151
|
Zhang Q, Gui M, Niu X, He S, Wang R, Feng Y, Kroeker A, Zuo Y, Wang H, Wang Y, Li J, Li C, Shi Y, Shi X, Gao GF, Xiang Y, Qiu X, Chen L, Zhang L. Potent neutralizing monoclonal antibodies against Ebola virus infection. Sci Rep 2016; 6:25856. [PMID: 27181584 PMCID: PMC4867612 DOI: 10.1038/srep25856] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/18/2016] [Indexed: 01/11/2023] Open
Abstract
Ebola virus infections cause a deadly hemorrhagic disease for which no vaccines or therapeutics has received regulatory approval. Here we show isolation of three (Q206, Q314 and Q411) neutralizing monoclonal antibodies (mAbs) against the surface glycoprotein (GP) of Ebola virus identified in West Africa in 2014 through sequential immunization of Chinese rhesus macaques and antigen-specific single B cell sorting. These mAbs demonstrated potent neutralizing activities against both pseudo and live Ebola virus independent of complement. Biochemical, single particle EM, and mutagenesis analysis suggested Q206 and Q411 recognized novel epitopes in the head while Q314 targeted the glycan cap in the GP1 subunit. Q206 and Q411 appeared to influence GP binding to its receptor NPC1. Treatment with these mAbs provided partial but significant protection against disease in a mouse model of Ebola virus infection. These novel mAbs could serve as promising candidates for prophylactic and therapeutic interventions against Ebola virus infection.
Collapse
Affiliation(s)
- Qi Zhang
- Comprehensive AIDS Research Center, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Miao Gui
- Beijing Advanced Innovation Center for Structure Biology, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xuefeng Niu
- State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2 Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, R3E 0J9 Canada
| | - Ruoke Wang
- Comprehensive AIDS Research Center, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yupeng Feng
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Andrea Kroeker
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2 Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, R3E 0J9 Canada
| | - Yanan Zuo
- Comprehensive AIDS Research Center, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hua Wang
- Comprehensive AIDS Research Center, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ying Wang
- Comprehensive AIDS Research Center, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jiade Li
- Comprehensive AIDS Research Center, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chufang Li
- State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology and Research Network of Immunity and Health, and Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuanling Shi
- Comprehensive AIDS Research Center, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology and Research Network of Immunity and Health, and Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Ye Xiang
- Beijing Advanced Innovation Center for Structure Biology, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2 Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, R3E 0J9 Canada
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China.,Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Linqi Zhang
- Comprehensive AIDS Research Center, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
152
|
Fang S, Wang X, Dong F, Jin T, Liu G, Lu X, Peng B, Wu W, Liu H, Kong D, Tang X, Qin Y, Mei S, Xie X, He J, Ma H, Zhang R, Cheng J. Genomic characterization of influenza A (H7N9) viruses isolated in Shenzhen, Southern China, during the second epidemic wave. Arch Virol 2016; 161:2117-32. [PMID: 27169600 DOI: 10.1007/s00705-016-2872-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 04/24/2016] [Indexed: 10/21/2022]
Abstract
There were three epidemic waves of human infection with avian influenza A (H7N9) virus in 2013-2014. While many analyses of the genomic origin, evolution, and molecular characteristics of the influenza A (H7N9) virus have been performed using sequences from the first epidemic wave, genomic characterization of the virus from the second epidemic wave has been comparatively less reported. In this study, an in-depth analysis was performed with respect to the genomic characteristics of 11 H7N9 virus strains isolated from confirmed cases and four H7N9 virus strains isolated from environmental samples in Shenzhen during the second epidemic wave. Phylogenetic analysis demonstrated that six internal segments of the influenza A (H7N9) virus isolated from confirmed cases and environmental samples in Shenzhen were clustered into two different clades and that the origin of the influenza A (H7N9) virus isolated from confirmed cases in Shenzhen was different from that of viruses isolated during the first wave. In addition, H9N2 viruses, which were prevalent in southern China, played an important role in the reassortment of the influenza A (H7N9) virus isolated in Shenzhen. HA-R47K and -T122A, PB2-V139I, PB1-I397M, and NS1-T216P were the signature amino acids of the influenza A (H7N9) virus isolated from confirmed cases in Shenzhen. We found that the HA, NA, M, and PA genes of the A(H7N9) viruses underwent positive selection in the human population. Therefore, enhanced surveillance should be carried out to determine the origin and mode of transmission of the novel influenza A (H7N9) virus and to facilitate the formulation of effective policies for prevention and containment of a human infection epidemics.
Collapse
Affiliation(s)
- Shisong Fang
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Xin Wang
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Fangyuan Dong
- College of Medicine, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| | - Tao Jin
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Guang Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xing Lu
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Bo Peng
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Weihua Wu
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Hui Liu
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Dongfeng Kong
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Xiujuan Tang
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Yanmin Qin
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Shujiang Mei
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Xu Xie
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Jianfan He
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Hanwu Ma
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Renli Zhang
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China.
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China.
| |
Collapse
|
153
|
Dai L, Song J, Lu X, Deng YQ, Musyoki AM, Cheng H, Zhang Y, Yuan Y, Song H, Haywood J, Xiao H, Yan J, Shi Y, Qin CF, Qi J, Gao GF. Structures of the Zika Virus Envelope Protein and Its Complex with a Flavivirus Broadly Protective Antibody. Cell Host Microbe 2016; 19:696-704. [PMID: 27158114 DOI: 10.1016/j.chom.2016.04.013] [Citation(s) in RCA: 382] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/18/2016] [Accepted: 04/22/2016] [Indexed: 10/21/2022]
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus, is a current global public health concern. The flavivirus envelope (E) glycoprotein is responsible for virus entry and represents a major target of neutralizing antibodies for other flaviviruses. Here, we report the structures of ZIKV E protein at 2.0 Å and in complex with a flavivirus broadly neutralizing murine antibody 2A10G6 at 3.0 Å. ZIKV-E resembles all the known flavivirus E structures but contains a unique, positively charged patch adjacent to the fusion loop region of the juxtaposed monomer, which may influence host attachment. The ZIKV-E-2A10G6 complex structure reveals antibody recognition of a highly conserved fusion loop. 2A10G6 binds to ZIKV-E with high affinity in vitro and neutralizes currently circulating ZIKV strains in vitro and in mice. The E protein fusion loop epitope represents a potential candidate for therapeutic antibodies against ZIKV.
Collapse
Affiliation(s)
- Lianpan Dai
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Song
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100071, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xishan Lu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100101, China
| | - Abednego Moki Musyoki
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100071, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huijun Cheng
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanfang Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yuan Yuan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100071, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Song
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100071, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Joel Haywood
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100071, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haixia Xiao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100071, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China; Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Microbial Physiology and Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Shi
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100071, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China; Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100101, China.
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100071, China.
| | - George F Gao
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100071, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China; Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China.
| |
Collapse
|
154
|
de Jonge J, Isakova-Sivak I, van Dijken H, Spijkers S, Mouthaan J, de Jong R, Smolonogina T, Roholl P, Rudenko L. H7N9 Live Attenuated Influenza Vaccine Is Highly Immunogenic, Prevents Virus Replication, and Protects Against Severe Bronchopneumonia in Ferrets. Mol Ther 2016; 24:991-1002. [PMID: 26796670 PMCID: PMC4881767 DOI: 10.1038/mt.2016.23] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/22/2015] [Indexed: 12/19/2022] Open
Abstract
Avian influenza viruses continue to cross the species barrier, and if such viruses become transmissible among humans, it would pose a great threat to public health. Since its emergence in China in 2013, H7N9 has caused considerable morbidity and mortality. In the absence of a universal influenza vaccine, preparedness includes development of subtype-specific vaccines. In this study, we developed and evaluated in ferrets an intranasal live attenuated influenza vaccine (LAIV) against H7N9 based on the A/Leningrad/134/17/57 (H2N2) cold-adapted master donor virus. We demonstrate that the LAIV is attenuated and safe in ferrets and induces high hemagglutination- and neuraminidase-inhibiting and virus-neutralizing titers. The antibodies against hemagglutinin were also cross-reactive with divergent H7 strains. To assess efficacy, we used an intratracheal challenge ferret model in which an acute severe viral pneumonia is induced that closely resembles viral pneumonia observed in severe human cases. A single- and two-dose strategy provided complete protection against severe pneumonia and prevented virus replication. The protective effect of the two-dose strategy appeared better than the single dose only on the microscopic level in the lungs. We observed, however, an increased lymphocytic infiltration after challenge in single-vaccinated animals and hypothesize that this a side effect of the model.
Collapse
Affiliation(s)
- Jørgen de Jonge
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Harry van Dijken
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Sanne Spijkers
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Current address: BioNovion, Oss, the Netherlands
| | - Justin Mouthaan
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Current address: Genmab, Utrecht, the Netherlands
| | - Rineke de Jong
- Department of Virology, Central Veterinary Institute of Wageningen UR, Lelystad, the Netherlands
| | - Tatiana Smolonogina
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Paul Roholl
- Microscope Consultancy, Weesp, the Netherlands
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
155
|
Mammalian Pathogenesis and Transmission of H7N9 Influenza Viruses from Three Waves, 2013-2015. J Virol 2016; 90:4647-4657. [PMID: 26912620 DOI: 10.1128/jvi.00134-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/18/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Three waves of human infection with H7N9 influenza viruses have concluded to date, but only viruses within the first wave (isolated between March and September 2013) have been extensively studied in mammalian models. While second- and third-wave viruses remain closely linked phylogenetically and antigenically, even subtle molecular changes can impart critical shifts in mammalian virulence. To determine if H7N9 viruses isolated from humans during 2013 to 2015 have maintained the phenotype first identified among 2013 isolates, we assessed the ability of first-, second-, and third-wave H7N9 viruses isolated from humans to cause disease in mice and ferrets and to transmit among ferrets. Similar to first-wave viruses, H7N9 viruses from 2013 to 2015 were highly infectious in mice, with lethality comparable to that of the well-studied A/Anhui/1/2013 virus. Second- and third-wave viruses caused moderate disease in ferrets, transmitted efficiently to cohoused, naive contact animals, and demonstrated limited transmissibility by respiratory droplets. All H7N9 viruses replicated efficiently in human bronchial epithelial cells, with subtle changes in pH fusion threshold identified between H7N9 viruses examined. Our results indicate that despite increased genetic diversity and geographical distribution since their initial detection in 2013, H7N9 viruses have maintained a pathogenic phenotype in mammals and continue to represent an immediate threat to public health. IMPORTANCE H7N9 influenza viruses, first isolated in 2013, continue to cause human infection and represent an ongoing public health threat. Now entering the fourth wave of human infection, H7N9 viruses continue to exhibit genetic diversity in avian hosts, necessitating continuous efforts to monitor their pandemic potential. However, viruses isolated post-2013 have not been extensively studied, limiting our understanding of potential changes in virus-host adaptation. In order to ensure that current research with first-wave H7N9 viruses still pertains to more recently isolated strains, we compared the relative virulence and transmissibility of H7N9 viruses isolated during the second and third waves, through 2015, in the mouse and ferret models. Our finding that second- and third-wave viruses generally exhibit disease in mammals comparable to that of first-wave viruses strengthens our ability to extrapolate research from the 2013 viruses to current public health efforts. These data further contribute to our understanding of molecular determinants of pathogenicity, transmissibility, and tropism.
Collapse
|
156
|
Tan GS, Leon PE, Albrecht RA, Margine I, Hirsh A, Bahl J, Krammer F. Broadly-Reactive Neutralizing and Non-neutralizing Antibodies Directed against the H7 Influenza Virus Hemagglutinin Reveal Divergent Mechanisms of Protection. PLoS Pathog 2016; 12:e1005578. [PMID: 27081859 PMCID: PMC4833315 DOI: 10.1371/journal.ppat.1005578] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 03/24/2016] [Indexed: 11/21/2022] Open
Abstract
In the early spring of 2013, Chinese health authorities reported several cases of H7N9 influenza virus infections in humans. Since then the virus has established itself at the human-animal interface in Eastern China and continues to cause several hundred infections annually. In order to characterize the antibody response to the H7N9 virus we generated several mouse monoclonal antibodies against the hemagglutinin of the A/Shanghai/1/13 (H7N9) virus. Of particular note are two monoclonal antibodies, 1B2 and 1H5, that show broad reactivity to divergent H7 hemagglutinins. Monoclonal antibody 1B2 binds to viruses of the Eurasian and North American H7 lineages and monoclonal antibody 1H5 reacts broadly to virus isolates of the Eurasian lineage. Interestingly, 1B2 shows broad hemagglutination inhibiting and neutralizing activity, while 1H5 fails to inhibit hemagglutination and demonstrates no neutralizing activity in vitro. However, both monoclonal antibodies were highly protective in an in vivo passive transfer challenge model in mice, even at low doses. Experiments using mutant antibodies that lack the ability for Fc/Fc-receptor and Fc/complement interactions suggest that the protection provided by mAb 1H5 is, at least in part, mediated by the Fc-fragment of the mAb. These findings highlight that a protective response to a pathogen may not only be due to neutralizing antibodies, but can also be the result of highly efficacious non-neutralizing antibodies not readily detected by classical in vitro neutralization or hemagglutination inhibition assays. This is of interest because H7 influenza virus vaccines induce only low hemagglutination inhibiting antibody titers while eliciting robust antibody titers as measured by ELISA. Our data suggest that these binding but non-neutralizing antibodies contribute to protection in vivo.
Collapse
Affiliation(s)
- Gene S. Tan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Paul E. Leon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Randy A. Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Irina Margine
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ariana Hirsh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Justin Bahl
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
157
|
Cui L, Liu D, Shi W, Pan J, Qi X, Li X, Guo X, Zhou M, Li W, Li J, Haywood J, Xiao H, Yu X, Pu X, Wu Y, Yu H, Zhao K, Zhu Y, Wu B, Jin T, Shi Z, Tang F, Zhu F, Sun Q, Wu L, Yang R, Yan J, Lei F, Zhu B, Liu W, Ma J, Wang H, Gao GF. Dynamic reassortments and genetic heterogeneity of the human-infecting influenza A (H7N9) virus. Nat Commun 2016; 5:3142. [PMID: 24457975 DOI: 10.1038/ncomms4142] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 12/18/2013] [Indexed: 12/25/2022] Open
Abstract
Influenza A (H7N9) virus has been causing human infections in China since February 2013, raising serious concerns of potential pandemics. Previous studies demonstrate that human infection is directly linked to live animal markets, and that the internal genes of the virus are derived from H9N2 viruses circulating in the Yangtze River Delta area in Eastern China. Here following analysis of 109 viruses, we show a much higher genetic heterogeneity of the H7N9 viruses than previously reported, with a total of 27 newly designated genotypes. Phylogenetic and genealogical inferences reveal that genotypes G0 and G2.6 dominantly co-circulate within poultry, with most human isolates belonging to the genotype G0. G0 viruses are also responsible for the inter- and intra-province transmissions, leading to the genesis of novel genotypes. These observations suggest the province-specific H9N2 virus gene pools increase the genetic diversity of H7N9 via dynamic reassortments and also imply that G0 has not gained overwhelming fitness and the virus continues to undergo reassortment.
Collapse
Affiliation(s)
- Lunbiao Cui
- 1] Key Laboratory of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Province, China [2]
| | - Di Liu
- 1] CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China [2] Network Information Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China [3]
| | - Weifeng Shi
- 1] School of Basic Medical Sciences, Taishan Medical College, Shandong Province, China [2] CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China [3]
| | - Jingcao Pan
- 1] Hangzhou Center for Disease Control and Prevention, Zhejiang Province, China [2]
| | - Xian Qi
- 1] Key Laboratory of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Province, China [2]
| | - Xianbin Li
- 1] Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong Province, China [2] University of Chinese Academy of Sciences, Beijing, China
| | - Xiling Guo
- Key Laboratory of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Province, China
| | - Minghao Zhou
- Key Laboratory of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Province, China
| | - Wei Li
- Network Information Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jun Li
- Hangzhou Center for Disease Control and Prevention, Zhejiang Province, China
| | - Joel Haywood
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Haixia Xiao
- Tianjin Institute of Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xinfen Yu
- Hangzhou Center for Disease Control and Prevention, Zhejiang Province, China
| | - Xiaoying Pu
- Hangzhou Center for Disease Control and Prevention, Zhejiang Province, China
| | - Ying Wu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huiyan Yu
- Key Laboratory of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Province, China
| | - Kangchen Zhao
- Key Laboratory of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Province, China
| | - Yefei Zhu
- Key Laboratory of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Province, China
| | - Bin Wu
- Key Laboratory of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Province, China
| | - Tao Jin
- BGI-Shenzhen, Shenzhen, Guangdong Province, China
| | - Zhiyang Shi
- Key Laboratory of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Province, China
| | - Fenyang Tang
- Key Laboratory of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Province, China
| | - Fengcai Zhu
- Key Laboratory of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Province, China
| | - Qinglan Sun
- Network Information Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Linhuan Wu
- Network Information Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ruifu Yang
- Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Fumin Lei
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Juncai Ma
- Network Information Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hua Wang
- Key Laboratory of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Province, China
| | - George F Gao
- 1] CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China [2] University of Chinese Academy of Sciences, Beijing, China [3] Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China [4] Office of Director-General, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| |
Collapse
|
158
|
Munoz O, De Nardi M, van der Meulen K, van Reeth K, Koopmans M, Harris K, von Dobschuetz S, Freidl G, Meijer A, Breed A, Hill A, Kosmider R, Banks J, Stärk KDC, Wieland B, Stevens K, van der Werf S, Enouf V, Dauphin G, Dundon W, Cattoli G, Capua I. Genetic Adaptation of Influenza A Viruses in Domestic Animals and Their Potential Role in Interspecies Transmission: A Literature Review. ECOHEALTH 2016; 13:171-198. [PMID: 25630935 DOI: 10.1007/s10393-014-1004-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 12/05/2014] [Accepted: 12/06/2014] [Indexed: 06/04/2023]
Abstract
In December 2011, the European Food Safety Authority awarded a Grant for the implementation of the FLURISK project. The main objective of FLURISK was the development of an epidemiological and virological evidence-based influenza risk assessment framework (IRAF) to assess influenza A virus strains circulating in the animal population according to their potential to cross the species barrier and cause infections in humans. With the purpose of gathering virological data to include in the IRAF, a literature review was conducted and key findings are presented here. Several adaptive traits have been identified in influenza viruses infecting domestic animals and a significance of these adaptations for the emergence of zoonotic influenza, such as shift in receptor preference and mutations in the replication proteins, has been hypothesized. Nonetheless, and despite several decades of research, a comprehensive understanding of the conditions that facilitate interspecies transmission is still lacking. This has been hampered by the intrinsic difficulties of the subject and the complexity of correlating environmental, viral and host factors. Finding the most suitable and feasible way of investigating these factors in laboratory settings represents another challenge. The majority of the studies identified through this review focus on only a subset of species, subtypes and genes, such as influenza in avian species and avian influenza viruses adapting to humans, especially in the context of highly pathogenic avian influenza H5N1. Further research applying a holistic approach and investigating the broader influenza genetic spectrum is urgently needed in the field of genetic adaptation of influenza A viruses.
Collapse
Affiliation(s)
- Olga Munoz
- Division of Comparative Biomedical Sciences, OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human-Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita 10, 35020, Legnaro, PD, Italy.
| | - Marco De Nardi
- Division of Comparative Biomedical Sciences, OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human-Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita 10, 35020, Legnaro, PD, Italy
- SAFOSO AG, Bern, Switzerland
| | - Karen van der Meulen
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Kristien van Reeth
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Marion Koopmans
- Laboratory for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Kate Harris
- Animal Health and Veterinary Agency (AHVLA), Surrey, UK
| | - Sophie von Dobschuetz
- Royal Veterinary College (RVC), London, UK
- Food and Agricultural Organization of the United Nations (FAO), Rome, Italy
| | - Gudrun Freidl
- Laboratory for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Adam Meijer
- Laboratory for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Andrew Breed
- Animal Health and Veterinary Agency (AHVLA), Surrey, UK
| | - Andrew Hill
- Animal Health and Veterinary Agency (AHVLA), Surrey, UK
| | | | - Jill Banks
- Animal Health and Veterinary Agency (AHVLA), Surrey, UK
| | | | | | | | - Sylvie van der Werf
- Unit of Molecular Genetics of RNA viruses, National Influenza Center (Northern France), Institut Pasteur, UMR3569 CNRS, University Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Vincent Enouf
- Unit of Molecular Genetics of RNA viruses, National Influenza Center (Northern France), Institut Pasteur, UMR3569 CNRS, University Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Gwenaelle Dauphin
- Food and Agricultural Organization of the United Nations (FAO), Rome, Italy
| | - William Dundon
- Division of Comparative Biomedical Sciences, OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human-Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita 10, 35020, Legnaro, PD, Italy
| | - Giovanni Cattoli
- Division of Comparative Biomedical Sciences, OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human-Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita 10, 35020, Legnaro, PD, Italy
| | - Ilaria Capua
- Division of Comparative Biomedical Sciences, OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human-Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita 10, 35020, Legnaro, PD, Italy
| |
Collapse
|
159
|
Amino Acid Substitutions That Affect Receptor Binding and Stability of the Hemagglutinin of Influenza A/H7N9 Virus. J Virol 2016; 90:3794-9. [PMID: 26792744 DOI: 10.1128/jvi.03052-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/08/2016] [Indexed: 12/13/2022] Open
Abstract
Receptor-binding preference and stability of hemagglutinin have been implicated as crucial determinants of airborne transmission of influenza viruses. Here, amino acid substitutions previously identified to affect these traits were tested in the context of an A/H7N9 virus. Some combinations of substitutions, most notably G219S and K58I, resulted in relatively high affinity for α2,6-linked sialic acid receptor and acid and temperature stability. Thus, the hemagglutinin of the A/H7N9 virus may adopt traits associated with airborne transmission.
Collapse
|
160
|
Xiao C, Ma W, Sun N, Huang L, Li Y, Zeng Z, Wen Y, Zhang Z, Li H, Li Q, Yu Y, Zheng Y, Liu S, Hu P, Zhang X, Ning Z, Qi W, Liao M. PB2-588 V promotes the mammalian adaptation of H10N8, H7N9 and H9N2 avian influenza viruses. Sci Rep 2016; 6:19474. [PMID: 26782141 PMCID: PMC4726052 DOI: 10.1038/srep19474] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/01/2015] [Indexed: 12/20/2022] Open
Abstract
Human infections with avian influenza H7N9 or H10N8 viruses have been reported in China, raising concerns that they might cause human epidemics and pandemics. However, how these viruses adapt to mammalian hosts is unclear. Here we show that besides the commonly recognized viral polymerase subunit PB2 residue 627 K, other residues including 87E, 292 V, 340 K, 588 V, 648 V, and 676 M in PB2 also play critical roles in mammalian adaptation of the H10N8 virus. The avian-origin H10N8, H7N9, and H9N2 viruses harboring PB2-588 V exhibited higher polymerase activity, more efficient replication in mammalian and avian cells, and higher virulence in mice when compared to viruses with PB2-588 A. Analyses of available PB2 sequences showed that the proportion of avian H9N2 or human H7N9 influenza isolates bearing PB2-588 V has increased significantly since 2013. Taken together, our results suggest that the substitution PB2-A588V may be a new strategy for an avian influenza virus to adapt mammalian hosts.
Collapse
Affiliation(s)
- Chencheng Xiao
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Wenjun Ma
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66502, USA
| | - Na Sun
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Lihong Huang
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Yaling Li
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Zhaoyong Zeng
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Yijun Wen
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Zaoyue Zhang
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Huanan Li
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Qian Li
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Yuandi Yu
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Yi Zheng
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Shukai Liu
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Pingsheng Hu
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Xu Zhang
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Zhangyong Ning
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Wenbao Qi
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Ming Liao
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| |
Collapse
|
161
|
Nian QG, Jiang T, Zhang Y, Deng YQ, Li J, Qin ED, Qin CF. High thermostability of the newly emerged influenza A (H7N9) virus. J Infect 2016; 72:393-4. [PMID: 26777313 DOI: 10.1016/j.jinf.2016.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 01/09/2016] [Accepted: 01/09/2016] [Indexed: 10/22/2022]
Affiliation(s)
- Qing-Gong Nian
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Tao Jiang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yu Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yong-Qiang Deng
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jing Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - E-De Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| |
Collapse
|
162
|
Richard M, Fouchier RAM. Influenza A virus transmission via respiratory aerosols or droplets as it relates to pandemic potential. FEMS Microbiol Rev 2016; 40:68-85. [PMID: 26385895 PMCID: PMC5006288 DOI: 10.1093/femsre/fuv039] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/13/2015] [Accepted: 08/20/2015] [Indexed: 12/11/2022] Open
Abstract
Many respiratory viruses of humans originate from animals. For instance, there are now eight paramyxoviruses, four coronaviruses and four orthomxoviruses that cause recurrent epidemics in humans but were once confined to other hosts. In the last decade, several members of the same virus families have jumped the species barrier from animals to humans. Fortunately, these viruses have not become established in humans, because they lacked the ability of sustained transmission between humans. However, these outbreaks highlighted the lack of understanding of what makes a virus transmissible. In part triggered by the relatively high frequency of occurrence of influenza A virus zoonoses and pandemics, the influenza research community has started to investigate the viral genetic and biological traits that drive virus transmission via aerosols or respiratory droplets between mammals. Here we summarize recent discoveries on the genetic and phenotypic traits required for airborne transmission of zoonotic influenza viruses of subtypes H5, H7 and H9 and pandemic viruses of subtypes H1, H2 and H3. Increased understanding of the determinants and mechanisms of respiratory virus transmission is not only key from a basic scientific perspective, but may also aid in assessing the risks posed by zoonotic viruses to human health, and preparedness for such risks.
Collapse
Affiliation(s)
- Mathilde Richard
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| |
Collapse
|
163
|
Song H, Qi J, Khedri Z, Diaz S, Yu H, Chen X, Varki A, Shi Y, Gao GF. An Open Receptor-Binding Cavity of Hemagglutinin-Esterase-Fusion Glycoprotein from Newly-Identified Influenza D Virus: Basis for Its Broad Cell Tropism. PLoS Pathog 2016; 12:e1005411. [PMID: 26816272 PMCID: PMC4729479 DOI: 10.1371/journal.ppat.1005411] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/31/2015] [Indexed: 01/08/2023] Open
Abstract
Influenza viruses cause seasonal flu each year and pandemics or epidemic sporadically, posing a major threat to public health. Recently, a new influenza D virus (IDV) was isolated from pigs and cattle. Here, we reveal that the IDV utilizes 9-O-acetylated sialic acids as its receptor for virus entry. Then, we determined the crystal structures of hemagglutinin-esterase-fusion glycoprotein (HEF) of IDV both in its free form and in complex with the receptor and enzymatic substrate analogs. The IDV HEF shows an extremely similar structural fold as the human-infecting influenza C virus (ICV) HEF. However, IDV HEF has an open receptor-binding cavity to accommodate diverse extended glycan moieties. This structural difference provides an explanation for the phenomenon that the IDV has a broad cell tropism. As IDV HEF is structurally and functionally similar to ICV HEF, our findings highlight the potential threat of the virus to public health.
Collapse
Affiliation(s)
- Hao Song
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zahra Khedri
- University of California, San Diego, La Jolla, California, United States of America
| | - Sandra Diaz
- University of California, San Diego, La Jolla, California, United States of America
| | - Hai Yu
- University of California, Davis, Davis, California, United States of America
| | - Xi Chen
- University of California, Davis, Davis, California, United States of America
| | - Ajit Varki
- University of California, Davis, Davis, California, United States of America
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - George F. Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
164
|
Zhang H, de Vries RP, Tzarum N, Zhu X, Yu W, McBride R, Paulson JC, Wilson IA. A human-infecting H10N8 influenza virus retains a strong preference for avian-type receptors. Cell Host Microbe 2015; 17:377-384. [PMID: 25766296 DOI: 10.1016/j.chom.2015.02.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/30/2015] [Accepted: 02/13/2015] [Indexed: 11/16/2022]
Abstract
Recent avian-origin H10N8 influenza A viruses that have infected humans pose a potential pandemic threat. Alterations in the viral surface glycoprotein, hemagglutinin (HA), typically are required for influenza A viruses to cross the species barrier for adaptation to a new host, but whether H10N8 contains adaptations supporting human infection remains incompletely understood. We investigated whether H10N8 HA can bind human receptors. Sialoside glycan microarray analysis showed that the H10 HA retains a strong preference for avian receptor analogs and negligible binding to human receptor analogs. Crystal structures of H10 HA with avian and human receptor analogs revealed the basis for preferential recognition of avian-like receptors. Furthermore, introduction of mutations into the H10 receptor-binding site (RBS) known to convert other HA subtypes from avian to human receptor specificity failed to switch preference to human receptors. Collectively, these findings suggest that the current H10N8 human isolates are poorly adapted for efficient human-to-human transmission.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.,Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Robert P de Vries
- Department of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Netanel Tzarum
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Wenli Yu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ryan McBride
- Department of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - James C Paulson
- Department of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.,Department of Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
165
|
Structure and receptor binding of the hemagglutinin from a human H6N1 influenza virus. Cell Host Microbe 2015; 17:369-376. [PMID: 25766295 DOI: 10.1016/j.chom.2015.02.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/02/2014] [Accepted: 01/28/2015] [Indexed: 11/23/2022]
Abstract
Avian influenza viruses that cause infection and are transmissible in humans involve changes in the receptor binding site (RBS) of the viral hemagglutinin (HA) that alter receptor preference from α2-3-linked (avian-like) to α2-6-linked (human-like) sialosides. A human case of avian-origin H6N1 influenza virus was recently reported, but the molecular mechanisms contributing to it crossing the species barrier are unknown. We find that, although the H6 HA RBS contains D190V and G228S substitutions that potentially promote human receptor binding, recombinant H6 HA preferentially binds α2-3-linked sialosides, indicating no adaptation to human receptors. Crystal structures of H6 HA with avian and human receptor analogs reveal that H6 HA preferentially interacts with avian receptor analogs. This binding mechanism differs from other HA subtypes due to a unique combination of RBS residues, highlighting additional variation in HA-receptor interactions and the challenges in predicting which influenza strains and subtypes can infect humans and cause pandemics.
Collapse
|
166
|
Tefsen B. Chances and challenges in China. Protein Cell 2015; 7:233-235. [PMID: 26687390 PMCID: PMC4818847 DOI: 10.1007/s13238-015-0235-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Boris Tefsen
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| |
Collapse
|
167
|
Rudenko L, Isakova-Sivak I, Naykhin A, Kiseleva I, Stukova M, Erofeeva M, Korenkov D, Matyushenko V, Sparrow E, Kieny MP. H7N9 live attenuated influenza vaccine in healthy adults: a randomised, double-blind, placebo-controlled, phase 1 trial. THE LANCET. INFECTIOUS DISEASES 2015; 16:303-10. [PMID: 26673391 DOI: 10.1016/s1473-3099(15)00378-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/02/2015] [Accepted: 10/06/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND H7N9 avian influenza viruses characterised by high virulence and presence of mammalian adaptation markers have pandemic potential. Specific influenza vaccines remain the main defence. We assessed the safety and immunogenicity of an H7N9 live attenuated influenza vaccine (LAIV) candidate in healthy adult volunteers. METHODS We did a phase 1, double-blind, randomised, placebo-controlled trial in Saint Petersburg, Russia. Eligible participants were healthy adults aged 18-49 years. The participants were randomised 3:1 to receive live vaccine or placebo, according to a computer-generated randomisation scheme. Two doses of vaccine or placebo were administered intranasally 28 days apart, each followed by 7 day stays in hospital. Immune responses were assessed in nasal swabs, saliva, and serum specimens collected before and 28 days after each vaccine dose. The primary outcome was the safety profile. This trial is registered with ClinicalTrials.gov, number NCT02480101. FINDINGS Between Oct 21, 2014, and Oct 31, 2014, 40 adults were randomised, of whom 39 (98%) were included in the per-protocol analysis (29 in the vaccine group and ten in the placebo group). The frequency of adverse events did not differ between the vaccine and placebo groups. Seroconversion of neutralising antibodies was seen in 14 participants after the first vaccine dose (48%, 95% CI 29·4-67·5) and 21 after the second vaccine dose (72%, 52·8-87·3). Immune responses were seen in 27 of 29 recipients (93%, 95% CI 77·2-99·2). Adverse effects were seen in 19 (63%) vaccine recipients and nine (90%) placebo recipients after the first dose and in nine (31%) and four (40%), respectively, after the second dose. These effects were mainly local and all were mild. INTERPRETATION The H7N9 LAIV was well tolerated and safe and showed good immunogenicity. FUNDING WHO.
Collapse
Affiliation(s)
- Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia.
| | - Anatoly Naykhin
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Irina Kiseleva
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Marina Stukova
- Department of Molecular Virology, Research Institute of Influenza, Saint Petersburg, Russia
| | - Mariana Erofeeva
- Department of Epidemiology and Prophylaxis, Research Institute of Influenza, Saint Petersburg, Russia
| | - Daniil Korenkov
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Victoria Matyushenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Erin Sparrow
- Department of Essential Medicines and Health Products, World Health Organization, Geneva, Switzerland
| | - Marie-Paule Kieny
- Department of Health Systems and Innovation, World Health Organization, Geneva, Switzerland
| |
Collapse
|
168
|
Nakamura K, Shirakura M, Suzuki Y, Naito T, Fujisaki S, Tashiro M, Nobusawa E. Development of a high-yield reassortant influenza vaccine virus derived from the A/Anhui/1/2013 (H7N9) strain. Vaccine 2015; 34:328-33. [PMID: 26657023 DOI: 10.1016/j.vaccine.2015.11.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/16/2015] [Accepted: 11/19/2015] [Indexed: 11/16/2022]
Abstract
In April 2013, the first three fatal cases of human infection with an avian influenza A virus (H7N9) were reported in China. Because of a pandemic threat by this virus, we have commenced to develop candidate vaccine viruses (CVVs). Three 6:2 genetic reassortant viruses with different hemagglutinin (HA) sequences, NIIDRG-10, -10.1 and -10.2, were generated by a reverse genetics technique between the high egg-growth master virus, A/Puerto Rico/8/34 (H1N1) and A/Anhui/1/2013 (H7N9), kindly provided by the Chinese Center for Disease Control and Prevention. The different HA gene sequences of the three CVVs were derived from the original virus stock. NIIDRG-10 possesses HA, whose sequence is identical to that of the original A/Anhui/1/2013 (H7N9) in the Global Initiative on Sharing Avian Influenza Data (EPI439507), while NIIDRG-10.1 and -10.2 possess amino acid differences, A125T and N123D/N149D, respectively, compared with NIIDRG-10. NIIDRG-10 replicated in embryonated chicken eggs with low hemagglutination titer 128, whereas NIIDRG-10.1 and -10.2 grew well with hemagglutination titer 1024. These viruses reacted well with a ferret antiserum raised against the original A/Anhui/1/2013 virus. Ferret antiserum against NIIDRG-10.1 reacted well with A/Anhui/1/2013 similar to the homologous virus NIIDRG-10.1. These results indicated that NIIDRG-10.1 passed the two-way test of antigenic identity. In contrast, the ferret antiserum against NIIDRG-10.2 reacted with A/Anhui/1/2013 at an 8-fold lower hemagglutination inhibition titer than with the homologous virus NIIDRG-10.2, indicating an antigenic change. The total and HA protein yields of NIIDRG-10.1 were 14.7 and 6.9 μg/ml, respectively, similar to those levels of high-yield seed viruses of seasonal influenza vaccines. NIIDRG-10.1 was approved as one of the CVVs for H7N9 viruses by the WHO in 2013. The candidate vaccine derived from NIIDRG-10.1 is currently being evaluated in a phase II clinical study in Japan.
Collapse
Affiliation(s)
- Kazuya Nakamura
- Influenza Virus Research Center, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo 208-0011, Japan
| | - Masayuki Shirakura
- Influenza Virus Research Center, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo 208-0011, Japan
| | - Yasushi Suzuki
- Influenza Virus Research Center, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo 208-0011, Japan
| | - Tadasuke Naito
- Influenza Virus Research Center, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo 208-0011, Japan
| | - Seiichiro Fujisaki
- Influenza Virus Research Center, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo 208-0011, Japan
| | - Masato Tashiro
- Influenza Virus Research Center, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo 208-0011, Japan
| | - Eri Nobusawa
- Influenza Virus Research Center, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo 208-0011, Japan.
| |
Collapse
|
169
|
Qi W, Shi W, Li W, Huang L, Li H, Wu Y, Yan J, Jiao P, Zhu B, Ma J, Gao GF, Liao M, Liu D. Continuous reassortments with local chicken H9N2 virus underlie the human-infecting influenza A (H7N9) virus in the new influenza season, Guangdong, China. Protein Cell 2015; 5:878-82. [PMID: 25109943 PMCID: PMC4225483 DOI: 10.1007/s13238-014-0084-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Wenbao Qi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Zhang ZW, Liu T, Zeng J, Chen YE, Yuan M, Zhang DW, Zhu F, Yuan S. Prediction of the next highly pathogenic avian influenza pandemic that can cause illness in humans. Infect Dis Poverty 2015; 4:50. [PMID: 26612517 PMCID: PMC4661964 DOI: 10.1186/s40249-015-0083-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/15/2015] [Indexed: 11/21/2022] Open
Abstract
Background In recent years, avian influenza viruses (AIVs) have seriously threatened human health. Questions such as: why do AIVs infect humans?, how quickly can an AIV become pandemic?, and which virus is the most dangerous? cannot be sufficiently answered using current bioinformatic studies. Method Secondary structures and energies of representative 5′-untranslated region (UTR) of the HA gene were calculated. Then their secondary structures and energies were re-calculated after one or two nucleotide substitutions were introduced into the HA 5′-UTR. Phylogenetic trees on the basis of hemagglutinin (HA) and polymerase basic protein 2 (PB2) amino acid sequences and HA 5′-UTR nucleotide sequences were constructed. The connection between the energy and translation efficiency of 5′-UTR was confirmed by in vitro coupled transcription/translation assay. Results The simplicity of the secondary structure of the 5′-UTR of the HA gene determines the overall virus replication rate and transmission potential. Point mutation assays show that the 5′-UTR sequences of the HA gene in the influenza subtypes H2N2, H3N2, and H7N9 have greater variation potentials than other virus subtypes. Conclusion Some high-virulent strains of avian influenza might emerge in the next two to three years. The H2N2 subtype, once disappeared in humans, may stage a comeback. The current outbreak of H7N9 may become pandemic and cause even more deaths, if one or two bases are substituted in the 5′-UTR sequence of the HA gene. Electronic supplementary material The online version of this article (doi:10.1186/s40249-015-0083-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhong-Wei Zhang
- College of Resources Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Ting Liu
- Sichuan Kelun Pharmaceutical Comp. Ltd., Chengdu, 610072, China.
| | - Jian Zeng
- College of Resources Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yang-Er Chen
- Bioinformatic Study Centre, College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China. .,Department of Plant Physiology, Umeå University, SE-901 87, Umeå, Sweden.
| | - Ming Yuan
- Bioinformatic Study Centre, College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China. .,Boyce Thompson Institute, Cornell University, Ithaca, NY, 14850, USA.
| | - Da-Wei Zhang
- College of Life Sciences, Sichuan University, Chengdu, 610064, China. .,Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.
| | - Feng Zhu
- College of Life Sciences, Sichuan University, Chengdu, 610064, China. .,College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| | - Shu Yuan
- College of Resources Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
171
|
Su W, Wang C, Luo J, Zhao Y, Wu Y, Chen L, Zhao N, Li M, Xing C, Liu H, Zhang H, Chang YF, Li T, Ding H, Wan X, He H. Testing the Effect of Internal Genes Derived from a Wild-Bird-Origin H9N2 Influenza A Virus on the Pathogenicity of an A/H7N9 Virus. Cell Rep 2015; 12:1831-41. [PMID: 26344762 DOI: 10.1016/j.celrep.2015.08.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 06/24/2015] [Accepted: 08/07/2015] [Indexed: 01/11/2023] Open
Abstract
Since 2013, avian influenza A(H7N9) viruses have diversified into multiple lineages by dynamically reassorting with other viruses, especially H9N2, in Chinese poultry. Despite concerns about the pandemic threat posed by H7N9 viruses, little is known about the biological properties of H7N9 viruses that may recruit internal genes from genetically distinct H9N2 viruses circulating among wild birds. Here, we generated 63 H7N9 reassortants derived from an avian H7N9 and a wild-bird-origin H9N2 virus. Compared with the wild-type parent, 25/63 reassortants had increased pathogenicity in mice. A reassortant containing PB1 of the H9N2 virus was highly lethal to mice and chickens but was not transmissible to guinea pigs by airborne routes; however, three substitutions associated with adaptation to mammals conferred airborne transmission to the virus. The emergence of the H7N9-pandemic reassortant virus highlights that continuous monitoring of H7N9 viruses is needed, especially at the domestic poultry/wild bird interface.
Collapse
Affiliation(s)
- Wen Su
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100101, China
| | - Chengmin Wang
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Luo
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuliang Zhao
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Wu
- Department of Infectious Diseases, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang 310021, China
| | - Lin Chen
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100101, China
| | - Na Zhao
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Li
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Xing
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huimin Liu
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Zhang
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yung-fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University Ithaca, NY 14853-5786, USA
| | - Tianxian Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Hua Ding
- Department of Infectious Diseases, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang 310021, China
| | - Xiufeng Wan
- Department of Basic Sciences, College of Veterinary Medicine, and Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Hongxuan He
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
172
|
Tian D, Zheng T. Emerging infectious disease: trends in the literature on SARS and H7N9 influenza. Scientometrics 2015; 105:485-495. [PMID: 32214548 PMCID: PMC7089005 DOI: 10.1007/s11192-015-1681-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Indexed: 11/05/2022]
Abstract
Severe acute respiratory syndrome (SARS) and human infection H7N9 influenza are emerging infectious diseases having a relatively high mortality. Epidemics of each began in China. By searching through Science Citation Index, this study analyzed the article literature on SARS and H7N9 influenza, particularly papers in the leading journals The Lancet, New England Journal of Medicine (NEJM), Nature and Science. The results show that the quantity and quality of SARS and H7N9 influenza literature from mainland China changed distinctly over the course of 10 years. Researchers from mainland China published 12 article literature in the The Lancet, NEJM, Nature and Science about H7N9 influenza, whereas mainland China had only 2 article literature about SARS in the same journals. The literature reflects China's growing strength in the science and technology of emerging infectious disease.
Collapse
Affiliation(s)
- Deqiao Tian
- Beijing Institute of Biotechnology, Beijing, 100071 People’s Republic of China
| | - Tao Zheng
- Beijing Institute of Biotechnology, Beijing, 100071 People’s Republic of China
| |
Collapse
|
173
|
Sun R, Xu F, Wang C, Dong E. NSFC spurs significant basic research progress of respiratory medicine in China. CLINICAL RESPIRATORY JOURNAL 2015; 11:271-284. [PMID: 26176299 PMCID: PMC7159156 DOI: 10.1111/crj.12351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 12/24/2022]
Abstract
Over the years, research in respiratory medicine has progressed rapidly in China. This commentary narrates the role of the National Natural Science Foundation of China (NSFC) in supporting the basic research of respiratory medicine, summarizes the major progress of respiratory medicine in China, and addresses the main future research directions sponsored by the NSFC.
Collapse
Affiliation(s)
- Ruijuan Sun
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China
| | - Feng Xu
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China.,Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Wang
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Erdan Dong
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China
| |
Collapse
|
174
|
Highly Pathogenic Avian Influenza A(H5N1) Virus Struck Migratory Birds in China in 2015. Sci Rep 2015; 5:12986. [PMID: 26259704 PMCID: PMC4531313 DOI: 10.1038/srep12986] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 07/01/2015] [Indexed: 12/27/2022] Open
Abstract
Approximately 100 migratory birds, including whooper swans and pochards, were found dead in the Sanmenxia Reservoir Area of China during January 2015. The causative agent behind this outbreak was identified as H5N1 highly pathogenic avian influenza virus (HPAIV). Genetic and phylogenetic analyses revealed that this Sanmenxia H5N1 virus was a novel reassortant, possessing a Clade 2.3.2.1c HA gene and a H9N2-derived PB2 gene. Sanmenxia Clade 2.3.2.1c-like H5N1 viruses possess the closest genetic identity to A/Alberta/01/2014 (H5N1), which recently caused a fatal respiratory infection in Canada with signs of meningoencephalitis, a highly unusual symptom with influenza infections in humans. Furthermore, this virus was shown to be highly pathogenic to both birds and mammals, and demonstrate tropism for the nervous system. Due to the geographical location of Sanmenxia, these novel H5N1 viruses also have the potential to be imported to other regions through the migration of wild birds, similar to the H5N1 outbreak amongst migratory birds in Qinghai Lake during 2005. Therefore, further investigation and monitoring is required to prevent this novel reassortant virus from becoming a new threat to public health.
Collapse
|
175
|
Sarkar T, Das S, De A, Nandy P, Chattopadhyay S, Chawla-Sarkar M, Nandy A. H7N9 influenza outbreak in China 2013: In silico analyses of conserved segments of the hemagglutinin as a basis for the selection of peptide vaccine targets. Comput Biol Chem 2015; 59 Pt A:8-15. [PMID: 26364271 DOI: 10.1016/j.compbiolchem.2015.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 12/09/2022]
Abstract
The sudden emergence of a human infecting strain of H7N9 influenza virus in China in 2013 leading to fatalities in about 30% of the cases has caused wide concern that additional mutations in the strain leading to human to human transmission could lead to a deadly pandemic. It may happen in a short time span as the outbreak of H7N9 is more and more recurrent, which implies that H7N9 evolution is speeding up. H7N9 flu strains were not known to infect humans before this attack in China in February 2013 and it was solely an avian strain. While currently available drugs such as oseltamivir have been found to be largely effective against the H7N9, albeit with recent reported cases of development of resistance to the drug, there is a necessity to identify alternatives to combat this disease, especially if it assumes pandemic proportions. In our work, we have tried to investigate for the genetic changes in hemagglutinin (HA) protein sequence that lead to human infection by an avian infecting virus and identify possible peptide targets to design vaccines to control this upcoming risk. We identified three highly conserved regions in all H7 subtypes, of which one particular immunogenic surface exposed region was found to be well conserved in all human infecting H7N9 strains (accessed up to 27th March 2014). Compared to H7N9 avian strains, we identified two mutations in this conserved region at the receptor binding site of all post-February 2013 human-infecting H7N9China hemagglutinin protein sequences. One of the mutations is very close (3.6 Å) to the hemagglutinin sialic acid binding pocket that may lead to better binding to human host's sialic acid due to the changes in hydrophobicity of the microenvironment of the binding site. We found that the peptide region with these mutational changes that are specific for human infecting H7N9 virus possess the possibility of being used as target for a peptide vaccine.
Collapse
Affiliation(s)
- Tapati Sarkar
- Physics Department, Jadavpur University, Kolkata 700032, India.
| | - Sukhen Das
- Physics Department, Jadavpur University, Kolkata 700032, India
| | - Antara De
- Centre for Interdisciplinary Research and Education, 404B Jodhpur Park, Kolkata 700068, India
| | - Papiya Nandy
- Centre for Interdisciplinary Research and Education, 404B Jodhpur Park, Kolkata 700068, India
| | - Shiladitya Chattopadhyay
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Ashesh Nandy
- Centre for Interdisciplinary Research and Education, 404B Jodhpur Park, Kolkata 700068, India
| |
Collapse
|
176
|
Abstract
In June 2013, the first human infection by avian influenza A(H6N1) virus was reported in Taiwan. This incident raised the concern for possible human epidemics and pandemics from H6 viruses. In this study, we performed structural and functional investigation on the hemagglutinin (HA) proteins of the human-infecting A/Taiwan/2/2013(H6N1) (TW H6) virus and an avian A/chicken/Guangdong/S1311/2010(H6N6) (GD H6) virus that transmitted efficiently in guinea pigs. Our results revealed that in the presence of HA1 Q226, the triad of HA1 S137, E190 and G228 in GD H6 HA allows the binding to both avian- and human-like receptors with a slight preference for avian receptors. Its conservation among the majority of H6 HAs provides an explanation for the broader host range of this subtype. Furthermore, the triad of N137, V190 and S228 in TW H6 HA may alleviate the requirement for a hydrophobic residue at HA1 226 of H2 and H3 HAs when binding to human-like receptors. Consequently, TW H6 HA has a slight preference for human receptors, thus may represent an intermediate towards a complete human adaptation. Importantly, the triad observed in TW H6 HA is detected in 74% H6 viruses isolated from Taiwan in the past 14 years, suggesting an elevated threat of H6 viruses from this region to human health. The novel roles of the triad at HA1 137, 190 and 228 of H6 HA in binding to receptors revealed here may also be used by other HA subtypes to achieve human adaptation, which needs to be further tested in laboratory and closely monitored in field surveillance.
Collapse
Affiliation(s)
- Fengyun Ni
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Elena Kondrashkina
- Life Sciences Collaborative Access Team (LS-CAT), Synchrotron Research Center, Northwestern University, Argonne, Illinois, United States of America
| | - Qinghua Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
177
|
A potent broad-spectrum protective human monoclonal antibody crosslinking two haemagglutinin monomers of influenza A virus. Nat Commun 2015; 6:7708. [PMID: 26196962 PMCID: PMC4518248 DOI: 10.1038/ncomms8708] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/03/2015] [Indexed: 01/07/2023] Open
Abstract
Effective annual influenza vaccination requires frequent changes in vaccine composition due to both antigenic shift for different subtype hemagglutinins (HAs) and antigenic drift in a particular HA. Here we present a broadly neutralizing human monoclonal antibody with an unusual binding modality. The antibody, designated CT149, was isolated from convalescent patients infected with pandemic H1N1 in 2009. CT149 is found to neutralize all tested group 2 and some group 1 influenza A viruses by inhibiting low pH-induced, HA-mediated membrane fusion. It promotes killing of infected cells by Fc-mediated antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. X-ray crystallographic data reveal that CT149 binds primarily to the fusion domain in HA2, and the light chain is also largely involved in binding. The epitope recognized by this antibody comprises amino-acid residues from two adjacent protomers of HA. This binding characteristic of CT149 will provide more information to support the design of more potent influenza vaccines.
Collapse
|
178
|
Science: a world without borders. Protein Cell 2015; 6:551-2. [PMID: 26163855 PMCID: PMC4506287 DOI: 10.1007/s13238-015-0189-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
179
|
Chung KY, Coyle EM, Jani D, King LR, Bhardwaj R, Fries L, Smith G, Glenn G, Golding H, Khurana S. ISCOMATRIX™ adjuvant promotes epitope spreading and antibody affinity maturation of influenza A H7N9 virus like particle vaccine that correlate with virus neutralization in humans. Vaccine 2015; 33:3953-62. [PMID: 26093202 DOI: 10.1016/j.vaccine.2015.06.047] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 12/09/2022]
Abstract
In a previously reported phase I clinical trial, subjects vaccinated with two doses of an unadjuvanted H7N9 virus like particle (VLP) vaccine responded poorly (15.6% seroconversion rates with 45μg hemagglutinin (HA) dose). In contrast, 80.6% of subjects receiving H7N9 VLP vaccine (5μg HA) with ISCOMATRIX™ adjuvant developed hemagglutination-inhibition (HI) responses. To better understand the role of adjuvant, complete antibody epitope repertoires of post-vaccination sera were investigated using Whole Genome Fragment Phage Display Library (GFPDL). In addition, antibody affinity maturation following vaccination was measured against HA1 and HA2 antigenic domains using real time Surface Plasmon Resonance (SPR) based kinetic assays. Unadjuvanted H7N9-VLP vaccine generated primarily antibodies targeting the C-terminus of the HA1 domain, predicted to be mostly buried on the native HA spikes, while adjuvanted VLP vaccine generated antibodies against large epitopes in the HA1 spanning the receptor binding domain (RBD). SPR analysis using a functional H7-HA1 domain demonstrated that sera from adjuvanted H7N9-VLP vaccine induced higher total binding antibodies and significantly higher antibody affinity maturation to HA1 compared to sera from unadjuvanted vaccine. Total antibody binding and affinity to the HA1 (but not HA2) domain correlated with HI and neutralization titers. This study demonstrates that ISCOMATRIX™ adjuvanted vaccine promotes higher quality antibody immune response against avian influenza in naïve humans.
Collapse
Affiliation(s)
- Ka Yan Chung
- Division of Viral Products, CBER, FDA, Silver Spring, MD 20993, USA
| | | | | | - Lisa R King
- Division of Viral Products, CBER, FDA, Silver Spring, MD 20993, USA
| | - Rukmini Bhardwaj
- Division of Viral Products, CBER, FDA, Silver Spring, MD 20993, USA
| | | | | | | | - Hana Golding
- Division of Viral Products, CBER, FDA, Silver Spring, MD 20993, USA
| | - Surender Khurana
- Division of Viral Products, CBER, FDA, Silver Spring, MD 20993, USA.
| |
Collapse
|
180
|
Characterization of Two Human Monoclonal Antibodies Neutralizing Influenza A H7N9 Viruses. J Virol 2015; 89:9115-8. [PMID: 26063436 DOI: 10.1128/jvi.01295-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/04/2015] [Indexed: 11/20/2022] Open
Abstract
H7N9 was a cause of significant global health concern due to its severe infection and approximately 35% mortality in humans. By screening a Fab antibody phage library derived from patients who recovered from H7N9 infections, we characterized two human monoclonal antibodies (HuMAbs), HNIgGD5 and HNIgGH8. The epitope of these two antibodies was dependent on two residues in the receptor binding site at positions V186 and L226 of the hemagglutinin glycoprotein. Both antibodies possessed high neutralizing activity.
Collapse
|
181
|
Wang F, Qi J, Bi Y, Zhang W, Wang M, Zhang B, Wang M, Liu J, Yan J, Shi Y, Gao GF. Adaptation of avian influenza A (H6N1) virus from avian to human receptor-binding preference. EMBO J 2015; 34:1661-73. [PMID: 25940072 DOI: 10.15252/embj.201590960] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/16/2015] [Indexed: 12/27/2022] Open
Abstract
The receptor-binding specificity of influenza A viruses is a major determinant for the host tropism of the virus, which enables interspecies transmission. In 2013, the first human case of infection with avian influenza A (H6N1) virus was reported in Taiwan. To gather evidence concerning the epidemic potential of H6 subtype viruses, we performed comprehensive analysis of receptor-binding properties of Taiwan-isolated H6 HAs from 1972 to 2013. We propose that the receptor-binding properties of Taiwan-isolated H6 HAs have undergone three major stages: initially avian receptor-binding preference, secondarily obtaining human receptor-binding capacity, and recently human receptor-binding preference, which has been confirmed by receptor-binding assessment of three representative virus isolates. Mutagenesis work revealed that E190V and G228S substitutions are important to acquire the human receptor-binding capacity, and the P186L substitution could reduce the binding to avian receptor. Further structural analysis revealed how the P186L substitution in the receptor-binding site of HA determines the receptor-binding preference change. We conclude that the human-infecting H6N1 evolved into a human receptor preference.
Collapse
Affiliation(s)
- Fei Wang
- College of Veterinary Medicine China Agricultural University, Beijing, China CAS Key Laboratory of Pathogenic Microbiology and Immunology Institute of Microbiology Chinese Academy of Sciences, Beijing, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology Institute of Microbiology Chinese Academy of Sciences, Beijing, China Center of Influenza Research and Early-Warning Chinese Academy of Sciences, Beijing, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology Institute of Microbiology Chinese Academy of Sciences, Beijing, China Center of Influenza Research and Early-Warning Chinese Academy of Sciences, Beijing, China
| | - Wei Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology Institute of Microbiology Chinese Academy of Sciences, Beijing, China Center of Influenza Research and Early-Warning Chinese Academy of Sciences, Beijing, China
| | - Min Wang
- College of Veterinary Medicine China Agricultural University, Beijing, China CAS Key Laboratory of Pathogenic Microbiology and Immunology Institute of Microbiology Chinese Academy of Sciences, Beijing, China
| | - Baorong Zhang
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science Chinese Academy of Sciences, Beijing, China Aviation General Hospital, Beijing, China
| | - Ming Wang
- College of Veterinary Medicine China Agricultural University, Beijing, China
| | - Jinhua Liu
- College of Veterinary Medicine China Agricultural University, Beijing, China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology Institute of Microbiology Chinese Academy of Sciences, Beijing, China Center of Influenza Research and Early-Warning Chinese Academy of Sciences, Beijing, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology Institute of Microbiology Chinese Academy of Sciences, Beijing, China Center of Influenza Research and Early-Warning Chinese Academy of Sciences, Beijing, China Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science Chinese Academy of Sciences, Beijing, China
| | - George F Gao
- College of Veterinary Medicine China Agricultural University, Beijing, China CAS Key Laboratory of Pathogenic Microbiology and Immunology Institute of Microbiology Chinese Academy of Sciences, Beijing, China Center of Influenza Research and Early-Warning Chinese Academy of Sciences, Beijing, China Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science Chinese Academy of Sciences, Beijing, China National Institute for Viral Disease Control and Prevention Chinese Center for Disease Control and Prevention (China CDC), Beijing, China Office of Director-General, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| |
Collapse
|
182
|
Neumann G, Kawaoka Y. Transmission of influenza A viruses. Virology 2015; 479-480:234-46. [PMID: 25812763 PMCID: PMC4424116 DOI: 10.1016/j.virol.2015.03.009] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 02/10/2015] [Accepted: 03/02/2015] [Indexed: 12/25/2022]
Abstract
Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to 'novel' viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages.
