201
|
Gencler A, Celik H, Demir A. Evaluating serum S-Equol, indoxyl sulfate, and TMAO in predicting urinary stones in children: a prospective study. Urolithiasis 2025; 53:68. [PMID: 40186630 PMCID: PMC11972205 DOI: 10.1007/s00240-025-01737-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/18/2025] [Indexed: 04/07/2025]
Abstract
Gut microbiota is vital in maintaining health and has been implicated in urinary stone disease. Patients with and without stones have different microbial compositions. In this context, we assessed serum levels of S-equol, indoxyl sulfate (IS), and trimethylamine N-oxide (TMAO), which are metabolites thought to be associated with gut microbiota, and their prognostic values in predicting stone formation in children with urinary stone disease. The study population consisted of children aged between one month and 18 years with urinary stone disease. The patient group consisted of 44 children with urinary stone disease, and the control group consisted of 44 healthy children who were matched with the patient group in terms of age and gender. The study's primary outcomes were the differences between the groups in serum metabolite levels. Serum S-equol and TMAO levels were significantly lower in the patient group than in the control group. There was no significant difference between the groups in serum IS levels. There were also no significant correlations between serum metabolite levels and age in either group. Children with urinary stone disease had significantly lower serum S-equol and TMAO levels than healthy control subjects, suggesting a possible link between these metabolites and stone formation.
Collapse
Affiliation(s)
- Aylin Gencler
- Department of Pediatric Nephrology, Harran University Faculty of Medicine, Şanlıurfa, Turkey.
| | - Hakim Celik
- Department of Medical Physiology, Harran University Faculty of Medicine, Şanlıurfa, Turkey
| | - Abit Demir
- Department of Pediatrics, Harran University Faculty of Medicine, Şanlıurfa, Turkey
| |
Collapse
|
202
|
Jagua-Gualdrón A, García-Reyes NA, Africano-Lopez HL. Apitherapy for drug-induced kidney disease: a narrative review on its mechanisms. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2025:jcim-2025-0082. [PMID: 40178599 DOI: 10.1515/jcim-2025-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/12/2025] [Indexed: 04/05/2025]
Abstract
OBJECTIVES The use of medications for the treatment of various diseases often results in kidney damage. Apitherapy is a natural therapeutic tool with potential utility for this purpose. This narrative review analyzes and summarizes the scientific evidence on the use of apitherapy in drug-induced kidney disease. CONTENT This review summarizes and analyzes recent advances in drug-induced kidney disease and explores, based on the available scientific evidence, how apitherapy can modify these mechanisms and be utilized for prevention and treatment. SUMMARY Apitherapy (the complementary and integrative use of beehive products) is a potentially useful therapeutic system for the treatment of various diseases. This review examines the preclinical and clinical evidence available regarding its potential use in drug-induced kidney disease. OUTLOOK Apitherapy has effects on various pathophysiological mechanisms of drug-induced kidney disease, including oxidative stress, inflammation, decreased renal blood flow, glomerular damage, increased membrane permeability, activity of the renin-angiotensin-aldosterone axis, mitochondrial dysfunction, and apoptosis. Further studies in humans are needed to evaluate its efficacy in the clinical setting, but the available evidence is promising.
Collapse
Affiliation(s)
- Andrés Jagua-Gualdrón
- National University of Colombia, Bogotá D.C., Colombia
- International Institute for Complementary and Alternative Medicine-IIMAN, Bogotá D.C., Colombia
- International College of Apitherapy, Bogotá D.C., Colombia
| | - Nicolai Andrés García-Reyes
- National University of Colombia, Bogotá D.C., Colombia
- International Institute for Complementary and Alternative Medicine-IIMAN, Bogotá D.C., Colombia
| | - Holman Leonardo Africano-Lopez
- Fundación Universitaria de Ciencias de la Salud, Sociedad de Cirugía de Bogotá, Hospital San José Sede Centro, Bogotá D.C., Colombia
| |
Collapse
|
203
|
Schneider S, Biggerstaff D, Barber TM. Dietary Guidelines Post Kidney Transplant: Is This the Missing Link in Recovery and Graft Survival? Transpl Int 2025; 38:14288. [PMID: 40248508 PMCID: PMC12004285 DOI: 10.3389/ti.2025.14288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/11/2025] [Indexed: 04/19/2025]
Abstract
The physiology of a transplanted kidney is affected from the moment it is separated from the donor. The risk of complications arising from surgery are highly associated with ischemic-reperfusion injury (IRI) due to the effects of hypoxia and oxidative stress during the procurement, preservation and reperfusion procedures. Hypoxia promotes the formation of reactive oxygen species (ROS) and it seems apparent that finding ways of optimising the metabolic milieu for the transplanted kidney would improve recovery and graft survival. Studies have demonstrated the benefits of nutrition and antioxidant compounds in mitigating the disturbance of energy supply to cells post-transplant and at improving long-term graft survival. Particularly in patients who may be nutritionally deficient following long-term dialysis. Despite the high incidence of allograft failure, a search of the literature and grey literature reveals no medical nutriti on therapy guidelines on beneficial nutrient intake to aid transplant recovery and survival. This narrative review aims to summarise current knowledge of specific macro and micronutrients and their effect on allograft recovery and survival in the perioperative period, up to 1-year post transplant, to optimise the metabolic environment and mitigate risk to graft injury.
Collapse
Affiliation(s)
- Suzanne Schneider
- Directorate Applied Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Deborah Biggerstaff
- Directorate Applied Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Thomas M. Barber
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| |
Collapse
|
204
|
Sun M, Zhang W, Tian C, Wang R, Liu W, Li Y, Lv Y, Wang Z. A Novel Classification Model Based on Hyperspectral Imaging for Predicting Response to Tacrolimus in Patients With Primary Membranous Nephropathy. JOURNAL OF BIOPHOTONICS 2025:e70025. [PMID: 40181509 DOI: 10.1002/jbio.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/12/2025] [Accepted: 03/23/2025] [Indexed: 04/05/2025]
Abstract
At present, the research to predict the efficacy of tacrolimus (TAC) mainly focuses on serological indexes and urine analysis. Because these indicators are affected by many factors, they cannot accurately predict the therapeutic effect of primary membranous nephropathy (PMN) patients. In this study, a novel classification model (RCN) based on hyperspectral imaging combined with one-dimensional convolutional neural networks (1D CNN) and relevance vector machine (RVM) was proposed for predicting patients' response to TAC. Based on the treatment outcomes of corticosteroids combined with TAC, the patients were divided into a remission group and a nonremission group. Through the analysis of hyperspectral data of pathological slices of patients in both the remission group and the nonremission group, the research results show that the model can effectively extract key features from the spectral data and achieve high classification performance, and it can predict the therapeutic effect of TAC in PMN patients.
Collapse
Affiliation(s)
- Meijuan Sun
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, Jinan, China
| | - Wenqiang Zhang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, Jinan, China
| | - Chongxuan Tian
- School of Control Science and Engineering, Shandong University, Jinan, China
| | - Ruiyang Wang
- School of Radiology, Shandong First Medical University, Taian, China
| | - Wen Liu
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, Jinan, China
| | - Yang Li
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, Jinan, China
| | - Yang Lv
- Marine and Freshwater Biology, College of Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Zunsong Wang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, Jinan, China
| |
Collapse
|
205
|
Cheng S, Wang H. Aging and atrial fibrillation: Role of telomere dysfunction. Chin Med J (Engl) 2025:00029330-990000000-01507. [PMID: 40176558 DOI: 10.1097/cm9.0000000000003550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Indexed: 04/04/2025] Open
Affiliation(s)
- Sijun Cheng
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, China Medical University, Shenyang, Liaoning 110000, China
| | | |
Collapse
|
206
|
Gill SK, Gomer RH. Translational Regulators in Pulmonary Fibrosis: MicroRNAs, Long Non-Coding RNAs, and Transcript Modifications. Cells 2025; 14:536. [PMID: 40214489 PMCID: PMC11988943 DOI: 10.3390/cells14070536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Fibrosing disorders including idiopathic pulmonary fibrosis (IPF) are progressive irreversible diseases, often with poor prognoses, characterized by the accumulation of excessive scar tissue and extracellular matrix. Translational regulation has emerged as a critical aspect of gene expression control, and the dysregulation of key effectors is associated with disease pathogenesis. This review examines the current literature on translational regulators in IPF, focusing on microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and RNA transcript modifications including alternative polyadenylation and chemical modification. Some of these translational regulators potentiate fibrosis, and some of the regulators inhibit fibrosis. In IPF, some of the profibrotic regulators are upregulated, and some of the antifibrotic regulators are downregulated. Correcting these defects in IPF-associated translational regulators could be an intriguing avenue for therapeutics.
Collapse
Affiliation(s)
| | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
207
|
Chang X, Zhang Y, Deng M, Yang R, Zhang J, Hao M, Miao J. OTUD1 inhibits endometriosis fibrosis by deubiquitinating MADH7. Mol Hum Reprod 2025; 31:gaaf014. [PMID: 40279273 DOI: 10.1093/molehr/gaaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 03/12/2025] [Indexed: 04/27/2025] Open
Abstract
Fibrosis constitutes the principal pathophysiological mediator of pain and infertility manifestations in endometriosis, and the inhibitory factor of the TGF-β pathway, MADH7, makes a vital impact on the progression of fibrosis. Ovarian tumor domain-containing protein 1 (OTUD1) deubiquitinase binds to the MADH7 protein, although its specific role in endometriosis needs to be investigated. This study is the first to explore the role of OTUD1 in endometriosis and to investigate its impact on the growth of endometriosis lesions in vitro and in vivo, using C57BL/6N female mice and human primary stromal endometriosis cells (HEMCs). Moreover, the obtained results demonstrated that OTUD1 inhibited the expression of fibrosis-related proteins in HEMCs in vitro, and the mechanistic execution of this phenotype was achieved via coordinated deubiquitination coupled with MADH7-mediated transcriptional reprogramming. These events stopped the growth of lesions in vivo and reduced abdominal inflammation. The study demonstrated the critical role of the deubiquitinating enzyme OTUD1 in endometriosis, indicating its potential therapeutic effect on endometriosis.
Collapse
Affiliation(s)
- Xiangyu Chang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yanqin Zhang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Mengqi Deng
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Ruiye Yang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Jiamin Zhang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Menglin Hao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Jinwei Miao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
208
|
Ratan Y, Rajput A, Pareek A, Pareek A, Singh G. Comprehending the Role of Metabolic and Hemodynamic Factors Alongside Different Signaling Pathways in the Pathogenesis of Diabetic Nephropathy. Int J Mol Sci 2025; 26:3330. [PMID: 40244213 PMCID: PMC11989741 DOI: 10.3390/ijms26073330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/21/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
Diabetic nephropathy (DN) is a progressive microvascular disorder of diabetes that contributes as a primary reason for end-stage renal disease worldwide. The pathological hallmarks of DN include diffuse mesangial expansion, thicker basement membrane of glomeruli, and arteriole hyalinosis. Hypertension and chronic hyperglycemia are the primary risk factors contributing to the occurrence of DN. The complex pathophysiology of DN involves the interplay amongst metabolic and hemodynamic pathways, growth factors and cytokines production, oxidative stress, and ultimately impaired kidney function. Hyperglycemia-induced vascular dysfunction is the main pathological mechanism that initiates DN. However, several other pathogenic mechanisms, such as oxidative stress, inflammatory cell infiltration, and fibrosis, contribute to disease progression. Different vasoactive hormone processes, including endothelin and renin-angiotensin, are activated as a part of the pathophysiology of DN, which also involves increased intraglomerular and systemic pressure. The pathophysiology of DN will continue to be better understood because of recent developments in genomics and molecular biology, but attempts to develop a comprehensive theory that explains all existing cellular and biochemical pathways have been thwarted by the disease's multifactorial nature. This review extensively discusses the current understanding regarding the metabolic and hemodynamic pathological mechanisms, along with other signaling pathways and molecules responsible for the pathogenesis of DN. This work will encourage a greater in-depth understanding and investigation of the present status of the biochemical mechanistic processes underlying the pathogenesis of DN, which may assist in the determination of different biomarkers and help in the design and development of novel drug candidates in the near future.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (Y.R.); (A.R.); (A.P.); (A.P.)
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (Y.R.); (A.R.); (A.P.); (A.P.)
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (Y.R.); (A.R.); (A.P.); (A.P.)
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (Y.R.); (A.R.); (A.P.); (A.P.)
| | | |
Collapse
|
209
|
Gao X, Fan X, Yu X, Wang R, Zhang B, Li Y, Liu X, Yang Y. p66shc exacerbates the progression of obstructive nephropathy through apoptosis, mitochondrial damage, and EMT. J Pediatr Urol 2025:S1477-5131(25)00158-5. [PMID: 40234179 DOI: 10.1016/j.jpurol.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND Many factors contribute to hydronephrosis, ultimately resulting in renal fibrosis and even deterioration of renal function. This study investigated the pathogenic role of p66shc, a redox-regulatory protein, in hydronephrosis-induced renal injury. OBJECTIVE This study focused on the mechanism of p66shc in renal fibrosis associated with obstructive nephropathy. METHODS The expression of p66shc was found in kidney samples from pediatric hydronephrosis patients. A complete unilateral ureteral obstruction (CUUO) model was established in neonatal mice to recapitulate hydronephrotic progression. Cell proliferation, apoptosis, reactive oxygen species (ROS), mitochondrial damage, and degree of epithelial-mesenchymal transition (EMT) in renal tubular epithelial cells were studied following p66shc silencing and overexpression. We also investigated the therapeutic effects of silencing p66shc in vivo and carried out RNA sequencing after overexpressing p66shc in cells. RESULTS p66shc inhibited renal tubular epithelial cell growth, exacerbated cell oxidative and mitochondrial damage, and promoted cell apoptosis and EMT. Silencing its expression in vivo could efficiently reduce renal fibrosis. Combined with RNA sequencing, we analyzed the potential molecular mechanisms of p66shc downstream. CONCLUSION p66shc enhances cell damage and the EMT process in obstructive nephropathy. Suppressing the expression of p66shc is one potential strategy for mitigating renal fibrotic progression.
Collapse
Affiliation(s)
- Xilin Gao
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xu Fan
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xiaohan Yu
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Rui Wang
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Buzhou Zhang
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yanqiu Li
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Xin Liu
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China.
| | - Yi Yang
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
210
|
Lai Y, Zhu Y, Zhang X, Ding S, Wang F, Hao J, Wang Z, Shi C, Xu Y, Zheng L, Huang W. Gut microbiota-derived metabolites: Potential targets for cardiorenal syndrome. Pharmacol Res 2025; 214:107672. [PMID: 40010448 DOI: 10.1016/j.phrs.2025.107672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
The characteristic of cardiorenal syndrome (CRS) is simultaneous damage to both the heart and kidneys. CRS has caused a heavy burden of mortality and incidence rates worldwide. The regulation of host microbiota metabolism that triggers heart and kidney damage is an emerging research field that promotes a new perspective on cardiovascular risk. We summarize current studies from bench to bedside of gut microbiota-derived metabolites to better understand CRS in the context of gut microbiota-derived metabolites. We focused on the involvement of gut microbiota-derived metabolites in the pathophysiology of CRS, including lipid and cholesterol metabolism disorders, coagulation abnormalities and platelet aggregation, oxidative stress, endothelial dysfunction, inflammation, mitochondrial damage and energy metabolism disorders, vascular calcification and renal fibrosis, as well as emerging therapeutic approaches targeting CRS metabolism in gut microbiota-derived metabolites which provides an innovative treatment approach for CRS to improve patient prognosis and overall quality of life.
Collapse
Affiliation(s)
- Yuchen Lai
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yujie Zhu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Xihui Zhang
- Department of Blood Purification, General Hospital of Central Theater Command(Hankou Campus), No.68, Huangpu Avenue, Wuhan, 430010, China
| | - Shifang Ding
- Department of Cardiology, General Hospital of Central Theater Command, No.627, Wuluo Road, Wuhan 430070, China
| | - Fang Wang
- Department of Blood Purification, General Hospital of Central Theater Command(Hankou Campus), No.68, Huangpu Avenue, Wuhan, 430010, China
| | - Jincen Hao
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Zhaomeng Wang
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100050, China
| | - Congqi Shi
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yongjin Xu
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China; Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100050, China.
| | - Wei Huang
- Department of Cardiology, General Hospital of Central Theater Command, No.627, Wuluo Road, Wuhan 430070, China.
| |
Collapse
|
211
|
Hao MY, Li HJ, Han HS, Chu T, Wang YW, Si WR, Jiang QY, Wu DD. Recent advances in the role of gasotransmitters in necroptosis. Apoptosis 2025; 30:616-635. [PMID: 39833633 DOI: 10.1007/s10495-024-02057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 01/22/2025]
Abstract
Necroptosis is a finely regulated programmed cell death process involving complex molecular mechanisms and signal transduction networks. Among them, receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein are the key molecules regulating this process. In recent years, gasotransmitters such as nitric oxide, carbon monoxide and hydrogen sulfide have been suggested to play a regulatory role in necroptosis. This paper reviews the evidence that these gasotransmitters are involved in the regulation of necroptosis by influencing the production of reactive oxygen species, regulating the modification of S subunits of RIPK1 and RIPK3, regulating inflammatory mediators, and signal transduction. In addition, this review explores the potential therapeutic applications of these gasotransmitters in pathological conditions such as cardiovascular disease and ischemia-reperfusion injury. Although some studies have revealed the important role of gasotransmitters in necroptosis, the specific mechanism of action is still not fully understood. Future research is needed to further elucidate the molecular mechanisms of gasotransmitters in precisely regulating necroptosis, which will help develop new therapeutic strategies to prevent and treat related diseases.
Collapse
Affiliation(s)
- Meng-Yuan Hao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Hong-Jie Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Hang-Shen Han
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Wen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Wei-Rong Si
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
- Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
212
|
Zhang H, Hong Z, Jiang Z, Hu W, Hu J, Zhu R. miR-29b-3p Affects the Hypertrophy of Ligamentum Flavum in Lumbar Spinal Stenosis and its Mechanism. Biochem Genet 2025; 63:1824-1838. [PMID: 38625592 DOI: 10.1007/s10528-024-10811-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
To explore the effect of miR-29b-3p on fibrosis and hypertrophy of ligamentum flavum (LF) in lumbar spinal stenosis (LSS) and its underlying mechanism. Patients with LSS and lumbar disc herniation (LDH) (control) undergoing posterior lumbar laminectomy were included in this study. Human LF samples were obtained for LF cell isolation, RNA, and protein extraction. Histomorphological analysis of LF was performed using hematoxylin-eosin (HE) staining. After isolation, culture, and transfection of primary LF cells, different transfection groups were constructed: NC-mimic, miR-29b-3p-mimic, NC-inhibitor, and miR-29b-3p-inhibitor. Quantitative real time polymerase chain reaction (qRT-PCR) was performed to detect the expression of miR-29b-3p in LF and LF cells. Western blot analysis detected the protein expressions of P16 and CyclinD1. ELISA detected the protein expressions of TGF-β1, Smad2, Smad3, TLR4, Type I collagen, and Type III collagen. Finally, LF cell viability was detected using the Cell Counting Kit-8 (CCK8) assay. The thickness of LF was significantly thicker in the LSS group compared to the LDH group (p < 0.05), accompanied by a higher calcification degree, more fibroblasts, and a larger area of collagen fiber proliferation. miR-29b-3p expression was significantly lower in LSS-derived LF tissues and cells than in LDH-derived tissues and cells (both p < 0.05). Compared to the NC-mimic group, the miR-29b-3p-mimic group exhibited significantly higher miR-29b-3p expression, decreased protein expressions of Type I collagen, Type III collagen, TGF-β1, Smad2, Smad3, TLR4, P16, and CyclinD1, and inhibited LF cell proliferation (all p < 0.05). As expected, the miR-29b-3p-inhibitor group displayed contrasting expression patterns (all p < 0.05). Compared to the phosphate buffer saline (PBS) group, the Trimethylamine-N-Oxide (TMAO) group showed significantly increased expressions of TGF-β1, Smad2, Smad3, TLR4, Type I collagen, Type III collagen, P16, and CyclinD1, as well as enhanced LF cell proliferation (all p < 0.05). However, there was no significant difference between the TMAO group and the Ang II group (all p > 0.05). Upregulation of miR-29b-3p expression may play a role in improving LF fibrosis and hypertrophy in LSS by inhibiting P16 expression and suppressing the activation of the TGF-β/Smad signaling pathway. This finding offers new insights into future gene modification therapy for this patient population.
Collapse
Affiliation(s)
- Hongjie Zhang
- Department of Orthopedics, Dehong People's Hospital, Kunming Medical University Affiliated Dehong Hospital, Dehong, No.13 Yonghan Road, Mangshi District, 678400, China
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Jinghai District, Tianjin, 301617, China
| | - Zhixiong Hong
- Department of Orthopedics, Dehong People's Hospital, Kunming Medical University Affiliated Dehong Hospital, Dehong, No.13 Yonghan Road, Mangshi District, 678400, China
| | - Zehua Jiang
- Department of Spine Surgery, Tianjin Union Medical Center, No.190 Jieyuan Road, Hongqiao District, Tianjin, 300122, China
| | - Wei Hu
- Department of Spine Surgery, Tianjin Union Medical Center, No.190 Jieyuan Road, Hongqiao District, Tianjin, 300122, China
| | - Jiashao Hu
- Department of Orthopedics, Dehong People's Hospital, Kunming Medical University Affiliated Dehong Hospital, Dehong, No.13 Yonghan Road, Mangshi District, 678400, China
| | - Rusen Zhu
- Department of Spine Surgery, Tianjin Union Medical Center, No.190 Jieyuan Road, Hongqiao District, Tianjin, 300122, China.
| |
Collapse
|
213
|
Gogoi P, Valan JA. Machine learning approaches for predicting and diagnosing chronic kidney disease: current trends, challenges, solutions, and future directions. Int Urol Nephrol 2025; 57:1245-1268. [PMID: 39560857 DOI: 10.1007/s11255-024-04281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
Chronic Kidney Disease (CKD) represents a significant global health challenge, contributing to increased morbidity and mortality rates. This review paper explores the current landscape of machine learning (ML) techniques employed in CKD prediction and diagnosis, highlighting recent trends, inherent challenges, innovative solutions, and future directions. Through an extensive literature survey, we identified key limitations and challenges, including the use of small datasets, the absence of stage-specific predictions, insufficient focus on model interpretability, and a lack of discussions on safeguarding patient privacy in managing sensitive CKD data. We considered these limitations and challenges as research gaps, and this review paper aims to address them. We emphasize the potential of Generative AI to augment dataset sizes, thereby enhancing model performance and reliability. To address the lack of stage-specific predictions, we highlight the need for effective multi-class models to accurately predict CKD stages, enabling tailored treatments and improved patient outcomes. Furthermore, we discuss the critical importance of model interpretability, utilizing methods such as SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations) to ensure transparency and trust among healthcare professionals. Privacy concerns surrounding sensitive patient data are also addressed. We present innovative privacy-preserving solutions using technologies, such as homomorphic encryption, federated learning, and blockchain. These solutions facilitate collaboration across institutions while maintaining patient confidentiality and addressing challenges related to limited generalizability and reproducibility in CKD prediction. This review informs healthcare professionals and researchers about advancements in ML for CKD prediction, to improve patient outcomes and address research gaps.
Collapse
Affiliation(s)
- Prokash Gogoi
- Department of Computer Science and Engineering, National Institute of Technology Nagaland, Chumukedima, Dimapur, Nagaland, 797103, India.
| | - J Arul Valan
- Department of Computer Science and Engineering, National Institute of Technology Nagaland, Chumukedima, Dimapur, Nagaland, 797103, India
| |
Collapse
|
214
|
Lu Z, Xu J, Li J. The Transcription Factor ATF2 Accelerates Clear Cell Renal Cell Carcinoma Progression Through Activating the PLEKHO1/NUS1 Pathway. Mol Carcinog 2025; 64:617-628. [PMID: 39777695 DOI: 10.1002/mc.23868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common malignant cancer with high mortality rate. Activating transcription factor 2 (ATF2) and pleckstrin homology domain containing O1 (PLEKHO1) were reported to participate in numerous cancers. However, their roles and the detailed mechanisms in ccRCC development remain largely unknown. RT-qPCR and western blot were used to measure the levels of PLEKHO1, ATF2, and nuclear undecaprenyl pyrophosphate synthase 1 (NUS1). Cell proliferation, apoptosis, invasion, migration and stemness were evaluated using CCK-8 assay, flow cytometry, transwell invasion assay, wound-healing assay and sphere formation assay, respectively. Dual-luciferase reporter assay was conducted to verify the relationship between ATF2 and PLEKHO1. The interaction between PLEKHO1 and NUS1 was proved by Co-IP assay. Xenograft models were utilized to evaluate the tumorigenic capability of ccRCC cells upon PLEKHO1 knockdown. PLEKHO1, ATF2 and NUS1 expression were significantly elevated in ccRCC, and PLEKHO1 might be a prognosis biomarker for ccRCC. PLEKHO1 depletion significantly inhibited cell proliferation, invasion, migration, stemness, and induced cell apoptosis in ccRCC cells. ATF2 activated PLEKHO1 expression via transcription regulation, and PLEKHO1 overexpression could reverse the suppressive effects of ATF2 knockdown on the malignant behaviors of ccRCC cells. Moreover, PLEKHO1 directly bound to NUS1, and PLEKHO1 depletion markedly restrained ccRCC progression through targeting NUS1 in vitro and in vivo. Our findings suggested that ATF2 transcriptionally activated PLEKHO1 to promote the development of ccRCC via regulating NUS1 expression.
Collapse
Affiliation(s)
- Zheng Lu
- Gravel Center, Nanyang First People's Hospital, Nanyang, China
| | - Jinge Xu
- Department of Urology, The Fourth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Junyu Li
- Department of Urology, The Fourth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
215
|
Zhang J, Zhang X, Wu R, Dong CS. Unveiling purine metabolism dysregulation orchestrated immunosuppression in advanced pancreatic cancer and concentrating on the central role of NT5E. Front Immunol 2025; 16:1569088. [PMID: 40236698 PMCID: PMC11996659 DOI: 10.3389/fimmu.2025.1569088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/07/2025] [Indexed: 04/17/2025] Open
Abstract
Background The dismal efficacy of immunotherapy for Pancreatic cancer (PC) can be predominantly ascribed to its distinctive cold-tumor properties. The by-products of purine metabolic reprogramming are extensively engaged in tumor immune modulation, influencing the functions and recruitment of immune cells and molding an immune microenvironment that is propitious for tumor growth. Methods We harnessed single-cell transcriptomics and spatial transcriptomics to concurrently analyze the purine metabolism (PM) features of the PC microenvironment. We quantitatively appraised the PM traits of diverse cell subsets via scoring algorithms such as AUCell and Ucell. Moreover, cell development and cell-cell interaction analysis elucidated the alterations in TME induced by PM dysregulation. Additionally, we defined the PM disorder characteristics of PC patients and utilized this to assess the immune phenotypes and prognoses of the patient population. Also, we identified the crucial intermediate genes that impact PM reprogramming and the establishment of an immunosuppressive environment within the TME of PC, and validated them through spatial sectioning and cell co-culture experiments. Results Multi - dimensional transcriptome data elucidated the unique heterogeneity of PM in the PC microenvironment, which manifested that tumor cells and fibroblasts demonstrating higher PM scores in the TME. Cellchat analysis revealed that malignant cells with elevated PM expression were concomitantly associated with frequent interactions with CAFs as well as high expression of ligand-receptor pairs and transcription factors. Spatial data further corroborated this finding. Furthermore, the newly constructed PM disorder criteria indicated that patients with high PM levels were associated with a lack of response to immunotherapy and an immunosuppressive microenvironment. Finally, this study identified the singular role of NT5E in the immunosuppression resulting from PM reprogramming in PC. CCK8 and invasion experiments following the co-culture model demonstrated that intervention targeting NT5E could reverse the augmented malignancy of PC induced by co-cultured CAFs. NT5E is potentially a key target for reversing the "stiff-cancer" characteristics of PC. Conclusion This study demonstrates that PM metabolic disorders could impinge upon tumor immunotherapy and exacerbate the immunosuppression engendered by the progression of PC fibrosis. Therapeutic strategies targeting PM or NT5E may offer a ray of hope for patients with advanced PDAC.
