1
|
Terada Y, Futamata M, Tsutsui K, Aoki H. Evaluation of Preferential Cytokine Adsorption onto Biosensing Surface Modified with Glycopolymer. BIOSENSORS 2025; 15:178. [PMID: 40136975 PMCID: PMC11940340 DOI: 10.3390/bios15030178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025]
Abstract
For the improvement of biosensor performance, the development of a molecular recognition material as well as a sensor platform is necessary. A glycopolymer is a molecular recognition material capable of recognizing specific proteins as natural glycans. However, the target molecules for biosensors using glycopolymers are limited to lectins that are already known for their specific interactions with glycan residues. The aim of this study is to investigate a glycopolymer-modified (GM) surface capable of recognizing non-lectin proteins. As non-lectin proteins, we focused on cytokines, in which the interaction preference to glycopolymers is unknown. The cytokine adsorption onto the GM surfaces was evaluated using a surface plasmon resonance imaging technique as a biosensing tool. Differences in cytokine adsorption onto the different glycan residues were revealed, which will be important for selective cytokine detection. This study indicates the possibility of a biosensing surface modified with glycopolymers for the detection of non-lectin proteins. The results are beneficial for expanding the use of glycopolymers as a molecular recognition material for future applications such as cell analysis and diagnostic devices.
Collapse
Affiliation(s)
| | | | | | - Hiroshi Aoki
- Environmental Management Research Institute (EMRI), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8569, Japan; (Y.T.)
| |
Collapse
|
2
|
Qiao L, Zheng X, Xie C, Wang Y, Ye L, Zhao J, Liu J. Bioactive Materials in Vital Pulp Therapy: Promoting Dental Pulp Repair Through Inflammation Modulation. Biomolecules 2025; 15:258. [PMID: 40001561 PMCID: PMC11853510 DOI: 10.3390/biom15020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/11/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
With the paradigm shift towards minimally invasive biologic therapies, vital pulp therapy (VPT) has been receiving increasing attention. Currently, bioactive materials (BMs), including MTAs, Biodentine, Bioaggregate, and iRoot BP Plus, are clinically widely used for the repair of damaged pulp tissue. Emerging evidence highlights the crucial role of inflammation in pulp repair, with mild to moderate inflammation serving as a prerequisite for promoting pulp repair. BMs play a pivotal role in regulating the balance between inflammatory response and reparative events for dentine repair. Despite their widespread application as pulp-capping agents, the precise mechanisms underlying the actions of BMs remain poorly understood. A comprehensive literature review was conducted, covering studies on the inflammatory responses induced by BMs published up to December 2023. Sources were identified through searches of PubMed and MEDLINE databases, supplemented by manual review of cross-references from relevant studies. The purpose of this article is to discuss diverse mechanisms by which BMs may regulate the balance between tissue inflammation and repair. A deeper understanding of these regulatory mechanisms will facilitate the optimization of current pulp-capping agents, enabling the development of targeted regenerative strategies to achieve superior clinical outcomes.
Collapse
Affiliation(s)
- Liang Qiao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Q.); (X.Z.); (C.X.); (Y.W.); (L.Y.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xueqing Zheng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Q.); (X.Z.); (C.X.); (Y.W.); (L.Y.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Chun Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Q.); (X.Z.); (C.X.); (Y.W.); (L.Y.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yaxin Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Q.); (X.Z.); (C.X.); (Y.W.); (L.Y.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Lu Ye
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Q.); (X.Z.); (C.X.); (Y.W.); (L.Y.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jiajia Zhao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Q.); (X.Z.); (C.X.); (Y.W.); (L.Y.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jiarong Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Q.); (X.Z.); (C.X.); (Y.W.); (L.Y.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
3
|
Han J, Wang H. Cytokine-overexpressing dendritic cells for cancer immunotherapy. Exp Mol Med 2024; 56:2559-2568. [PMID: 39617785 DOI: 10.1038/s12276-024-01353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/11/2024] [Indexed: 12/28/2024] Open
Abstract
Dendritic cells (DCs), the main type of antigen-presenting cells in the body, act as key mediators of adaptive immunity by sampling antigens from diseased cells for the subsequent priming of antigen-specific T and B cells. While DCs can secrete a diverse array of cytokines that profoundly shape the immune milieu, exogenous cytokines are often needed to maintain the survival, proliferation, and differentiation of DCs, T cells, and B cells. However, conventional cytokine therapies for cancer treatment are limited by their low therapeutic benefit and severe side effects. The overexpression of cytokines in DCs, followed by paracrine release or membrane display, has emerged as a viable approach for controlling the exposure of cytokines to interacting DCs and T/B cells. This approach can potentially reduce the necessary dose of cytokines and associated side effects to achieve comparable or enhanced antitumor efficacy. Various strategies have been developed to enable the overexpression or chemical conjugation of cytokines on DCs for the subsequent modulation of DC-T/B-cell interactions. This review provides a brief overview of strategies that enable the overexpression of cytokines in or on DCs via genetic engineering or chemical modification methods and discusses the promise of cytokine-overexpressing DCs for the development of new-generation cancer immunotherapy.
Collapse
Affiliation(s)
- Joonsu Han
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois (CCIL), Urbana, IL, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carle College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
4
|
Mun SK, Jang CJ, Jo S, