulate formation of the follicular gradient of the Upd morphogen, Upd. Furthermore, we establish the follicular epithelium as a new model for morphogen signaling in complex organ development.
Collapse
Affiliation(s)
- Yoshiki Hayashi
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Zhang Y, You J, Ren W, Lin X. Drosophila glypicans Dally and Dally-like are essential regulators for JAK/STAT signaling and Unpaired distribution in eye development. Dev Biol 2013; 375:23-32. [PMID: 23313126 DOI: 10.1016/j.ydbio.2012.12.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/22/2012] [Accepted: 12/31/2012] [Indexed: 11/19/2022]
Abstract
The highly conserved janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway is a well-known signaling system that is involved in many biological processes. In Drosophila, this signaling cascade is activated by ligands of the Unpaired (Upd) family. Therefore, the regulation of Upd distribution is one of the key issues in controlling the JAK/STAT signaling activity and function. Heparan sulfate proteoglycans (HSPGs) are macromolecules that regulate the distribution of many ligand proteins including Wingless, Hedgehog and Decapentaplegic (Dpp). Here we show that during Drosophila eye development, HSPGs are also required in normal Upd distribution and JAK/STAT signaling activity. Loss of HSPG biosynthesis enzyme Brother of tout-velu (Botv), Sulfateless (Sfl), or glypicans Division abnormally delayed (Dally) and Dally-like protein (Dlp) led to reduced levels of extracellular Upd and reduction in JAK/STAT signaling activity. Overexpression of dally resulted in the accumulation of Upd and up-regulation of the signaling activity. Luciferase assay also showed that Dally promotes JAK/STAT signaling activity, and is dependent on its heparin sulfate chains. These data suggest that Dally and Dlp are essential for Upd distribution and JAK/STAT signaling activity.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Science, Beijing 100101, China
| | | | | | | |
Collapse
|
143
|
Stine RR, Matunis EL. JAK-STAT signaling in stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:247-67. [PMID: 23696361 DOI: 10.1007/978-94-007-6621-1_14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adult stem cells are essential for the regeneration and repair of tissues in an organism. Signals from many different pathways converge to regulate stem cell maintenance and differentiation while preventing overproliferation. Although each population of adult stem cells is unique, common themes arise by comparing the regulation of various stem cell types in an organism or by comparing similar stem cell types across species. The JAK-STAT signaling pathway, identified nearly two decades ago, is now known to be involved in many biological processes including the regulation of stem cells. Studies in Drosophila first implicated JAK-STAT signaling in the control of stem cell maintenance in the male germline stem cell microenvironment, or niche; subsequently it has been shown play a role in other niches in both Drosophila and mammals. In this chapter, we will address the role of JAK-STAT signaling in stem cells in the germline, intestinal, hematopoietic and neuronal niches in Drosophila as well as the hematopoietic and neuronal niches in mammals. We will comment on how the study of JAK-STAT signaling in invertebrate systems has helped to advance our understanding of signaling in vertebrates. In addition to the role of JAK- STAT signaling in stem cell niche homeostasis, we will also discuss the diseases, including cancers, that can arise when this pathway is misregulated.
Collapse
Affiliation(s)
- Rachel R Stine
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205 USA
| | | |
Collapse
|
144
|
Group choreography: mechanisms orchestrating the collective movement of border cells. Nat Rev Mol Cell Biol 2012; 13:631-45. [PMID: 23000794 DOI: 10.1038/nrm3433] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell movements are essential for animal development and homeostasis but also contribute to disease. Moving cells typically extend protrusions towards a chemoattractant, adhere to the substrate, contract and detach at the rear. It is less clear how cells that migrate in interconnected groups in vivo coordinate their behaviour and navigate through natural environments. The border cells of the Drosophila melanogaster ovary have emerged as an excellent model for the study of collective cell movement, aided by innovative genetic, live imaging, and photomanipulation techniques. Here we provide an overview of the molecular choreography of border cells and its more general implications.
Collapse
|
145
|
Rajan A, Perrimon N. Drosophila cytokine unpaired 2 regulates physiological homeostasis by remotely controlling insulin secretion. Cell 2012; 151:123-37. [PMID: 23021220 DOI: 10.1016/j.cell.2012.08.019] [Citation(s) in RCA: 374] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/01/2012] [Accepted: 08/06/2012] [Indexed: 12/31/2022]
Abstract
In Drosophila, the fat body (FB), a functional analog of the vertebrate adipose tissue, is the nutrient sensor that conveys the nutrient status to the insulin-producing cells (IPCs) in the fly brain to release Drosophila insulin-like peptides (Dilps). Dilp secretion in turn regulates energy balance and promotes systemic growth. We identify Unpaired 2 (Upd2), a protein with similarities to type I cytokines, as a secreted factor produced by the FB in the fed state. When upd2 function is perturbed specifically in the FB, it results in a systemic reduction in growth and alters energy metabolism. Upd2 activates JAK/STAT signaling in a population of GABAergic neurons that project onto the IPCs. This activation relieves the inhibitory tone of the GABAergic neurons on the IPCs, resulting in the secretion of Dilps. Strikingly, we find that human Leptin can rescue the upd2 mutant phenotypes, suggesting that Upd2 is the functional homolog of Leptin.
Collapse
Affiliation(s)
- Akhila Rajan
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
146
|
The UPD3 cytokine couples environmental challenge and intestinal stem cell division through modulation of JAK/STAT signaling in the stem cell microenvironment. Dev Biol 2012; 373:383-93. [PMID: 23110761 DOI: 10.1016/j.ydbio.2012.10.023] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 10/13/2012] [Accepted: 10/19/2012] [Indexed: 12/22/2022]
Abstract
In Drosophila, the replacement of spent enterocytes (ECs) relies on division of intestinal stem cells (ISCs) and differentiation of their progeny, the enteroblasts (EBs). Recent studies have revealed a role for JAK/STAT signaling in the modulation of the rate of ISC division in response to environmental challenge. Here, we demonstrate the critical role of the UPD3 cytokine in the JAK/STAT-dependent response to enteric infection. We show that upd3 expression is activated in ECs and in EBs that massively differentiate in response to challenge. We show that the UPD3 cytokine, which is secreted basally and accumulates at the basement membrane, is required for stimulation of JAK/STAT signaling in EBs and visceral muscles (VMs). We further show that stimulation of ISC division requires active JAK/STAT signaling in EBs and VMs, but apparently not in ISCs. Our results suggest that EBs and VMs modulate the rate of the EGFR-dependent ISC division through upd3-dependent production of the EGF ligands Spitz and Vein, respectively. This study therefore supports the notion that the production of the UPD3 cytokine in stem cell progeny (ECs and EBs) stimulates intestinal stem cell division through modulation of JAK/STAT signaling in the stem cell microenvironment (EBs and VMs).
Collapse
|
147
|
Herranz H, Hong X, Hung NT, Voorhoeve PM, Cohen SM. Oncogenic cooperation between SOCS family proteins and EGFR identified using a Drosophila epithelial transformation model. Genes Dev 2012; 26:1602-11. [PMID: 22802531 DOI: 10.1101/gad.192021.112] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are emerging as cooperating factors that promote the activity of oncogenes in tumor formation and disease progression. This poses the challenge of identifying the miRNA targets responsible for these interactions. In this study, we identify the growth regulatory miRNA bantam and its target, Socs36E, as cooperating factors in EGFR-driven tumorigenesis and metastasis in a Drosophila model of epithelial transformation. bantam promotes growth by limiting expression of Socs36E, which functions as a negative growth regulator. Socs36E has only a modest effect on growth on its own, but behaves as a tumor suppressor in combination with EGFR activation. The human ortholog of SOCS36E, SOCS5, behaves as a candidate tumor suppressor in cellular transformation in cooperation with EGFR/RAS pathway activation.
Collapse
Affiliation(s)
- Héctor Herranz
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | | | | | | | | |
Collapse
|
148
|
Liu L, Dai J, Zhao YO, Narasimhan S, Yang Y, Zhang L, Fikrig E. Ixodes scapularis JAK-STAT pathway regulates tick antimicrobial peptides, thereby controlling the agent of human granulocytic anaplasmosis. J Infect Dis 2012; 206:1233-41. [PMID: 22859824 DOI: 10.1093/infdis/jis484] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ixodes scapularis transmits the agent of human granulocytic anaplasmosis, among other pathogens. The mechanisms used by the tick to control Anaplasma phagocytophilum are not known. We demonstrate that the I. scapularis Janus kinase (JAK)-signaling transducer activator of transcription (STAT) pathway plays a critical role in A. phagocytophilum infection of ticks. The A. phagocytophilum burden increases in salivary glands and hemolymph when the JAK-STAT pathway is suppressed by RNA interference. The JAK-STAT pathway exerts its anti-Anaplasma activity presumably through STAT-regulated effectors. A salivary gland gene family encoding 5.3-kDa antimicrobial peptides is highly induced upon A. phagocytophilum infection of tick salivary glands. Gene expression and electrophoretic mobility shift assays showed that the 5.3-kDa antimicrobial peptide-encoding genes are regulated by tick STAT. Silencing of these genes increased A. phagocytophilum infection of tick salivary glands and transmission to mammalian host. These data suggest that the JAK-STAT signaling pathway plays a key role in controlling A. phagocytophilum infection in ticks by regulating the expression of antimicrobial peptides.