Collapse
Affiliation(s)
- Junqian Zhang
- Henan Key Laboratory of Cancer Epigenetics; Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xiaobo Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Ruixin Wu
- Preclinical Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chang-Sheng Dong
- Cancer Institute of Traditional Chinese Medicine/Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
216
|
Li Y, Zheng J, Liu F, Tan X, Jiang H, Wang Y. Discussion of the material basis for prevention and treatment of pulmonary fibrosis using naturally medicinal and edible homologous herbs based on the dynamic process of Nrf2, NF-κB and TGF-β in PF. Biomed Pharmacother 2025; 185:117911. [PMID: 40090283 DOI: 10.1016/j.biopha.2025.117911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/02/2025] [Accepted: 02/07/2025] [Indexed: 03/18/2025] Open
Abstract
Pulmonary fibrosis (PF) is a progressive chronic lung disease with a high incidence and poor prognosis. Despite extensive research into the mechanisms that initiate and drive the progression of pulmonary fibrosis, developing effective treatments remains challenging due to the multiple etiologies, pathogenic links, and signaling pathways involved in PF. Indeed, nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear factor kappa-B (NF-κB), and transforming growth factor-beta (TGF-β) are central players in the pathogenesis of pulmonary fibrosis, and each of these factors influences distinct yet interconnected processes that collectively contribute to disease progression: Nrf2 upregulates antioxidants to mitigate oxidative stress, NF-κB modulates inflammatory responses, and TGF-β promotes fibroblast activation and extracellular matrix (ECM) deposition, leading to fibrosis. Targeting these pathways may offer therapeutic strategies, uncover new insights and provide potential therapeutic targets for PF. Absolutely, the interactions between Nrf2, NF-κB, and TGF-β pathways are complex and can significantly influence the progression of PF, which indicated that targeting a single pathway may show poor efficacy in managing the condition. Moreover, few therapies that effectively intervene in these pathways have been approved. This review focused on the molecular mechanisms of Nrf2, NF-κB, and TGF-β involving in PF and the material basis of the naturally medicinal and edible homologous herbs, which provides a solid foundation for understanding the disease's pathogenesis, and supports the development of therapeutic drugs or treatments for addressing the complex nature of PF.
Collapse
Affiliation(s)
- Yan Li
- Chongqing Academy of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing 400065, PR China; Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing 400065, PR China.
| | - Jia Zheng
- Chongqing University of Chinese Medicine, Chongqing 402760, PR China.
| | - Fei Liu
- Chongqing Academy of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing 400065, PR China.
| | - Xianfeng Tan
- Chongqing Baijiahuan Health Technology Co., Ltd, Chongqing 400065, China.
| | - Huiping Jiang
- Chongqing Baijiahuan Health Technology Co., Ltd, Chongqing 400065, China.
| | - Yongde Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing 400065, PR China; Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing 400065, PR China.
| |
Collapse
|
217
|
Liu S, Chen Y, Zhou G, Sun C, Ma M, Huang R, Li X, Liang X, Shi C, Wu W, Yan X, Wang L, Han J. Uniform and controllable surface nano-structure on polyetheretherketone implants can regulate mechanical property to enhance soft tissue integration through Piezo1/TGF-β1 signaling axis. Mater Today Bio 2025; 31:101645. [PMID: 40151615 PMCID: PMC11946874 DOI: 10.1016/j.mtbio.2025.101645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Polyetheretherketone (PEEK) has potential to repair the orbital floor bone defects following craniofacial trauma and orbital surgery. However, the inertness of the material impedes the soft tissue integration of implants, leading to complications such as implant migration and infection. Surface patterning modification on PEEK can promote the surface hydrophily to enhance better soft tissue integration, but it is difficult to obtain the uniform and controllable nano-structure. In this study, hot-pressing technology on PEEK implant was used to produce surface nanopores with a uniform diameter of 200, 500, 800 nm. Depending on the controllable craft, the surficial mechanical properties of PEEK can be regulated and assessed by finite element analysis. Furthermore, 500 nm interface has better mechanical properties to promote the proliferation, migration, and fibrosis of fibroblasts and achieved optimal integration effects in animal implantation experiments. To explore the mechanism of biological responses, transcriptomics and molecular biology experiments revealed that Piezo1/TGF-β1 axis played a critical role in the response of soft tissue cells to the mechanical stimulation of PEEK. Our study has established a novel modification technology for constructing uniform and controllable nanostructures on the surface of PEEK, thereby promoting the soft tissues integration with implants and improving the anchoring effect.
Collapse
Affiliation(s)
- Sida Liu
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, 710038, Xi'an, Shaanxi Province, China
- The 940 Hospital of the Joint Logistic Support Force, 730050, Lanzhou, Gansu Province, China
| | - Yixuan Chen
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, 710038, Xi'an, Shaanxi Province, China
| | - Gandong Zhou
- School of Advanced Materials and Nanotechnology, Xidian University, 710126, Xi'an, Shaanxi Province, China
| | - Changning Sun
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, 710054, Xi'an, Shaanxi Province, China
| | - Minghai Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, 710038, Xi'an, Shaanxi Province, China
| | - Rou Huang
- School of Advanced Materials and Nanotechnology, Xidian University, 710126, Xi'an, Shaanxi Province, China
| | - Xing Li
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, 710038, Xi'an, Shaanxi Province, China
| | - Xiao Liang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, 710038, Xi'an, Shaanxi Province, China
| | - Changquan Shi
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, 710054, Xi'an, Shaanxi Province, China
| | - Weiwei Wu
- School of Advanced Materials and Nanotechnology, Xidian University, 710126, Xi'an, Shaanxi Province, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, 710038, Xi'an, Shaanxi Province, China
| | - Lei Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, 710038, Xi'an, Shaanxi Province, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, 710038, Xi'an, Shaanxi Province, China
| |
Collapse
|
218
|
Plichta J, Karbownik M, Kuna P, Panek M. In Silico-Designed TGFβRI/TGFβRII Receptor Complex Peptide Inhibitors Exhibit Biological Activity In Vitro. J Cell Mol Med 2025; 29:e70548. [PMID: 40245195 PMCID: PMC12005349 DOI: 10.1111/jcmm.70548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/22/2025] [Accepted: 03/28/2025] [Indexed: 04/19/2025] Open
Abstract
TGF-β (transforming growth factor β) is a pleiotropic cytokine found in three isoforms in humans. It regulates cell proliferation, wound healing, immune cell recruitment, contributes to epithelial-to-mesenchymal transition (EMT) and to the conversion of fibroblasts to myofibroblasts. TGF-β signalling pathway hyperactivity underlies many human disorders. The aim of this study was to evaluate a series of novel, in silico-designed peptide inhibitors (PIs) of the TGFβ/TGFβRI/TGFβRII complex. Luciferase-based luminescence assays on HEK293T cells were used to comparatively assess PI biological activity and calculate IC50 values. Flow cytometry was used to assess PI cytotoxicity on HEK293T cells. The PIs caused significant luminescence level reductions compared to controls. Additionally, three of the PIs caused luminescence reductions that did not differ significantly from the effects of SD-208, a small molecule TGFβ inhibitor. None of the PIs exhibited cytotoxicity. Our TGFBR PIs have demonstrated activity in vitro, with no observed cytotoxicity. Our results suggest the PIs may be of interest in the treatment of fibrotic disorders, chronic inflammatory diseases, or certain neoplastic cancers. The PIs will be further refined in silico and tested via assays carried out on cancer cell lines and CD4+/CD8+ T cells.
Collapse
Affiliation(s)
- Jacek Plichta
- Department of Internal Medicine, Asthma and AllergyMedical University of LodzLodzPoland
| | - Michał Karbownik
- Department of Pharmacology and ToxicologyMedical University of LodzLodzPoland
| | - Piotr Kuna
- Department of Internal Medicine, Asthma and AllergyMedical University of LodzLodzPoland
| | - Michał Panek
- Department of Internal Medicine, Asthma and AllergyMedical University of LodzLodzPoland
| |
Collapse
|
219
|
Zhao W, Li J, Cai J, Gao J, Hu Y, Dong C. Research Progress on the Antifibrotic Activity of Traditional Chinese Medicine Polysaccharides. Chem Biodivers 2025; 22:e202402012. [PMID: 39563554 DOI: 10.1002/cbdv.202402012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
Fibrosis is a pathological process characterized by excessive extracellular matrix (ECM) deposition and proliferation fibrous tissue, a condition associated with various chronic diseases, such as liver cirrhosis, inflammation of the lungs, and myocarditis. Clinical treatment options for fibrotic diseases are currently limited and have poor efficacy. However, recent studies have increasingly demonstrated that polysaccharides exhibit significant antifibrotic activity by modulating cell proliferation and migration, inhibiting inflammation and oxidative stress associated fibrosis and regulating gut microbiota. This review provides an overview of recent advances in polysaccharide research for antifibrosis and offers new perspectives on the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Wenjing Zhao
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Polysaccharide Research Center, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou, China
| | - Jieming Li
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Polysaccharide Research Center, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou, China
| | - Juntao Cai
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Polysaccharide Research Center, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou, China
| | - Jie Gao
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Polysaccharide Research Center, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou, China
| | - Yulong Hu
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Polysaccharide Research Center, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou, China
| | - Chunhong Dong
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Polysaccharide Research Center, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou, China
| |
Collapse
|
220
|
Ning A, Xiao N, Yu X, Wang H, Guan C, Guo C, Dong Y, Ma X, Xia H. Dimethyloxallyl Glycine Preconditioning Promotes the Anti-inflammatory and Anti-fibrotic Effects of Human Umbilical Cord Mesenchymal Stem Cells on Kidney Damage in Systemic Lupus Erythematosus Related to TGF-β/Smad Signaling Pathway. Inflammation 2025; 48:839-854. [PMID: 39044003 DOI: 10.1007/s10753-024-02092-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/03/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024]
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease lacking effective treatments without adverse effects. Dimethyloxallyl glycine (DMOG) enhanced mesenchymal stem cells (MSC) capabilities, but it remains unclear how DMOG-pretreatment of MSCs augments their SLE treatment. Here, we explore the therapeutic potential of DMOG-pretreated human umbilical cord MSCs (hUC-MSCs) in a mouse lupus nephritis (LN) model. In vitro experiments showed that DMOG could alleviate the mRNA levels of tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and interleukin (IL)-6 and increase the mRNA level of IL-13 in lipopolysaccharide (LPS)-induced inflammation in hUC-MSCs. DMOG enhanced the migratory and invasive abilities of the hUC-MSCs. In vivo animal studies revealed that DMOG-pretreated hUC-MSCs exhibited more pronounced inhibition of lymphadenectasis and reduced kidney weight and urinary protein content than MSCs alone. DMOG-pretreated hUC-MSCs improved renal morphological structure and alleviated inflammatory cell infiltration and renal fibrosis, evidenced by the reduced mRNA levels of fibrosis markers, including fibronectin (Fn), collagen alpha-1 chain (Colα1), collagen alpha-3 chain (Colα3), and TNF-α, IFN-γ, and IL-6 cytokines. Further investigation revealed that DMOG-pretreated hUC-MSCs down-regulated the expressions of transforming growth factor (Tgf)-β1 and its downstream effectors Smad2 and Smad3, recognized as central mediators in renal fibrosis (P < 0.05). The findings suggest that DMOG-pretreated hUC-MSCs can augment the therapeutic efficacy of hUC-MSCs in LN by enhancing their anti-inflammatory and antifibrotic effects, and the TGF-β/Smad signaling pathway may be involved in this process.
Collapse
Affiliation(s)
- Anfeng Ning
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Nansong Xiao
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaoqin Yu
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hu Wang
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Chunyi Guan
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Changlong Guo
- National Human Genetic Resources Center, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China
| | - Yichao Dong
- National Human Genetic Resources Center, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China
| | - Xu Ma
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China.
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Hongfei Xia
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China.
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
221
|
Tangwanichgapong K, Klanrit P, Chatchawal P, Wongwattanakul M, Pongskul C, Chaichit R, Hormdee D. Salivary attenuated total reflectance-fourier transform infrared spectroscopy combined with chemometric analysis: A potential point-of-care approach for chronic kidney disease screening. Photodiagnosis Photodyn Ther 2025; 52:104502. [PMID: 39892558 DOI: 10.1016/j.pdpdt.2025.104502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND The increasing prevalence of chronic kidney disease (CKD) and its terminal stage, end-stage renal disease (ESRD), raises the importance of an accurate, early, and point-of-care method to diagnose and monitor patients. Saliva is a potential point-of-care diagnostic biofluid for its simple collection and ability to reflect systemic health status. This study investigated salivary spectral signatures in ESRD patients and their diagnostic potential compared to healthy controls. METHODS Saliva samples were collected from 24 ESRD patients undergoing hemodialysis and 24 age/sex-matched healthy controls. The dried saliva samples were analyzed using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy in the 4000-400 cm⁻¹ range. Chemometric analyses, including Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA), were applied to preprocessed spectra to identify discriminatory spectral features and establish classification models. RESULTS Second derivative spectroscopic analysis of ATR-FTIR spectra revealed distinctive spectral patterns in dried ESRD saliva samples, including characteristic peak shifts observed in both the amide I secondary structures (from 1636 cm-1 in controls to 1629 cm-1 in ESRD) and carbohydrate (from 1037 cm-1 in controls to 1042 cm-1 in ESRD) regions. PCA demonstrated clear clustering patterns across key biological spectral regions, including the lipid CH stretching region (3000-2800 cm-1), the fingerprint region (1800-900 cm-1), and their combination (3000-2800 cm-1 + 1800-900 cm-1). PLS models based on the fingerprint region achieved optimal diagnostic performance (87.5-100 % accuracy, 75-100 % sensitivity, and 100 % specificity). Biochemical markers associated with ESRD revealed variations in lipids, protein, sugar moieties, carbohydrates, and nucleic acids, reflecting the underlying pathological changes in CKD, with the most prominent band at ∼1405 cm-1. CONCLUSION ATR-FTIR analysis of dried saliva demonstrated potential as a non-invasive diagnostic tool for ESRD. This approach could complement existing diagnostic methods, particularly in resource-limited settings or for frequent monitoring requirements.
Collapse
Affiliation(s)
- Kamonchanok Tangwanichgapong
- Division of Periodontology, Department of Oral Biomedical Sciences, Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002, Thailand; Research Group of Chronic Inflammatory Oral Diseases and Systemic Diseases Associated with Oral Health, Department of Oral Biomedical Sciences, Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Poramaporn Klanrit
- Division of Oral Diagnosis, Department of Oral Biomedical Sciences, Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002, Thailand; Research Group of Chronic Inflammatory Oral Diseases and Systemic Diseases Associated with Oral Health, Department of Oral Biomedical Sciences, Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patutong Chatchawal
- Center for Innovation and Standard for Medical Technology and Physical Therapy, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Molin Wongwattanakul
- Center for Innovation and Standard for Medical Technology and Physical Therapy, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Cholatip Pongskul
- Subdivision of Nephrology, Division of Medicine, Faculty of Medicine, Khon Kean university, Khon Kaen 40002, Thailand
| | - Rajda Chaichit
- Division of Dental Public Health, Department of Preventive Dentistry, Faculty of Dentistry, Khon Kean university, Khon Kaen 40002, Thailand
| | - Doosadee Hormdee
- Division of Periodontology, Department of Oral Biomedical Sciences, Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002, Thailand; Research Group of Chronic Inflammatory Oral Diseases and Systemic Diseases Associated with Oral Health, Department of Oral Biomedical Sciences, Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
222
|
Liu S, Xu Y, Yao X, Cao H, Zhou H, Luo J, Gao H, Chen B, Chen H, Xie T, Zhan X. Perillaldehyde ameliorates sepsis-associated acute kidney injury via inhibiting HSP90AA1-mediated ferroptosis and pyroptosis: Molecular structure and protein interaction of HSP90AA1. Int J Biol Macromol 2025; 304:140954. [PMID: 39947536 DOI: 10.1016/j.ijbiomac.2025.140954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/16/2025]
Abstract
Heat shock protein 90α (HSP90AA1) is a molecular chaperone involved in a variety of cellular processes. Special attention is paid to how perillaldehyde ameliorates kidney injury by inhibiting HSP90AA1-mediated iron and pyrotoxicity, and in-depth analysis of the molecular structure and protein interactions of HSP90AA-1. The interaction between perillaldehyde and HSP90AA1 and the effect of perillaldehyde on the molecular structure of HSP90AA1 were analyzed by molecular docking and surface plasmon resonance technique. Western blot and immunohistochemical results showed that perillaldehyde could decrease the expression of HSP90AA1 and change its distribution in the kidney. Molecular docking and surface plasmonic resonance experiments revealed the high affinity binding between perillaldehyde and HSP90AA1, and further analysis showed that perillaldehyde could induce the conformational change of HSP90AA1, thereby inhibiting its function.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yunfei Xu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Heng Cao
- Department of Urology, The Third the People's Hospital of Bengbu, Bengbu Medical College, Bengbu 233000, China
| | - Hongmin Zhou
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jun Luo
- Department of Urology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Hanlu Gao
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Bowen Chen
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Hao Chen
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Tiancheng Xie
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Xiangcheng Zhan
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| |
Collapse
|
223
|
Gao C, Huang Q, Zhang N, Sun D, Wang Y, Li H, Chen L. Terpenoids and steroids from the whole plants of Euphorbia wallichii and their protective effects on STZ-induced damage in INS-1 cells. Fitoterapia 2025; 182:106405. [PMID: 39909361 DOI: 10.1016/j.fitote.2025.106405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/12/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
The research on the whole plant of Euphorbia wallichii led to the identification of two undescribed compounds, (1R,4S,5S,10S)-10-hydroxyacorenone B and (5R,9R,18S,20S,25R,26S,27S,28R)-D:C-friedolupane-3-oxo-7-ene, together with 32 known compounds. Their chemical structures were determined through detailed spectroscopic data analyses and electronic circular dichroism measurements. The terpenoids and steroids found in Euphorbia wallichii have been identified to exhibit a diverse array of biological activities. However, their underlying antidiabetic effects have not yet been examined. In this study, the effects of terpenoid and steroid compounds on promoting the proliferation of INS-1 cells and protecting STZ-induced pancreatic β-cell damage were evaluated. Bioassays have demonstrated that compounds 32 and 33 exhibited a noteworthy protective effect on INS-1 cells against STZ-induced injury, as well as promoted the proliferation of INS-1 cells. As a whole, compounds 32 and 33 might be potentially beneficial for the treatment of diabetes.
Collapse
Affiliation(s)
- Chengfeng Gao
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qing Huang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Na Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yali Wang
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
224
|
Salminen A. Cooperation between inhibitory immune checkpoints of senescent cells with immunosuppressive network to promote immunosenescence and the aging process. Ageing Res Rev 2025; 106:102694. [PMID: 39984130 DOI: 10.1016/j.arr.2025.102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
The accumulation of senescent cells within tissues promotes the aging process by remodelling the functions of the immune system. For many years, it has been known that senescent cells secrete pro-inflammatory cytokines and chemokines, a phenotype called the senescence-associated secretory phenotype (SASP). Chemokines and colony-stimulating factors stimulate myelopoiesis and recruit myeloid cells into aging tissues. Interestingly, recent studies have demonstrated that senescent cells are not only secretory but they also express an increased level of ligand proteins for many inhibitory immune checkpoint receptors. These ligands represent "don't eat me" markers in senescent cells and moreover, they are able to induce an exhaustion of many immune cells, such as surveying natural killer (NK) cells, cytotoxic CD8+ T cells, and macrophages. The programmed cell death protein-1 (PD-1) and its ligand PD-L1 represent the best known inhibitory immune checkpoint pathway. Importantly, the activation of inhibitory checkpoint receptors, e.g., in chronic inflammatory states, can also induce certain immune cells to differentiate toward their immunosuppressive phenotype. This can be observed in myeloid derived suppressor cells (MDSC), tissue regulatory T cells (Treg), and M2 macrophages. Conversely, these immunosuppressive cells stimulate in senescent cells the expression of many ligand proteins for inhibitory checkpoint receptors. Paradoxically, senescent cells not only promote the pro-inflammatory state but they maintain it at a low-grade level by expressing ligands for inhibitory immune checkpoint receptors. Thus, the cooperation between senescent cells and immunosuppressive cells enhances the senescence state of immune cells, i.e., immune senescence/exhaustion, and cellular senescence within tissues via bystander effects.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland.
| |
Collapse
|
225
|
Li L, Xia G, Lei L, Hu Q, Wei X, Cui M, Tang Q, Yang D, Zhao A. Role of TGF-β1/Smad3 signalling pathway in renal tubulointerstitial fibrosis and renal damage in elderly rats with isolated systolic hypertension induced by increased pulse pressure. Acta Cardiol 2025; 80:135-147. [PMID: 39782012 DOI: 10.1080/00015385.2024.2445339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/30/2024] [Accepted: 12/15/2024] [Indexed: 01/12/2025]
Abstract
OBJECTIVE Elevated systolic blood pressure and increased pulse pressure are closely associated with renal damage; however, the exact mechanism remains unclear. Therefore, we investigated the effects of increased pulse pressure on tubulointerstitial fibrosis and renal damage in elderly rats with isolated systolic hypertension (ISH). Additionally, the role of renal tubular epithelial-mesenchymal transition (EMT) and its upstream signalling pathways were elucidated. METHODS Ten-month-old male rats were randomly divided into control and ISH groups, with seven rats in each group administered warfarin and vitamin K1 for 6 weeks. Blood pressure, renal function, mean blood flow in the common iliac artery, and diastolic vessel diameter were assessed, and the rat kidney medulla was collected for histological, genetic, and protein level analysis. RESULTS Increased pulse pressure, abnormal renal function, and increased shear stress were detected in rats with ISH. Histology assessments revealed fibrosis in the interstitium of ISH rats. Epithelial marker E-cadherin protein expression was decreased, while the protein expression of interstitial markers α-SMA and Vimentin was increased, and transforming growth factor (TGF)-β1/Smad3 signalling was upregulated in the kidney tissue of ISH rats. CONCLUSIONS Increased pulse pressure in elderly rats with ISH caused an increase in shear stress. These effects led to the development of EMT and the activation of its upstream TGF-β1/Smad3 signalling pathway, ultimately leading to renal tubular interstitial fibrosis causing renal injury.
Collapse
Affiliation(s)
- Lu Li
- The Cadre Medical Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Guiling Xia
- The Cadre Medical Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Lei Lei
- The Cadre Medical Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Qiong Hu
- The Cadre Medical Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xueying Wei
- The Cadre Medical Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Mengbi Cui
- The Cadre Medical Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Qiaoling Tang
- The Cadre Medical Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Donghua Yang
- The Cadre Medical Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Anju Zhao
- The Cadre Medical Department, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
226
|
Du H, Yang K, He Z, Su L, Tan X, Li Z, Song W, Cao L, Ma Y. Tianjihuang compound alleviates aflatoxin B 1-induced hepatic steatosis and fibrosis by targeting PPARα-TGF-β pathway in ducklings. Poult Sci 2025; 104:105006. [PMID: 40073684 PMCID: PMC11932684 DOI: 10.1016/j.psj.2025.105006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/21/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025] Open
Abstract
Aflatoxin B1 (AFB1), a potent mycotoxin, poses a significant threat to the poultry industry, particularly affecting the health and growth of ducklings. The present study aimed to investigate the therapeutic effects and mechanisms of the Tianjihuang compound (HRS), a traditional Chinese medicine formulation, on AFB1-induced chronic toxicity in ducklings. Firstly, 30 ingredients, including neochlorogenic acid, kaempferol 3-alpha-D-galactoside, quercetin, hispidulin, caffeic acid, and myricetin, were identified from HRS with UPLC-MS/MS method. Then, over a 25-day experimental period, a total of 100 one-day-old Sichuan Sheldrakes were randomly divided into five groups: control, AFB1 model, and HRS high (4 g/kg), medium (2 g/kg), and low dosage (1 g/kg) groups. Results indicated that HRS effectively mitigated the negative impact on the productivity, reduced the levels of liver index, AST, ALT, and AST/ALT in serum, increased the levels of serum TP content, and obviously alleviated inflammatory cell infiltration, liver fibrosis, and liver steatosis induced by AFB1. Additionally, HRS enhanced the levels of GST, CAT, and T-AOC, and decreased the levels of MDA and AFB1-DNA, thereby alleviating oxidative stress and AFB1-DNA generation caused by AFB1. Transcriptome analysis revealed that HRS may improve liver injury in AFB1-chronically poisoned ducklings by regulating the ECM receptor interaction, fatty acid metabolism, cell adhesion molecules, TGF-β signaling pathway, and PPAR signaling pathway. Further RT-qPCR analysis revealed that HRS might downregulate the expression of ASCL4 gene by promoting the activation of PPARα, thereby inhibiting the activation of the TGF-β signaling pathway and improving liver steatosis and fibrosis caused by AFB1 in ducklings. In conclusion, the HRS exhibits hepatoprotective effects against AFB1-induced chronic toxicity in ducklings by restoring liver function, enhancing antioxidant capacity, and its mechanism of damage resistance may be related to the improvement of liver steatosis and fibrosis in ducklings by inhibiting the PPARα-TGF-β signaling pathway.