Collapse
Affiliation(s)
- Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI 53711, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI 53711, USA; Division of Virology, Department of Microbiology and Immunology and International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
183
|
Herrmann A, Sieben C. Single-virus force spectroscopy unravels molecular details of virus infection. Integr Biol (Camb) 2015; 7:620-32. [PMID: 25923471 DOI: 10.1039/c5ib00041f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Virus infection is a multistep process that has significant effects on the structure and function of both the virus and the host cell. The first steps of virus replication include cell binding, entry and release of the viral genome. Single-virus force spectroscopy (SVFS) has become a promising tool to understand the molecular details of those steps. SVFS data complemented by biochemical and biophysical, including theoretical modeling approaches provide valuable insights into molecular events that accompany virus infection. Properties of virus-cell interaction as well as structural alterations of the virus essential for infection can be investigated on a quantitative level. Here we review applications of SVFS to virus binding, structure and mechanics. We demonstrate that SVFS offers unexpected new insights not accessible by other methods.
Collapse
Affiliation(s)
- Andreas Herrmann
- Humboldt-Universität zu Berlin, Institut für Biologie, Molekulare Biophysik, Invalidenstr. 42, D-10115 Berlin, Germany.
| | | |
Collapse
|
184
|
Human monoclonal antibodies targeting the haemagglutinin glycoprotein can neutralize H7N9 influenza virus. Nat Commun 2015; 6:6714. [PMID: 25819694 DOI: 10.1038/ncomms7714] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 02/20/2015] [Indexed: 01/07/2023] Open
Abstract
The recently identified avian-originated influenza H7N9 virus causes severe pulmonary disease and may lead to death in humans. Currently, treatment options for the prevention and control of fatal H7N9 infections in humans remain limited. Here we characterize two human monoclonal antibodies (HuMAbs), HNIgGA6 and HNIgGB5, by screening a Fab antibody phage library derived from patients who recovered from H7N9 infection. Both antibodies exhibit high neutralizing activity against H7N9 virus in cells. Two amino acids in the receptor-binding site, 186V and 226L, are crucial for the binding of these two HuMAbs to viral haemagglutinin antigens. Prophylaxis with HNIgGA6 and HNIgGB5 confers significant immunity against H7N9 virus in a mouse model and significantly reduces the pulmonary virus titre. When administered post infection, therapeutic doses of the HuMAbs also provide robust protection against lethality. These antibodies might represent a potential alternative or adjunct to H7N9 pandemic interventions.
Collapse
|
185
|
Tan KX, Jacob SA, Chan KG, Lee LH. An overview of the characteristics of the novel avian influenza A H7N9 virus in humans. Front Microbiol 2015; 6:140. [PMID: 25798131 PMCID: PMC4350415 DOI: 10.3389/fmicb.2015.00140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/06/2015] [Indexed: 01/05/2023] Open
Abstract
The novel avian influenza A H7N9 virus which caused the first human infection in Shanghai, China; was reported on the 31st of March 2013 before spreading rapidly to other Chinese provinces and municipal cities. This is the first time the low pathogenic avian influenza A virus has caused human infections and deaths; with cases of severe respiratory disease with pneumonia being reported. There were 440 confirmed cases with 122 fatalities by 16 May 2014; with a fatality risk of ∼28%. The median age of patients was 61 years with a male-to-female ratio of 2.4:1. The main source of infection was identified as exposure to poultry and there is so far no definitive evidence of sustained person-to-person transmission. The neuraminidase inhibitors, namely oseltamivir, zanamivir, and peramivir; have shown good efficacy in the management of the novel H7N9 virus. Treatment is recommended for all hospitalized patients, and for confirmed and probable outpatient cases; and should ideally be initiated within 48 h of the onset of illness for the best outcome. Phylogenetic analysis found that the novel H7N9 virus is avian in origin and evolved from multiple reassortments of at least four origins. Indeed the novel H7N9 virus acquired human adaptation via mutations in its eight RNA gene segments. Enhanced surveillance and effective global control are essential to prevent pandemic outbreaks of the novel H7N9 virus.
Collapse
Affiliation(s)
- Kei-Xian Tan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Sabrina A. Jacob
- School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - Learn-Han Lee
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| |
Collapse
|
186
|
Wodal W, Schwendinger MG, Savidis-Dacho H, Crowe BA, Hohenadl C, Fritz R, Brühl P, Portsmouth D, Karner-Pichl A, Balta D, Grillberger L, Kistner O, Barrett PN, Howard MK. Immunogenicity and protective efficacy of a Vero cell culture-derived whole-virus H7N9 vaccine in mice and guinea pigs. PLoS One 2015; 10:e0113963. [PMID: 25719901 PMCID: PMC4342221 DOI: 10.1371/journal.pone.0113963] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 11/03/2014] [Indexed: 12/26/2022] Open
Abstract
Background A novel avian H7N9 virus with a high case fatality rate in humans emerged in China in 2013. We evaluated the immunogenicity and protective efficacy of a candidate Vero cell culture-derived whole-virus H7N9 vaccine in small animal models. Methods Antibody responses induced in immunized DBA/2J mice and guinea pigs were evaluated by hemagglutination inhibition (HI), microneutralization (MN), and neuraminidase inhibition (NAi) assays. T-helper cell responses and IgG subclass responses in mice were analyzed by ELISPOT and ELISA, respectively. Vaccine efficacy against lethal challenge with wild-type H7N9 virus was evaluated in immunized mice. H7N9-specific antibody responses induced in mice and guinea pigs were compared to those induced by a licensed whole-virus pandemic H1N1 (H1N1pdm09) vaccine. Results The whole-virus H7N9 vaccine induced dose-dependent H7N9-specific HI, MN and NAi antibodies in mice and guinea pigs. Evaluation of T-helper cell responses and IgG subclasses indicated the induction of a balanced Th1/Th2 response. Immunized mice were protected against lethal H7N9 challenge in a dose-dependent manner. H7N9 and H1N1pdm09 vaccines were similarly immunogenic. Conclusions The induction of H7N9-specific antibody and T cell responses and protection against lethal challenge suggest that the Vero cell culture-derived whole-virus vaccine would provide an effective intervention against the H7N9 virus.
Collapse
Affiliation(s)
- Walter Wodal
- Vaccine R&D, Baxter BioScience, Orth/Donau, Austria
| | | | | | | | | | | | - Peter Brühl
- Vaccine R&D, Baxter BioScience, Orth/Donau, Austria
| | | | | | - Dalida Balta
- Process Development R&D, Baxter BioScience, Orth/Donau, Austria
| | | | | | - P. Noel Barrett
- Vaccine R&D, Baxter BioScience, Orth/Donau, Austria
- * E-mail:
| | | |
Collapse
|
187
|
Wang M, Zhang W, Qi J, Wang F, Zhou J, Bi Y, Wu Y, Sun H, Liu J, Huang C, Li X, Yan J, Shu Y, Shi Y, Gao GF. Structural basis for preferential avian receptor binding by the human-infecting H10N8 avian influenza virus. Nat Commun 2015; 6:5600. [DOI: 10.1038/ncomms6600] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/20/2014] [Indexed: 01/26/2023] Open
|
188
|
Hu W. The Impact of NA Stalk Deletion on HA Receptor Binding Specificity of Avian H7N9 in China in 2013-14 and Avian H7N7 in Netherlands in 2003. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/cmb.2015.51001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
189
|
Long JS, Benfield CT, Barclay WS. One-way trip: Influenza virus' adaptation to gallinaceous poultry may limit its pandemic potential. Bioessays 2014; 37:204-12. [DOI: 10.1002/bies.201400133] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jason S. Long
- Imperial College London, Department of Medicine, Section of Virology; London UK
| | | | - Wendy S. Barclay
- Imperial College London, Department of Medicine, Section of Virology; London UK
| |
Collapse
|
190
|
Husain M. Avian influenza A (H7N9) virus infection in humans: Epidemiology, evolution, and pathogenesis. INFECTION GENETICS AND EVOLUTION 2014; 28:304-12. [DOI: 10.1016/j.meegid.2014.10.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 12/09/2022]
|
191
|
Phylogenetics of varied subtypes of avian influenza viruses in China: potential threat to humans. Protein Cell 2014; 5:253-7. [PMID: 24622845 PMCID: PMC3978160 DOI: 10.1007/s13238-014-0036-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
192
|
Enabling the 'host jump': structural determinants of receptor-binding specificity in influenza A viruses. Nat Rev Microbiol 2014; 12:822-31. [PMID: 25383601 DOI: 10.1038/nrmicro3362] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The recent emergence of the H7N9 avian influenza A virus and its ability to infect humans emphasize the epidemic and pandemic potential of these viruses. Interspecies transmission is the result of many factors, which ultimately lead to a change in the host tropism of the virus. One of the key factors involved is a shift in the receptor-binding specificity of the virus, which is mostly determined by mutations in the viral haemagglutinin (HA). In this Review, we discuss recent crystallographic studies that provide molecular insights into HA-host receptor interactions that have enabled several influenza A virus subtypes to 'jump' from avian to human hosts.