Collapse
Affiliation(s)
- Lei Liu
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | |
Collapse
|
149
|
Graves HK, Woodfield SE, Yang CC, Halder G, Bergmann A. Notch signaling activates Yorkie non-cell autonomously in Drosophila. PLoS One 2012; 7:e37615. [PMID: 22679484 PMCID: PMC3367968 DOI: 10.1371/journal.pone.0037615] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 04/22/2012] [Indexed: 11/30/2022] Open
Abstract
In Drosophila imaginal epithelia, cells mutant for the endocytic neoplastic tumor suppressor gene vps25 stimulate nearby untransformed cells to express Drosophila Inhibitor-of-Apoptosis-Protein-1 (DIAP-1), conferring resistance to apoptosis non-cell autonomously. Here, we show that the non-cell autonomous induction of DIAP-1 is mediated by Yorkie, the conserved downstream effector of Hippo signaling. The non-cell autonomous induction of Yorkie is due to Notch signaling from vps25 mutant cells. Moreover, activated Notch in normal cells is sufficient to induce non-cell autonomous Yorkie activity in wing imaginal discs. Our data identify a novel mechanism by which Notch promotes cell survival non-cell autonomously and by which neoplastic tumor cells generate a supportive microenvironment for tumor growth.
Collapse
Affiliation(s)
- Hillary K. Graves
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Sarah E. Woodfield
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Chih-Chao Yang
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Program in Genes and Development, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Georg Halder
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Genes and Development, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Andreas Bergmann
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Genes and Development, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
150
|
Kalamarz ME, Paddibhatla I, Nadar C, Govind S. Sumoylation is tumor-suppressive and confers proliferative quiescence to hematopoietic progenitors in Drosophila melanogaster larvae. Biol Open 2012; 1:161-72. [PMID: 23213407 PMCID: PMC3507282 DOI: 10.1242/bio.2012043] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
How cell-intrinsic regulation of the cell cycle and the extrinsic influence of the niche converge to provide proliferative quiescence, safeguard tissue integrity, and provide avenues to stop stem cells from giving rise to tumors is a major challenge in gene therapy and tissue engineering. We explore this question in sumoylation-deficient mutants of Drosophila. In wild type third instar larval lymph glands, a group of hematopoietic stem/progenitor cells acquires quiescence; a multicellular niche supports their undifferentiated state. However, how proliferative quiescence is instilled in this population is not understood. We show that Ubc9 protein is nuclear in this population. Loss of the SUMO-activating E1 enzyme, Aos1/Uba2, the conjugating E2 enzyme, Ubc9, or the E3 SUMO ligase, PIAS, results in a failure of progenitors to quiesce; progenitors become hyperplastic, misdifferentiate, and develop into microtumors that eventually detach from the dorsal vessel. Significantly, dysplasia and lethality of Ubc9 mutants are rescued when Ubc9(wt) is provided specifically in the progenitor populations, but not when it is provided in the niche or in the differentiated cortex. While normal progenitors express high levels of the Drosophila cyclin-dependent kinase inhibitor p21 homolog, Dacapo, the corresponding overgrown mutant population exhibits a marked reduction in Dacapo. Forced expression of either Dacapo or human p21 in progenitors shrinks this population. The selective expression of either protein in mutant progenitor cells, but not in other hematopoietic populations, limits overgrowth, blocks tumorogenesis, and restores organ integrity. We discuss an essential and complex role for sumoylation in preserving the hematopoietic progenitor states for stress response and in the context of normal development of the fly.
Collapse
Affiliation(s)
- Marta E Kalamarz
- Biology Department, The City College of the City University of New York , 138th Street and Convent Avenue, New York, NY 10031 , USA ; The Graduate Center of the City University of New York , 365 Fifth Avenue, New York, NY 10016 , USA
| | | | | | | |
Collapse
|