Collapse
Affiliation(s)
- Hongxu Du
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing 402460, PR China; Institute of Traditional Chinese Veterinary Medicine, Southwest University, Chongqing 402460, PR China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, PR China.
| | - Kunzhao Yang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing 402460, PR China
| | - Zhengke He
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing 402460, PR China
| | - Lijuan Su
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing 402460, PR China
| | - Xiaoyan Tan
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing 402460, PR China
| | - Zhangxun Li
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing 402460, PR China
| | - Weijie Song
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing 402460, PR China
| | - Liting Cao
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing 402460, PR China; Institute of Traditional Chinese Veterinary Medicine, Southwest University, Chongqing 402460, PR China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, PR China
| | - Yue Ma
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing 402460, PR China; Institute of Traditional Chinese Veterinary Medicine, Southwest University, Chongqing 402460, PR China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, PR China
| |
Collapse
|
227
|
da Silva Costa N, de Araujo JR, da Silva Melo MF, da Costa Mota J, Almeida PP, Coutinho-Wolino KS, Da Cruz BO, Brito ML, de Souza Carvalho T, Barreto-Reis E, de Luca BG, Mafra D, Magliano D'AC, de Souza Abboud R, Rocha RS, da Cruz AG, de Toledo Guimarães J, Stockler-Pinto MB. Effects of Probiotic-Enriched Minas Cheese (Lactobacillus acidophilus La-05) on Cardiovascular Parameters in 5/6 Nephrectomized Rats. Probiotics Antimicrob Proteins 2025; 17:873-887. [PMID: 37917394 DOI: 10.1007/s12602-023-10173-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
Dairy foods have become an interest in chronic kidney disease (CKD) due to their nutritional profile, which makes them a good substrate for probiotics incorporation. This study evaluated the effect of probiotic-enriched Minas cheese with Lactobacillus acidophilus La-05 in an experimental rat model for CKD on cardiac, inflammatory, and oxidative stress parameters. Male Wistar rats were divided into 4 groups (n = 7/group): 5/6 nephrectomy + conventional Minas cheese (NxC); 5/6 nephrectomy + probiotic Minas cheese (NxPC); Sham + conventional Minas cheese (ShamC); Sham + probiotic Minas cheese (ShamPC). Offering 20 g/day of Minas cheese with Lact. acidophilus La-05 (108-109 log CFU/g) for 6 weeks. The cardiomyocyte diameter was determined. Superoxide dismutase (SOD) activity in plasma, heart, kidney, and colon tissue was performed. At the end of supplementation, no significant changes in lipid profile and renal parameters were found. The NxPC group showed a decrease in cardiomyocyte diameter compared to the NxC group (16.99 ± 0.85 vs. 19.05 ± 0.56 μm, p = 0.0162); also they showed reduced plasmatic SOD activity (502.8 ± 49.12 vs. 599.4 ± 94.69 U/mL, p < 0.0001). In summary, probiotic-enriched Minas cheese (Lact. acidophilus La-05) consumption suggests a promisor cardioprotective effect and was able to downregulate SOD activity in a rat model of CKD.
Collapse
Affiliation(s)
- Nathalia da Silva Costa
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
| | - Joana Ramos de Araujo
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
| | | | | | | | | | - Beatriz Oliveira Da Cruz
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Michele Lima Brito
- Graduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Thaís de Souza Carvalho
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Emanuelle Barreto-Reis
- Graduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Beatriz Gouvêa de Luca
- Graduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Denise Mafra
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - D 'Angelo Carlo Magliano
- Graduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Renato de Souza Abboud
- Morphology Department, Laboratory of Cellular and Extracellular Biomorphology Biomedic Institute, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Ramon Silva Rocha
- Veterinary Hygiene and Technical Processing of Animal Products Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Adriano Gomes da Cruz
- Veterinary Hygiene and Technical Processing of Animal Products Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Food Department, Federal Institute of Education, Science and Technology of Rio de Janeiro (IFRJ), Rio de Janeiro, RJ, Brazil
| | - Jonas de Toledo Guimarães
- Food Technology Department, Veterinary College, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Milena Barcza Stockler-Pinto
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Nutrition Faculty, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Graduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| |
Collapse
|
228
|
Ma DJ, Li TH, Yang SY, Yu JJ, Li ST, Yu Y, Liu Y, Zang J, Kong L, Li XT. Self-assembling Bletilla polysaccharide nanogels facilitate healing of acute and infected wounds via inflammation control and antibacterial activity. Int J Biol Macromol 2025; 299:140125. [PMID: 39842574 DOI: 10.1016/j.ijbiomac.2025.140125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/08/2025] [Accepted: 01/19/2025] [Indexed: 01/24/2025]
Abstract
Wound healing is one of the fundamental problems faced by the medical profession. Thus, there is a need for the development of biomaterials that are safe, economically viable, possess anti-inflammatory and antibacterial characteristics, and enhance wound healing. In this study, we designed a nanomicelle of Bletilla striata polysaccharide (BSP) self-loaded with Azithromycin (AZI). The properties are improved by physically blending Carbomer 940 (CBM) with Gelatin (GEL) to serve as the hydrogel matrix. The preparation was made by combining the nanomicelle, used as the precursor solution, with the gel matrix. It was designed to treat wound infections and promote healing. Relevant experiments indicate its excellent biocompatibility. The hydrogel not only promotes cell migration, proliferation, angiogenesis, and collagen deposition associated with skin healing, but also regulates the polarization of macrophages from the M1 to M2 phenotype, as well as the expression of related factors. Additionally, in vitro experiments demonstrate its good antibacterial activity. In addition, we demonstrated the gel's anti-inflammatory, antibacterial, and pro-healing effects in acute wounds and methicillin-resistant Staphylococcus aureus (MRSA) wounds. Therefore, the nanomicellar gel enhances antibacterial activity and related immune regulation, offering a new direction in the treatment of acute and chronic wounds.
Collapse
Affiliation(s)
- De-Jin Ma
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Tian-Hua Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Su-Yu Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Jun-Jie Yu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Shu-Tong Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Yang Yu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Yang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Juan Zang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China.
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China.
| |
Collapse
|
229
|
Liu J, Guo M, Yuan X, Fan X, Wang J, Jiao X. Gut Microbiota and Their Metabolites: The Hidden Driver of Diabetic Nephropathy? Unveiling Gut Microbe's Role in DN. J Diabetes 2025; 17:e70068. [PMID: 40189872 PMCID: PMC11973130 DOI: 10.1111/1753-0407.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/21/2025] [Accepted: 02/17/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a severe microvascular complication of diabetes with a complex pathogenesis. METHODS Recent studies were reviewed to explore the role of gut microbiota and its metabolites in DN development. RESULTS Dysbiosis of gut bacteria contributes to pathological changes such as glomerular sclerosis and renal tubule injury. Microbial metabolites are involved in DN through immune and inflammatory pathways. CONCLUSIONS Understanding the relationship between gut microbiota, its metabolites, and DN may offer potential implications for DN diagnosis, prevention, and treatment. Translating this knowledge into clinical practice presents challenges and opportunities.
Collapse
Affiliation(s)
- Jinzhou Liu
- Department of PhysiologyThe Key Laboratory of Physiology of Shanxi Province, the Key Laboratory of Cellular Physiology of Ministry of Education, Shanxi Medical UniversityTaiyuanChina
| | - Min Guo
- Department of PhysiologyThe Key Laboratory of Physiology of Shanxi Province, the Key Laboratory of Cellular Physiology of Ministry of Education, Shanxi Medical UniversityTaiyuanChina
| | - Xiaobin Yuan
- Department of UrologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Xiao Fan
- Department of UrologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Jin Wang
- Department of PhysiologyThe Key Laboratory of Physiology of Shanxi Province, the Key Laboratory of Cellular Physiology of Ministry of Education, Shanxi Medical UniversityTaiyuanChina
| | - Xiangying Jiao
- Department of PhysiologyThe Key Laboratory of Physiology of Shanxi Province, the Key Laboratory of Cellular Physiology of Ministry of Education, Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
230
|
Mu X, Feng L, Wang Q, Li H, Zhou H, Yi W, Sun Y. Decreased gut microbiome-derived indole-3-propionic acid mediates the exacerbation of myocardial ischemia/reperfusion injury following depression via the brain-gut-heart axis. Redox Biol 2025; 81:103580. [PMID: 40058066 PMCID: PMC11930714 DOI: 10.1016/j.redox.2025.103580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/11/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
Despite the increasing recognition of the interplay between depression and cardiovascular disease (CVD), the precise mechanisms by which depression contributes to the pathogenesis of cardiovascular disease remain inadequately understood. The involvement of gut microbiota and their metabolites to health and disease susceptibility has been gaining increasing attention. In this study, it was found that depression exacerbated cardiac injury, impaired cardiac function (EF%: P < 0.01; FS%: P < 0.05), hindered long-term survival (P < 0.01), and intensified adverse cardiac remodeling (WGA: P < 0.01; MASSON: P < 0.0001) after myocardial ischemia/reperfusion (MI/R) in mice. Then we found that mice receiving microbiota transplants from chronic social defeat stress (CSDS) mice exhibited worse cardiac function (EF%: P < 0.01; FS%: P < 0.01) than those receiving microbiota transplants from non-CSDS mice after MI/R injury. Moreover, impaired tryptophan metabolism due to alterations in gut microbiota composition and structure was observed in the CSDS mice. Mechanistically, we analyzed the metabolomics of fecal and serum samples from CSDS mice and identified indole-3-propionic acid (IPA) as a protective agent for cardiomyocytes against ferroptosis after MI/R via NRF2/System xc-/GPX4 axis, played a role in mediating the detrimental influence of depression on MI/R. Our findings provide new insights into the role of the gut microbiota and IPA in depression and CVD, forming the basis of intervention strategies aimed at mitigating the deterioration of cardiac function following MI/R in patients experiencing depression.
Collapse
Affiliation(s)
- Xingdou Mu
- Department of Geriatric, XiJing Hospital, Xi'an, Shaanxi, 710000, China
| | - Lele Feng
- Department of Cardiovascular Surgery, XiJing Hospital, Xi'an, Shaanxi, 710000, China
| | - Qiang Wang
- Department of Geriatric, XiJing Hospital, Xi'an, Shaanxi, 710000, China
| | - Hong Li
- Department of Geriatric, XiJing Hospital, Xi'an, Shaanxi, 710000, China
| | - Haitao Zhou
- Department of Geriatric, XiJing Hospital, Xi'an, Shaanxi, 710000, China
| | - Wei Yi
- Department of Cardiovascular Surgery, XiJing Hospital, Xi'an, Shaanxi, 710000, China.
| | - Yang Sun
- Department of Geriatric, XiJing Hospital, Xi'an, Shaanxi, 710000, China.
| |
Collapse
|
231
|
Li AP, Zhang XX, Zhang QY, Wang MJ, Ju Z, Zhang XY, Qin XM, Liu GZ. Metabolomic profiling of adenine-induced CKD: pathway interconnections and kidney injury. Toxicol Res (Camb) 2025; 14:tfaf035. [PMID: 40135063 PMCID: PMC11932014 DOI: 10.1093/toxres/tfaf035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/27/2025] Open
Abstract
Chronic kidney disease (CKD) is acknowledged as one of the largest public health problems in the world, characterized by a complex and diverse pathogenesis. Adenine-induced CKD, a classical model with multiple injury mechanisms, has been extensively employed in CKD research. However, the complete elucidation of the mechanisms underlying adenine-induced CKD remains elusive. In this study, the impacts of adenine (200 mg/kg/day) intake on the urine metabolome of rats were initially investigated using non-targeted metabolomics, and then targeted metabolomics was used to quantitatively verify key metabolites on crucial metabolic pathways. Interestingly, the interconnectedness of two significant pathways was discovered and validated through molecular biology techniques. The results found that adenine can cause significant perturbations in purine metabolism and the biosynthetic pathways of phenylalanine, tyrosine, and tryptophan. Subsequent targeted metabolomic analysis revealed a significant reduction in amino acid and hypoxanthine and creatinine levels in the kidneys of CKD rats, accompanied by an increase in xanthine level. Further analysis found that purine pathway can increase ROS production and affect the level of aromatic amino acid transporter SLC7A5, thus influencing the biosynthesis pathway of phenylalanine, tyrosine and tryptophan, ultimately contributing to kidney injury. This discovery provides offers novel insights into the underlying pathological mechanism of adenine-induced CKD. The development of chronic kidney disease is induced by multiple pathways of aromatic amino acid metabolism and purine metabolism.
Collapse
Affiliation(s)
- Ai-Ping Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, China
- Shanxi Traditional Chinese Medical Hospital, No. 46, Bingzhou West Street, Taiyuan 030012, China
| | - Xing-Xing Zhang
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, China
| | - Qing-Yu Zhang
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, China
| | - Meng-Jiao Wang
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, China
| | - Zheng Ju
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, China
| | - Xiao-Yu Zhang
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, China
| | - Guang-Zhen Liu
- Shanxi Traditional Chinese Medical Hospital, No. 46, Bingzhou West Street, Taiyuan 030012, China
| |
Collapse
|
232
|
Guo ZY, Wu X, Zhang SJ, Yang JH, Miao H, Zhao YY. Poria cocos: traditional uses, triterpenoid components and their renoprotective pharmacology. Acta Pharmacol Sin 2025; 46:836-851. [PMID: 39482471 PMCID: PMC11950336 DOI: 10.1038/s41401-024-01404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/28/2024] [Indexed: 11/03/2024]
Abstract
Poria cocos and its surface layer of Poria cocos (Schw.) Wolf (Polyporaceae), are used in traditional Chinese medicine for its diuretic and renoprotective effects. Phytochemical studies have shown that lanostane and 3,4-seco-lanostane tetracyclic triterpenoids are the main components of P. cocos and its surface layer. Accumulating evidence shows that triterpenoid components in P. cocos and its surface layer contribute to their renoprotective effect. The surface layer of P. cocos showed a stronger diuretic effect than P. cocos. The ethanol extract of the surface layer and its components improved acute kidney injury, acute kidney injury-to-chronic kidney disease transition and chronic kidney disease such as diabetic kidney disease, nephrotic syndrome and tubulointerstitial nephropathy, and protected against renal fibrosis. It has been elucidated that P. cocos and its surface layer exert a diuretic effect and improve kidney diseases through a variety of molecular mechanisms such as aberrant pathways TGF-β1/Smad, Wnt/β-catenin, IκB/NF-κB and Keap1/Nrf2 signaling as well as the activation of renin-angiotensin system, matrix metalloproteinases, aryl hydrocarbon receptor and endogenous metabolites. These studies further confirm the renoprotective effect of P. cocos and its surface layer and provide a beneficial basis to its clinical use in traditional medicine.