Collapse
|
193
|
Family clusters of avian influenza A H7N9 virus infection in Guangdong Province, China. J Clin Microbiol 2014; 53:22-8. [PMID: 25339399 DOI: 10.1128/jcm.02322-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since its first identification, the epizootic avian influenza A H7N9 virus has continued to cause infections in China. Two waves were observed during this outbreak. No cases were reported from Guangdong Province during the first wave, but this province became one of the prime outbreak sites during the second wave. In order to identify the transmission potential of this continuously evolving infectious virus, our research group monitored all clusters of H7N9 infections during the second wave of the epidemic in Guangdong Province. Epidemiological, clinical, and virological data on these patients were collected and analyzed. Three family clusters including six cases of H7N9 infection were recorded. The virus caused severe disease in two adult patients but only mild symptoms for all four pediatric patients. All patients reported direct poultry or poultry market exposure history. Relevant environment samples collected according to their reported exposures tested H7N9 positive. Virus isolates from patients in the same cluster shared high sequence similarities. In conclusion, although continually evolving, the currently circulating H7N9 viruses in Guangdong Province have not yet demonstrated the capacity for efficient and sustained person-to-person transmission.
Collapse
|
194
|
Assessment of the internal genes of influenza A (H7N9) virus contributing to high pathogenicity in mice. J Virol 2014; 89:2-13. [PMID: 25320305 DOI: 10.1128/jvi.02390-14] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED The recently identified H7N9 influenza A virus has caused severe economic losses and worldwide public concern. Genetic analysis indicates that its six internal genes all originated from H9N2 viruses. However, the H7N9 virus is more highly pathogenic in humans than H9N2, which suggests that the internal genes of H7N9 have mutated. To analyze which H7N9 virus internal genes contribute to its high pathogenicity, a series of reassortants was generated by reverse genetics, with each virus containing a single internal gene of the typical A/Anhui/1/2013 (H7N9) (AH-H7N9) virus in the genetic background of the A/chicken/Shandong/lx1023/2007 (H9N2) virus. The replication ability, polymerase activity, and pathogenicity of these viruses were then evaluated in vitro and in vivo. These recombinants displayed high genetic compatibility, and the H7N9-derived PB2, M, and NP genes were identified as the virulence genes for the reassortants in mice. Further investigation confirmed that the PB2 K627 residue is critical for the high pathogenicity of the H7N9 virus and the reassortant containing the H7N9-derived PB2 segment (H9N2-AH/PB2). Notably, the H7N9-derived PB2 gene displayed greater compatibility with the H9N2 genome than that of H7N9, endowing the H9N2-AH/PB2 reassortant with greater viability and virulence than the parental H7N9 virus. In addition, the H7N9 virus, with the exception of the H9N2 reassortants, could effectively replicate in human A549 cells. Our results indicate that PB2, M, and NP are the key virulence genes, together with the surface hemagglutinin (HA) and neuraminidase (NA) proteins, contributing to the high infectivity of the H7N9 virus in humans. IMPORTANCE To date, the novel H7N9 influenza A virus has caused 437 human infections, with approximately 30% mortality. Previous work has primarily focused on the two viral surface proteins, HA and NA, but the contribution of the six internal genes to the high pathogenicity of H7N9 has not been systematically studied. Here, the H9N2 virus was used as a genetic backbone to evaluate the virulence genes of H7N9 virus in vitro and in vivo. Our data indicate that the PB2, M, and NP genes play important roles in viral infection in mice and, together with HA and NA, contribute to the high infectivity of the H7N9 virus in humans.
Collapse
|
195
|
Vachieri SG, Xiong X, Collins PJ, Walker PA, Martin SR, Haire LF, Zhang Y, McCauley JW, Gamblin SJ, Skehel JJ. Receptor binding by H10 influenza viruses. Nature 2014; 511:475-7. [PMID: 24870229 DOI: 10.1038/nature13443] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/07/2014] [Indexed: 01/18/2023]
Abstract
H10N8 follows H7N9 and H5N1 as the latest in a line of avian influenza viruses that cause serious disease in humans and have become a threat to public health. Since December 2013, three human cases of H10N8 infection have been reported, two of whom are known to have died. To gather evidence relating to the epidemic potential of H10 we have determined the structure of the haemagglutinin of a previously isolated avian H10 virus and we present here results relating especially to its receptor-binding properties, as these are likely to be major determinants of virus transmissibility. Our results show, first, that the H10 virus possesses high avidity for human receptors and second, from the crystal structure of the complex formed by avian H10 haemagglutinin with human receptor, it is clear that the conformation of the bound receptor has characteristics of both the 1918 H1N1 pandemic virus and the human H7 viruses isolated from patients in 2013 (ref. 3). We conclude that avian H10N8 virus has sufficient avidity for human receptors to account for its infection of humans but that its preference for avian receptors should make avian-receptor-rich human airway mucins an effective block to widespread infection. In terms of surveillance, particular attention will be paid to the detection of mutations in the receptor-binding site of the H10 haemagglutinin that decrease its avidity for avian receptor, and could enable it to be more readily transmitted between humans.
Collapse
Affiliation(s)
- Sebastien G Vachieri
- 1] MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK [2]
| | - Xiaoli Xiong
- 1] MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK [2]
| | - Patrick J Collins
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Philip A Walker
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Stephen R Martin
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Lesley F Haire
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Ying Zhang
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - John W McCauley
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Steven J Gamblin
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - John J Skehel
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
196
|
Watanabe T, Watanabe S, Maher EA, Neumann G, Kawaoka Y. Pandemic potential of avian influenza A (H7N9) viruses. Trends Microbiol 2014; 22:623-31. [PMID: 25264312 DOI: 10.1016/j.tim.2014.08.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/21/2014] [Accepted: 08/26/2014] [Indexed: 12/30/2022]
Abstract
Avian influenza viruses rarely infect humans, but the recently emerged avian H7N9 influenza viruses have caused sporadic infections in humans in China, resulting in 440 confirmed cases with 122 fatalities as of 16 May 2014. In addition, epidemiologic surveys suggest that there have been asymptomatic or mild human infections with H7N9 viruses. These viruses replicate efficiently in mammals, show limited transmissibility in ferrets and guinea pigs, and possess mammalian-adapting amino acid changes that likely contribute to their ability to infect mammals. In this review, we summarize the characteristic features of the novel H7N9 viruses and assess their pandemic potential.
Collapse
Affiliation(s)
- Tokiko Watanabe
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI 53711, USA; ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan; Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Shinji Watanabe
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan; Laboratory of Veterinary Microbiology, Department of Veterinary Sciences, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Eileen A Maher
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI 53711, USA
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI 53711, USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI 53711, USA; ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan; Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
197
|
Guo L, Zhang X, Ren L, Yu X, Chen L, Zhou H, Gao X, Teng Z, Li J, Hu J, Wu C, Xiao X, Zhu Y, Wang Q, Pang X, Jin Q, Wu F, Wang J. Human antibody responses to avian influenza A(H7N9) virus, 2013. Emerg Infect Dis 2014; 20:192-200. [PMID: 24447423 PMCID: PMC3901473 DOI: 10.3201/eid2002.131094] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Understanding host antibody response is crucial for predicting disease severity and for vaccine development. We investigated antibody responses against influenza A(H7N9) virus in 48 serum samples from 21 patients, including paired samples from 15 patients. IgG against subtype H7 and neutralizing antibodies (NAbs) were not detected in acute-phase samples, but ELISA geometric mean titers increased in convalescent-phase samples; NAb titers were 20–80 (geometric mean titer 40). Avidity to IgG against subtype H7 was significantly lower than that against H1 and H3. IgG against H3 was boosted after infection with influenza A(H7N9) virus, and its level in acute-phase samples correlated with that against H7 in convalescent-phase samples. A correlation was also found between hemagglutinin inhibition and NAb titers and between hemagglutinin inhibition and IgG titers against H7. Because of the relatively weak protective antibody response to influenza A(H7N9), multiple vaccinations might be needed to achieve protective immunity.
Collapse
MESH Headings
- Acute-Phase Reaction/blood
- Acute-Phase Reaction/immunology
- Acute-Phase Reaction/virology
- Aged
- Aged, 80 and over
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/blood
- Antibody Affinity
- Child
- Child, Preschool
- Convalescence
- Cross Protection
- Female
- Hemagglutination Inhibition Tests
- Hemagglutination, Viral/immunology
- Humans
- Immunoglobulin G/biosynthesis
- Immunoglobulin G/blood
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza, Human/blood
- Influenza, Human/immunology
- Influenza, Human/virology
- Male
Collapse
|
198
|
Interaction energy analysis on specific binding of influenza virus hemagglutinin to avian and human sialosaccharide receptors: Importance of mutation-induced structural change. J Mol Graph Model 2014; 53:48-58. [DOI: 10.1016/j.jmgm.2014.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/04/2014] [Accepted: 07/07/2014] [Indexed: 11/19/2022]
|
199
|
Prabakaran M, Rajesh Kumar S, Ashok Raj KV, Wu X, He F, Zhou J, Kwang J. Cross-protective efficacy of baculovirus displayed hemagglutinin against highly pathogenic influenza H7 subtypes. Antiviral Res 2014; 109:149-59. [DOI: 10.1016/j.antiviral.2014.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 06/04/2014] [Accepted: 06/24/2014] [Indexed: 10/25/2022]
|
200
|
A single amino acid substitution in the novel H7N9 influenza A virus NS1 protein increases CPSF30 binding and virulence. J Virol 2014; 88:12146-51. [PMID: 25078692 PMCID: PMC4178744 DOI: 10.1128/jvi.01567-14] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although an effective interferon antagonist in human and avian cells, the novel H7N9 influenza virus NS1 protein is defective at inhibiting CPSF30. An I106M substitution in H7N9 NS1 can restore CPSF30 binding together with the ability to block host gene expression. Furthermore, a recombinant virus expressing H7N9 NS1-I106M replicates to higher titers in vivo, and is subtly more virulent, than the parental virus. Natural polymorphisms in H7N9 NS1 that enhance CPSF30 binding may be cause for concern.
Collapse
|