Collapse
Affiliation(s)
- Zhi-Yuan Guo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xin Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shui-Juan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jian-Hua Yang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
- Xinjiang Key Laboratory of Clinical Drug Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
| | - Hua Miao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Ying-Yong Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- State Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
233
|
Chang Y, Long M, Shan H, Liu L, Zhong S, Luo JL. Combining gut microbiota modulation and immunotherapy: A promising approach for treating microsatellite stable colorectal cancer. Crit Rev Oncol Hematol 2025; 208:104629. [PMID: 39864533 DOI: 10.1016/j.critrevonc.2025.104629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent and lethal cancers worldwide, ranking third in incidence and second in mortality. While immunotherapy has shown promise in patients with deficient mismatch repair (dMMR) or high microsatellite instability (MSI-H), its effectiveness in proficient mismatch repair (pMMR) or microsatellite stable (MSS) CRC remains limited. Recent advances highlight the gut microbiota as a potential modulator of anti-tumor immunity. The gut microbiome can significantly influence the efficacy of immune checkpoint inhibitors (ICIs), especially in pMMR/MSS CRC, by modulating immune responses and systemic inflammation. This review explores the role of the gut microbiota in pMMR/MSS CRC, the mechanisms by which it may enhance immunotherapy, and current strategies for microbiota modulation. We discuss the potential benefits of combining microbiota-targeting interventions with immunotherapy to improve treatment outcomes for pMMR/MSS CRC patients.
Collapse
Affiliation(s)
- Yujie Chang
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hunan 421001, China
| | - Min Long
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hunan 421001, China
| | - Hanguo Shan
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, USC, Hunan 421001, China
| | - Logen Liu
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, USC, Hunan 421001, China
| | - Shangwei Zhong
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hunan 421001, China
| | - Jun-Li Luo
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, USC, Hunan 421001, China; MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hunan 421001, China; National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, USC, Hunan 410008, China.
| |
Collapse
|
234
|
Sakaniwa E, Mikami R, Mizutani K, Mima A, Kido D, Kominato H, Saito N, Hakariya M, Takemura S, Nakagawa K, Sugimoto M, Sugiyama A, Iwata T. Porphyromonas gingivalis-derived lipopolysaccharide promotes mesangial cell fibrosis via transforming growth factor-beta1/Smad signaling pathway in high glucose. J Dent Sci 2025; 20:989-994. [PMID: 40224103 PMCID: PMC11993064 DOI: 10.1016/j.jds.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/30/2024] [Indexed: 04/15/2025] Open
Abstract
Background/purpose Periodontitis has been documented to increase the risk of diabetic nephropathy. However, the specific mechanisms through which periodontitis affects renal function remain unclear. This study aimed to investigate the mechanism by which an inflammatory reaction stimulated by periodontal pathogens affects mesangial cell fibrosis under hyperglycemic conditions in vitro. Materials and methods Murine mesangial cells were stimulated with 1,000 ng/mL of Porphyromonas gingivalis-derived lipopolysaccharide (PgLPS) in a control or high glucose (HG) medium. Activation of the extracellular signal-regulated kinase (ERK1/2) and expression of alpha-smooth muscle actin (α-SMA) and collagen type 1a2 (Col1a2) were analyzed for fibrosis and transformation via the transforming growth factor (TGF)-β1/Smad signaling pathway. Results PgLPS stimulation significantly upregulated TGF-β1 expression and Smad3 phosphorylation in the HG group compared to the control group. Additionally, activation of ERK1/2 and expression of Col1a2 and α-SMA were significantly elevated in the HG group compared to the control following PgLPS stimulation. The TGF-β1 inhibitor significantly suppressed Smad3 phosphorylation and mRNA expression of Col1a2 in the HG group. Conclusion Under HG conditions, PgLPS may aggravate fibrosis in mesangial cells via the TGF-β1/Smad signaling pathway, leading to nephrosclerotic modifications. The presented study may support the association between periodontitis and chronic kidney disease, mediated by hyperglycemia.
Collapse
Affiliation(s)
- Eri Sakaniwa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Risako Mikami
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koji Mizutani
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Mima
- Department of Nephrology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Daisuke Kido
- Oral Diagnosis and General Dentistry, Dental Hospital, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hiromi Kominato
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Natsumi Saito
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahiro Hakariya
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shu Takemura
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keita Nakagawa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mari Sugimoto
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ayu Sugiyama
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
235
|
Puri B, Majumder S, Gaikwad AB. CRISPR/Cas9 based knockout of lncRNA MALAT1 attenuates TGF-β1 induced Smad 2/3 mediated fibrosis during AKI-to-CKD transition. Eur J Pharm Sci 2025; 207:107044. [PMID: 39956401 DOI: 10.1016/j.ejps.2025.107044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 02/18/2025]
Abstract
Acute kidney injury (AKI) is a significant clinical issue with potential long-term consequences, as even a single episode can progress to chronic kidney disease (CKD). The AKI-to-CKD transition involves complex pathophysiology, including persistent inflammation, apoptosis, and fibrosis. Long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been recognized as a potential therapeutic target for various kidney diseases, including AKI and CKD. In our previous study, we conducted the transcriptomic analysis of lncRNAs in-vitro and animal models of AKI-to-CKD transition and found several dysregulated lncRNAs such as MALAT1, MEG3, NEAT1, MIAT, and H19 in this transition. Among these, we have selected lncRNA MALAT1 to further validate its role in AKI-to-CKD transition as a therapeutic target via a cluster regularly intercept short palindromic protein (CRISPR) associated protein 9 (Cas9)-mediated knockout approach in NRK52E cells. Guide RNAs (gRNAs) were designed to target MALAT1, and the PX459 turbo green fluorescence protein (GFP) plasmid containing MALAT1 gRNA1&2 was transfected into NRK52E cells using CRISPRMAX. Results demonstrated that MALAT1 knockout significantly reduced MALAT1 expression and attenuated Smad2/3-mediated fibrosis by decreasing pSmad2, pSmad2/3, Smad4, vimentin, fibronectin, collagen-I, and α-SMA expression levels, while increasing Smad7, Smurf2, and E-cadherin levels. These findings suggest that targeting the MALAT1/Smad2/3 pathway could be a potential therapeutic target for mitigating fibrosis to prevent AKI-to-CKD transition.
Collapse
Affiliation(s)
- Bhupendra Puri
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Syamantak Majumder
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
236
|
Wen X, Xu G. Gut microbiota may mediate the causality of statins on diabetic nephropathy: a mediation Mendelian randomization study. Int Urol Nephrol 2025; 57:1337-1348. [PMID: 39656409 DOI: 10.1007/s11255-024-04321-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 11/29/2024] [Indexed: 03/14/2025]
Abstract
BACKGROUND Increasing evidence indicates that statins may increase the risk of developing diabetic nephropathy (DN). As the gut-kidney axis concept gains traction, it remains unclear whether statins contribute to the onset and progression of DN by modulating gut microbiota. OBJECTIVE To investigate the association between statins and DN and the proportion of this association mediated through gut microbiota. METHOD This study utilized a two-sample Mendelian randomization (MR) approach and a cross-sectional observational design to investigate the causal relationships among statins, 473 gut microbiota, and DN. Furthermore, mediation MR analysis was employed to explore the potential mediating effects of gut microbiota in the statins-DN relationship. RESULTS HMGCR inhibitors were causally linked to the increased incidence of DN (odds ratio [OR]: 0.732, 95% confidence interval [CI] 0.647, 0.828, PFDR = 0.000004). Supporting results from a cross-sectional study based on the Medical Information Marketplace in Intensive Care (MIMIC-IV) database also indicated this association (OR: 0.74, 95% CI: 0.61, 0.91, P = 0.004). Among the 473 identified gut microbiota species, 13 (PFDR < 0.05) were causally associated with DN. The mediation MR analysis revealed that 10 gut microbiota mediated the relationship between statins and DN, acting as either protective or risk factors (P < 0.05). In addition, HMGCR and related proteins may be involved in lipid metabolism, insulin resistance, and AMPK signaling pathway. CONCLUSION Statins may become a risk factor for DN by increasing or decreasing the abundance of specific gut microbiota. These specific gut bacteria have the potential to become a new indicator for guiding the clinical use of statins in diabetic patients.
Collapse
Affiliation(s)
- Xiaoli Wen
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, 330006, Jiangxi Province, People's Republic of China
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang City, People's Republic of China
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
237
|
Zugman M, Wong M, Jaime-Casas S, Pal SK. The gut microbiome and dietary metabolites in the treatment of renal cell carcinoma. Urol Oncol 2025; 43:244-253. [PMID: 39095306 DOI: 10.1016/j.urolonc.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
The gut microbiome is interlinked with renal cell carcinoma (RCC) and its response to systemic treatment. Mounting data suggests that certain elements of the gut microbiome may correlate with improved outcomes. New generation sequencing techniques and advanced bioinformatic data curation are accelerating the investigation of specific markers and metabolites that could predict treatment response. A variety of new therapeutic strategies, such as fecal microbiota transplantation, probiotic supplements, and dietary interventions, are currently being developed to modify the gut microbiome and improve anticancer therapies in patients with RCC. This review discusses the preliminary evidence indicating the role of the microbiome in cancer treatment, the techniques and tools necessary for its proper study and some of the current forms with which the microbiome can be modulated to improve patient outcomes.
Collapse
Affiliation(s)
- Miguel Zugman
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA; Centro de Oncologia e Hematologia Família Dayan-Daycoval Einstein, Hospital Israelita Albert, São Paulo, São Paulo, Brazil
| | - Megan Wong
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Salvador Jaime-Casas
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Sumanta K Pal
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA.
| |
Collapse
|
238
|
Zeng X, Sun L, Xie H, Gong S, Lu C, Xu Z, Guan H, Han B, Wang W, Zhang Z, Zhou J, Wang S, Chen Y, Xiao W. Lactobacillus johnsonii Generates Cyclo(pro-trp) and Promotes Intestinal Ca 2+ Absorption to Alleviate CKD-SHPT. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414678. [PMID: 39887665 PMCID: PMC12021065 DOI: 10.1002/advs.202414678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/07/2025] [Indexed: 02/01/2025]
Abstract
Patients with chronic kidney disease (CKD) are at a high risk of developing secondary hyperparathyroidism (SHPT), which may cause organ dysfunction and increase patient mortality. The main clinical interventions for CKD-SHPT involve calcium supplements to boost absorption, but ineffective for some patients, and the reasons remain unclear. Here, CKD mice are divided into high and low groups based on intact parathyroid hormone (iPTH) levels. The high group exhibits significant changes in gut microbes, including a decrease in Lactobacillus, an increase in parathyroid hyperplasia, and a decrease in intestinal calcium. Fecal microbiota transplantation and L. johnsonii colonization indicate a link between gut microbes and CKD-SHPT. Clinically, higher L. johnsonii levels are correlated with milder hyperparathyroidism CKD-SHPT. The receiver operating characteristic (ROC) curve for L. johnsonii abundance and surgical risk is 0.81, with the calibration curve confirming predictive accuracy, and decision curve analysis revealing good clinical applicability. In vivo and in vitro experiments show that cyclo(pro-trp) enhance calcium inflow and lower iPTH levels in intestinal epithelial cells via a calcium-sensing receptor and transient receptor potential vanilloid 4 pathways. This study identified the crucial role of L. johnsonii in CKD-SHPT, unveiling a new mechanism for calcium imbalance and offering novel strategies for SHPT treatment and drug development.
Collapse
Affiliation(s)
- Xiong Zeng
- Department of General SurgeryXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Lihua Sun
- Department of General SurgeryXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Huichao Xie
- Department of General SurgeryXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Shenhai Gong
- School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhou510515China
| | - Caibao Lu
- Department of NephrologyXinqiao HospitalArmy Medical UniversityChongqing400037China
| | - Zhongwei Xu
- Department of General SurgeryXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Haidi Guan
- Department of General SurgeryXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Ben Han
- Department of NutritionXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Wei Wang
- Department of NutritionXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Zhengmin Zhang
- Department of General SurgeryXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Jieying Zhou
- Department of General SurgeryXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Shuai Wang
- Department of General SurgeryXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Yihui Chen
- Department of General SurgeryXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Weidong Xiao
- Department of General SurgeryXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| |
Collapse
|
239
|
Fan Y, Gao L, Huang Y, Zhao L, Zhao Y, Wang X, Mo D, Lu H, Wang D. Effects and Significance of Dicliptera chinensis Polysaccharide on the Expression of Transforming Growth Factor β1/Connective Tissue Growth Factor Pathway in the Masseter and Head and Neck Skin of Rats With Radiation-Induced Fibrosis. Int Dent J 2025; 75:784-796. [PMID: 38991877 PMCID: PMC11976479 DOI: 10.1016/j.identj.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
PURPOSE To investigate whether Dicliptera chinensis polysaccharide (DCP) can alleviate radiation-induced fibrosis of masseter and head and neck skin. METHODS SD rats were divided into the control, the irradiation (IR), the IR + low dose DCP (200 mg/kg), and the IR + high dose DCP (400 mg/kg) groups. The head and neck of rats in the last 3 groups received a single dose of 18 Gy X-ray. At 1st, 2nd, 4th week (w) after radiation, haematoxylin and eosin staining were performed on masseter and skin to observe the histopathological changes; immunohistochemistry staining was performed to observe the pathological changes of the skin; Masson staining was performed on masseter and skin to observe the collagen deposition; western blot analysis was used on masseter to calculate the relative transforming growth factor β1 (TGF-β1), connective tissue growth factor (CTGF) expressions; ELISA was used to detect the contents of TGF-β1 and CTGF in skin and the contents of type I and type III collagens in masseter and skin. RESULTS In terms of skin, compared to the IR group, the IR + high-dose DCP group exhibited relatively smaller changes in skin structure, lower levels of TGF-β1 and CTGF; thinner skin thickness was observed at the 4th w after radiation; and the positive rates of collagen fibre and the optical densities of type I and type III collagens were lower at the 2nd and 4th w. For the masseter, compared to the IR group, the morphological changes were improved and the expression levels of TGF-β1 and CTGF proteins decreased in the 2 DCP dose groups at 2nd and 4th w. CONCLUSION DCP can reduce the formation and accumulation of type I and type III collagens after IR and ameliorate radiation-induced fibrosis of masseter and skin by down-regulating the expressions of TGF-β1 and CTGF.
Collapse
Affiliation(s)
- Yiyang Fan
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, China; Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Linjing Gao
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yude Huang
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, China
| | - Lixiang Zhao
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, China
| | - Yanfei Zhao
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, China
| | - Xian Wang
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, China
| | - Dongqin Mo
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, China
| | - Haoyu Lu
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, China
| | - Daiyou Wang
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, China.
| |
Collapse
|
240
|
He X, Tao Y, Song C, He J, Gong D, Yu W, Wang H, Yu J, Yang X. Novel Parkin agonists from Poria cocos against dyslipidemia. Fitoterapia 2025; 182:106469. [PMID: 40054701 DOI: 10.1016/j.fitote.2025.106469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/30/2025]
Abstract
Parkin, a cytosolic E3 ubiquitin ligase, plays a crucial role in targeting damaged mitochondria. The dysfunction of Parkin has been implicated in various diseases, including dyslipidemia, highlighting the significance of regulating Parkin activity for therapeutic interventions. Poria cocos (PC), a traditional Chinese medicine with a history spanning over two thousand years, has shown promising effects in regulating dyslipidemia. However, the scarcity of Parkin ligands, particularly from PC, remains a significant drawback in the field. This study identified two novel Parkin ligands from PC using a Parkin-based centrifugal ultrafiltration/liquid chromatography/mass spectrometry method. Molecular docking analysis, molecular dynamic simulations, and autoubiquitination assays confirmed their abilities to activate Parkin. Furthermore, their mitophagy promotion and dyslipidemia mitigation capacities were validated in fat emulsion-induced human liver L02 cells and high-fat diet-induced mice. The results revealed that the two ligands, tumulosic acid and polyporenic acid C, from PC activated Parkin and further promoted mitophagy to alleviate dyslipidemia. These findings will contribute to developing new drugs and enhance our understanding of the PC anti-dyslipidemia mechanisms.
Collapse
Affiliation(s)
- Xudong He
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China; Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, 1076 Yuhua Road, Kunming 650500, China
| | - Yuxuan Tao
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China; Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, 1076 Yuhua Road, Kunming 650500, China
| | - Chengzhu Song
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China; Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, 1076 Yuhua Road, Kunming 650500, China
| | - Jinbiao He
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China; Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, 1076 Yuhua Road, Kunming 650500, China; Southwest United Graduate School, 298 121st Street, Kunming 650092, China
| | - Dihong Gong
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China; Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, 1076 Yuhua Road, Kunming 650500, China
| | - Weimei Yu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China; Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, 1076 Yuhua Road, Kunming 650500, China
| | - Hui Wang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, 1076 Yuhua Road, Kunming 650500, China; Hunan University of Chinese Medicine, 300 xueshi Road, Changsha 410208, China
| | - Jie Yu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China; Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, 1076 Yuhua Road, Kunming 650500, China.
| | - Xingxin Yang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China; Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, 1076 Yuhua Road, Kunming 650500, China.
| |
Collapse
|
241
|
Gao B, Huang X, Fu J, Chen L, Deng Z, Wang S, Zhu Y, Xu C, Zhang Y, Zhang M, Chen L, Cui M, Zhang M. Oral administration of Momordica charantia-derived extracellular vesicles alleviates ulcerative colitis through comprehensive renovation of the intestinal microenvironment. J Nanobiotechnology 2025; 23:261. [PMID: 40170075 PMCID: PMC11959773 DOI: 10.1186/s12951-025-03346-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/23/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is an inflammatory bowel disease (IBD), accompanied by intense inflammation, oxidative stress, and intestinal microbiota dysbiosis. Current treatments using chemotherapeutic drugs or immunosuppressants have limited effectiveness and side effects. Therefore, the development of safe, effective, and multi-targeting therapies for IBD is of great importance. Momordica charantia exhibits antioxidant, anti-inflammatory, and intestinal microbiota-regulating properties, suggesting that Momordica charantia-derived extracellular vesicles (MCEVs) have the potential for UC management. RESULTS We extracted MCEVs using differential centrifugation and density gradient centrifugation. The results showed that MCEVs possessed high purity, even particle size, and excellent stability. In vitro, MCEVs were shown to inhibit macrophage inflammatory responses, scavenge reactive oxygen species (ROS), and protect cells from oxidative damage. Transcriptomics analysis revealed that MCEVs may alleviate mitochondria-dependent apoptosis by safeguarding the integrity of the mitochondrial structure and regulating the expression of apoptosis-related proteins. Furthermore, all components of MCEVs contributed to their pharmacological activity. In vivo, MCEVs had better retention in the inflamed colon and significantly alleviated UC through a comprehensive renovation of the intestinal microenvironment. CONCLUSION These findings suggested that MCEVs own considerable potential as natural nanotherapeutics for UC treatment.
Collapse
Affiliation(s)
- Bowen Gao
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiaoling Huang
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, 830001, China
| | - Junlong Fu
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Liyuan Chen
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhichao Deng
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Shuhui Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yuanyuan Zhu
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Chenxi Xu
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Mingxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710077, China
| | - Lina Chen
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Manli Cui
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710077, China.
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
242
|
Huang L, Wang P, Liu S, Deng G, Qi X, Sun G, Gao X, Zhang L, Zhang Y, Xiao Y, Gao T, Maitiabula G, Wang X. Gut microbiota-derived tryptophan metabolites improve total parenteral nutrition-associated infections by regulating Group 3 innate lymphoid cells. IMETA 2025; 4:e70007. [PMID: 40236767 PMCID: PMC11995168 DOI: 10.1002/imt2.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 04/17/2025]
Abstract
Clinical nutritional support is recognized by Klinefner's Surgery as one of the four pivotal advancements in surgical practice during the 20th century. Surgeons regard clinical nutrition as a "life-saving" discipline, pivotal in preserving the lives of numerous critically ill patients and facilitating the success of many surgical procedures. Parenteral nutrition (PN) support serves as a crucial component of clinical nutritional therapy, while a range of complications associated with total parenteral nutrition (TPN) can significantly undermine the efficacy of patient treatment. Impaired intestinal homeostasis is strongly associated with the occurrence and progression of TPN-related infections, yet the underlying mechanisms remain poorly understood. In this study, RNA sequencing and single-cell RNA sequencing (scRNA-Seq) revealed that reduced secretion of interleukin-22 (IL-22) by intestinal Group 3 innate lymphoid cells (ILC3s) is a significant factor contributing to the onset of TPN-related infections. Additionally, through 16S ribosomal RNA (16S rRNA) gene sequencing of the gut microbiota from patients with chronic intestinal failure and metagenomic sequencing analysis of the gut microbiota from mice, we observed that TPN reduced the abundance of Lactobacillus murinus (L. murinus), while supplementation with L. murinus could promote IL-22 secretion by ILC3s. Mechanistically, L. murinus upregulates indole-3-carboxylic acid, which activates the nuclear receptor Rorγt to stimulate IL-22 secretion by ILC3s. This pathway strengthens gut barrier integrity and reduces infection susceptibility. Our findings enhance our understanding of the mechanisms driving the onset of TPN-related infections, highlighting the critical role of gut microbiota in maintaining immune homeostasis and improving clinical outcomes.
Collapse
Affiliation(s)
- Longchang Huang
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Peng Wang
- Department of Digestive Disease Research CenterGastrointestinal Surgery, The First People's Hospital of FoshanFoshanChina
| | - Shuai Liu
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Guifang Deng
- Department of Clinical NutritionUnion Shenzhen Hospital of Huazhong University of Science and TechnologyShenzhenChina
| | - Xin Qi
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Guangming Sun
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Xuejin Gao
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Li Zhang
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Yupeng Zhang
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Yaqin Xiao
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Tingting Gao
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Gulisudumu Maitiabula
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Xinying Wang
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| |
Collapse
|
243
|
Eichner G, Liebisch G, Hild C, Rickert M, Steinmeyer J. Serum phospholipids and sphingolipids are linked to early-stage osteoarthritis by lipidomic profiling. Arthritis Res Ther 2025; 27:69. [PMID: 40165249 PMCID: PMC11956431 DOI: 10.1186/s13075-025-03537-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Osteoarthritis (OA) is associated with abnormal lipid metabolism, wherein elevated levels of phospholipids (PLs) and sphingolipids (SLs) in human and canine synovial fluid (SF) have been observed. The aim of this lipidomic study was to evaluate how closely blood lipid levels reflect changes in SF, building on previous findings. METHODS Lipids were extracted from knee SF and serum of 44 joint-healthy donors and 58 early (eOA) or late OA (lOA) patients. By electrospray ionization tandem mass spectrometry (ESI-MS/MS), we quantified the extracted lipids and conducted comprehensive statistical analyses. RESULTS Human SF and serum had similar PL and SL compositions. Quantifying 91 lipid species from 6 major classes revealed OA-related changes in serum, with the lowest levels in healthy controls and elevated levels already in the eOA cohort. Generally, serum PL and SL levels were 3-12 times higher than in SF. Specific PL species were elevated in both SF and serum of eOA and lOA patients compared to healthy controls, while nearly 10% of the PL species measured were higher exclusively in the serum of OA patients. CONCLUSIONS The significant lipidomic alterations that were detected at an average Outerbridge score of less than 2 suggest that certain serum PLs may serve as indicators for monitoring the early stages of OA even before radiologic detection is possible. With 10% of PL species elevated only in OA serum, our data implicate the existence of a systemic response that parallels the local lipid metabolic response to OA.
Collapse
Affiliation(s)
- Gerrit Eichner
- Mathematical Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Gerhard Liebisch
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Christiane Hild
- Laboratory for Experimental Orthopaedics, Department of Orthopaedics and Orthopaedic Surgery, Justus Liebig University Giessen, Giessen, Germany
| | - Markus Rickert
- Laboratory for Experimental Orthopaedics, Department of Orthopaedics and Orthopaedic Surgery, Justus Liebig University Giessen, Giessen, Germany
| | - Juergen Steinmeyer
- Laboratory for Experimental Orthopaedics, Department of Orthopaedics and Orthopaedic Surgery, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
244
|
Wang Y, Chen B, Zang C, Hou J. Association between cumulative average triglyceride glucose-body mass index and the risk of CKD onset. Front Endocrinol (Lausanne) 2025; 16:1525078. [PMID: 40230478 PMCID: PMC11994409 DOI: 10.3389/fendo.2025.1525078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/10/2025] [Indexed: 04/16/2025] Open
Abstract
Background Chronic kidney disease (CKD) has become a significant global public health challenge, which was reported to be highly correlated with the triglyceride glucose-body mass index (TyG-BMI). Nevertheless, literature exploring the association between changes in the TyG-BMI and CKD incidence is scant, with most studies focusing on individual values of the TyG-BMI. We aimed to investigate whether cumulative average in the TyG-BMI were associated with CKD incidence. Methods Data in our study were obtained from the China Health and Retirement Longitudinal Study (CHARLS), which is an ongoing nationally representative prospective cohort study. The exposure was the cumulative average TyG-BMI from 2011 to 2015. The TyG-BMI was calculated by the formula ln [TG (mg/dl) × FBG (mg/dl)/2] × BMI (kg/m2), and the cumulative average TyG-BMI was calculated as follows: (TyG-BMI2011+ TyG-BMI2015)/2. Logistic regressions were used to determine the association between different quartiles of cumulative average TyG-BMI and CKD incidence. Meanwhile, restricted cubic spline was applied to examine the potential nonlinear association of the cumulative average TyG-BMI and CKD incidence. In addition, subgroup analysis was used to test the robustness of results. Results Of the 6117 participants (mean [SD] age at baseline, 58.64 [8.61] years), 2793 (45.7%) were men. During the 4 years of follow-up, 470 (7.7%) incident CKD cases were identified. After adjusting for potential confounders, compared to the participants in the lowest quartile of cumulative average TyG-BMI, participants in the 3rd and 4th quartile had a higher risk of CKD onset. The ORs and 95%CIs were [1.509(1.147, 1.990)] and [1.452(1.085, 1.948)] respectively. In addition, restricted cubic spline showed the cumulative average TyG-BMI had a liner association (p-nonlinear = 0.139). Conclusions The cumulative average in the TyG-BMI was independently associated with the risk of CKD in middle-aged and older adults. Monitoring long-term changes in the TyG-BMI may assist with the early identification of individuals at high risk of CKD.
Collapse
Affiliation(s)
| | | | | | - Jie Hou
- Department of Nephrology, the First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
245
|
Khan A, Alzahrani HA, Felemban SG, Algarni AS, Alenezi ABS, Kamal M, Rehman ZU, Asdaq SMB, Ahmed N, Alharbi BM, Alanazi BS, Imran M. Exploring TGF-β signaling in benign prostatic hyperplasia: from cellular senescence to fibrosis and therapeutic implications. Biogerontology 2025; 26:79. [PMID: 40159577 DOI: 10.1007/s10522-025-10226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
As men get older, they often develop benign prostatic hyperplasia (BPH), an enlarged prostate that is not cancerous or dangerous. Although the etiology of BPH is unknown, increasing evidence indicates that the TGF-β signaling pathway might be a key player in its pathogenesis. TGF-β is a pleiotropic cytokine involved in proliferation, differentiation, and extracellular matrix re-modeling, which are all dysregulated in BPH. Cellular senescence is primarily initiated by TGF-β--induced, irreversible growth arrest and usually limits the prostate gland's hyperplastic growth. Moreover, senescent cells generate a Senescence-Associated Secretory Phenotype (SASP), which consists of numerous proinflammatory and profibrotic factors that can worsen disease ontogeny. In addition, TGF-β is among the most fibrogenic factors. At the same time, fibrosis involves a massive accumulation of extracellular matrix proteins, which can increase tissue stiffness and a loss of normal organ functions. TGF-β-mediated fibrosis in BPH changes the mechanical properties of the prostate and surrounding tissues to contribute to lower urinary tract symptoms. This review discusses the complicated molecular signaling of TGF-β underlying changes in cellular senescence and fibrosis during BPH concerning its therapeutic potential.
Collapse
Affiliation(s)
- Abida Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia
- Center for Health Research, Northern Border University, Arar, 73213, Saudi Arabia
| | - Hayat Ali Alzahrani
- Medical Laboratory Technology Department, College of Medical Applied Science, Northern Border University, Arar, Saudi Arabia
| | - Shatha Ghazi Felemban
- Medical Laboratory Sciences Department, Fakeeh College for Medical Sciences, 21461, Jeddah, Saudi Arabia
| | - Alanood Saeed Algarni
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Zia Ur Rehman
- Health Research Centre, Jazan University, P.O. Box 114, 45142, Jazan, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jazan University, P.O. Box 114, Jazan, 45142, Kingdom of Saudi Arabia
| | | | - Naveed Ahmed
- Department of Assistance Medical Sciences, Applied College, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Bashayer Mohammed Alharbi
- Department of Pharmacy, Johns Hopkins Aramco Healthcare, P.O. Box 10352, 31311, Dhahran, Eastern Province, Saudi Arabia
| | - Bander Sharqi Alanazi
- Department of Nursing Administration, Northern Area Armed Forces Hospital, 31991, Hafer AlBaten, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia.
- Center for Health Research, Northern Border University, Arar, 73213, Saudi Arabia.
| |
Collapse
|
246
|
Kim S, Kim J, Kim JL, Park MR, Park KW, Chung KW. Ganoderma lucidum and Robinia pseudoacacia Flower Extract Complex Alleviates Kidney Inflammation and Fibrosis by Modulating Oxidative Stress. Antioxidants (Basel) 2025; 14:409. [PMID: 40298637 PMCID: PMC12024243 DOI: 10.3390/antiox14040409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Chronic kidney disease (CKD) is characterized by functional and structural abnormalities, with its progression strongly influenced by oxidative stress and inflammatory responses, ultimately leading to renal fibrosis. This study aimed to investigate the effects of a Ganoderma lucidum and Robinia pseudoacacia flower extract complex (NEPROBIN) through in vitro and in vivo experiments. In vitro experiments with NRK52E renal tubular epithelial cells demonstrated that NEPROBIN significantly alleviates H2O2-induced oxidative stress and suppresses lipopolysaccharide (LPS)-induced activation of the mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathways. Additionally, NEPROBIN reduced LPS-induced NF-κB transcriptional activity and downregulated the expression of cytokines and chemokines in these cells. We further investigated the effects of NEPROBIN in vivo. Kidney damage was induced in mice using a 0.25% adenine diet (AD), and the mice were orally treated with NEPROBIN at doses of 100, 200, and 400 mg/kg/day for two weeks. NEPROBIN treatment significantly reduced AD-induced elevations in blood urea, serum creatinine, and urinary β2-microglobulin levels. Markers of oxidative stress and kidney damage were notably lower in the kidneys of NEPROBIN-treated mice. Furthermore, NEPROBIN effectively mitigated the AD-induced inflammatory response in the kidneys, with a marked reduction in cytokine and chemokine expression. This decrease in inflammation was associated with a significant reduction in tubulointerstitial fibrosis. Overall, NEPROBIN alleviated renal damage and fibrosis by directly targeting renal oxidative stress and inflammation, highlighting its potential as a therapeutic agent for CKD.
Collapse
Affiliation(s)
- Soyoung Kim
- HLscience Co., Ltd., Uiwang-si 16004, Republic of Korea; (S.K.); (J.-L.K.); (M.-R.P.)
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Jeongwon Kim
- Department of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea;
| | - Jong-Lae Kim
- HLscience Co., Ltd., Uiwang-si 16004, Republic of Korea; (S.K.); (J.-L.K.); (M.-R.P.)
| | - Mi-Ryeong Park
- HLscience Co., Ltd., Uiwang-si 16004, Republic of Korea; (S.K.); (J.-L.K.); (M.-R.P.)
| | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Ki Wung Chung
- Department of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea;
| |
Collapse
|
247
|
Lu Q, Liu J, Xiong Y, Jian J, Wang J, Chen Z, Wan S, Liu X, Wang L. Cyanidin-3-glucoside upregulated NDRG2 through the PI3K/AKT pathway to alleviate EMT and ECM in renal fibrosis. Sci Rep 2025; 15:10695. [PMID: 40155416 PMCID: PMC11953473 DOI: 10.1038/s41598-025-94918-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
Renal fibrosis is a critical progression of chronic kidney disease, and epithelial-to-mesenchymal transition (EMT) and extracellular matrix(ECM) deposition are crucial pathologic change of renal fibrosis, which still lacks of effective treatment. In this study, it was found that cyanidin-3-O-glucoside (C3G) could inhibit EMT and ECM activated by unilateral ureteral obstruction (UUO) and transforming growth factor-β1 (TGF-β1) stimulation. Moreover, N-Myc downstream-regulated gene 2(NDRG2), which involved in the progression of renal fibrosis, was down-regulated in vivo and in vitro model. However, C3G pretreatment could reverse the reductive expression of NDRG2. Furthermore, we found that the combined treatment of C3G and si-NDRG2 could reverse the decreased EMT and ECM, which induced by C3G treatment only. And the activation of Phosphatidylinositol 3-kinase (PI3K)/ Protein Kinase B (AKT) pathway significantly enhanced EMT and ECM, which was decreased by C3G treatment only in TGF-β1 induced Human Kidney 2 (HK-2) cells. In conclusion, our results demonstrated that C3G alleviated EMT and ECM by elevating NDRG2 expression through the PI3K/AKT pathway, indicating that C3G could be a potential treatment against renal fibrosis.
Collapse
Affiliation(s)
- Qianxue Lu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jin Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yufeng Xiong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jun Jian
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jingsong Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Shanshan Wan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
248
|
Himani, Kaur C, Kumar R, Mishra R, Singh G. Targeting TGF-β: a promising strategy for cancer therapy. Med Oncol 2025; 42:142. [PMID: 40155496 DOI: 10.1007/s12032-025-02667-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
Transforming growth factor β (TGF-β) has important role in regulating the cellular processes including cell growth, differentiation, and migration. TGF-β exerts its effect by binding with transcellular membranes and kinases. Our findings demonstrate that TGF- β possess dual role as tumor suppressor and tumor promoter in different stages of cancer. TGF-β emerged as a promising anticancer agent that exhibits the apoptosis by acting on the suppressor of mothers against decapentaplegic (SMAD) and non-SMAD pathways. In this review we are focusing on the different types of TGF- β inhibitors active against skin cancer, breast cancer, colorectal cancer, lung cancer and ovarian cancer. TGF-β inhibitors includes ligand traps, monoclonal antibodies and receptor kinase inhibitors. In recent studies, TGF- β inhibitors have also been used in combination therapies in the treatment of cancer. The TGF-β has important role in vaccine therapy, Chemo and Radio Resistance in Cancer. TGF-β inhibitors present the novel therapeutic approach for the cancer therapy, highlighting the mechanism of action involved, clinical trials, challenges and exploring therapeutic opportunities. This will help to develop the novel TGF-β inhibitors as anticancer agents as well as help to resolve the problem of drug resistance by developing new drugs as anticancer agents.
Collapse
Affiliation(s)
- Himani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rakhi Mishra
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - Gurvinder Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
249
|
Zhang X, Cao Y, Yang X, Ma F, Zhang H, Xiao W. Association between exposure to per- and polyfluoroalkyl substances and kidney function: a population study. Front Med (Lausanne) 2025; 12:1569031. [PMID: 40206474 PMCID: PMC11979136 DOI: 10.3389/fmed.2025.1569031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/05/2025] [Indexed: 04/11/2025] Open
Abstract
Background The relationship between per- and polyfluoroalkyl substances (PFAS) and kidney function markers remains uncertain. Methods We used PFAS detection data from 5,947 adults in NHANES 2005-2012. We employed multivariable linear regression models to examine associations between PFAS and estimated glomerular filtration rate (eGFR), urine creatinine (UCR), urine albumin (UAL), and urine albumin/creatinine ratio (UACR). To capture non-linear trends, restricted cubic splines were applied. The WQS (weighted quantile sum) and Q-gcomp (quantile g computation) models were used for the mixture analysis. Subgroup analyses were conducted to explore potential interactions. Results Perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorohexane sulfonic acid (PFHxS), 2-(N-methyl-perfluorooctane sulfonamido) acetic acid (N-MEFOSAA), and perfluorononanoic acid (PFNA) were negatively related to eGFR (β = -2.04, 95% CI = -2.85, -1.23; β = -0.97, 95% CI = -1.78, -0.16; β = -1.50, 95% CI = -2.24, -0.76; β = -0.49, 95% CI = -1.25, 0.27; β = -0.68, 95% CI = -1.46, 0.10). PFOA and PFOS were positive associated with UCR (β = 10.61, 95% CI = -1.89, 23.11; β = 12.98, 95% CI = 0.56, 25.41). PFOA, PFOS, PFHxS, PFNA, and PFUA were negatively related to UAL (β = -0.53, 95% CI = -0.73, -0.32; β = -0.39, 95% CI = -0.59, -0.18; β = -0.59, 95% CI = -0.78, -0.40; β = -0.42, 95% CI = -0.65, -0.19; β = -0.04, 95% CI = -0.22, 0.14). PFDA, PFOA, PFOS, PFHxS, and PFNA are significantly inversely associated with UACR (β = -0.01, 95% CI = -0.16, 0.14; β = -0.52, 95% CI = -0.69, -0.35; β = -0.50, 95% CI = -0.67, -0.33; β = -0.49, 95% CI = -0.64, -0.33; β = -0.27, 95% CI = -0.44, -0.10). Nonlinear relationships were found between PFAS and all kidney function indicators. Mixed PFAS exposure showed a negative association with eGFR, UAL and UACR, while showed a positive relationship with UCR. Interactions between PFASs and most subgroups were observed. Conclusion Our study revealed significant associations between PFAS exposure and various kidney function indicators. These findings provide an epidemiological perspective on how PFAS may lead to kidney dysfunction.
Collapse
Affiliation(s)
- Xue Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yongping Cao
- Eastern Theater Command Centers for Disease Control and Prevention, Nanjing, China
| | - Xiaona Yang
- Linping District Center for Disease Control and Prevention, Linping District Health Supervision Institute, Hangzhou, Zhejiang, China
| | - Fei Ma
- Eastern Theater Command Centers for Disease Control and Prevention, Nanjing, China
| | - Hengyang Zhang
- Eastern Theater Command Centers for Disease Control and Prevention, Nanjing, China
| | - Wenwen Xiao
- Eastern Theater Command Centers for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
250
|
Matsui T, Sotokawauchi A, Nishino Y, Koga Y, Yamagishi SI. Apixaban Inhibits Progression of Experimental Diabetic Nephropathy by Blocking Advanced Glycation End Product-Receptor Axis. Int J Mol Sci 2025; 26:3007. [PMID: 40243677 PMCID: PMC11988465 DOI: 10.3390/ijms26073007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/16/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Diabetes is associated with an increased risk of thromboembolism. However, the effects of apixaban, a factor Xa inhibitor on diabetic nephropathy, remain unknown. Six-week-old Wistar rats received a single 60 mg/kg intraperitoneal injection of streptozotocin to produce a model of type 1 diabetes. Type 1 diabetic and non-diabetic control rats were treated with or without apixaban orally for 8 weeks, and blood and kidneys were obtained for biochemical, real-time reverse transcription-polymerase chain reaction (RT-PCR) and morphological analyses. Although apixaban treatment did not affect glycemic or lipid parameters, it significantly (p < 0.01) inhibited the increases in advanced glycation end products (AGEs), the receptor for AGEs (RAGE) mRNA and protein levels, 8-hydroxy-2'-deoxyguanosine (8-OHdG), and NADPH oxidase-driven superoxide generation in diabetic rats at 14 weeks old. Compared with non-diabetic rats, gene and protein expression levels of monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), transforming growth factor-β (TGF-β), connective tissue growth factor (CTGF), and fibronectin were increased in 14-week-old diabetic rats, which were associated with enhanced renal expression of kidney injury molecule-1 (KIM-1) and Mac-3, increased extracellular matrix accumulation in the kidneys, and elevated urinary excretion levels of protein and KIM-1, all of which were significantly inhibited by the treatment with apixaban. Urine KIM-1 levels were significantly (p < 0.01) and positively correlated with AGEs (r = 0.690) and 8-OHdG (r = 0.793) in the kidneys and serum 8-OHdG levels (r = 0.823). Our present findings suggest that apixaban could ameliorate renal injury in streptozotocin-induced type 1 diabetic rats partly by blocking the AGE-RAGE-oxidative stress axis in diabetic kidneys.
Collapse
Affiliation(s)
- Takanori Matsui
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji 910-1195, Japan;
| | - Ami Sotokawauchi
- Department of Pediatric Surgery, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.S.); (Y.K.)
| | - Yuri Nishino
- Department of Medicine, Division of Nephrology, Kurume University School of Medicine, Kurume 830-0011, Japan;
| | - Yoshinori Koga
- Department of Pediatric Surgery, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.S.); (Y.K.)
| | - Sho-ichi Yamagishi
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University Graduate School of Medicine, Tokyo 142-8666, Japan
| |
Collapse
|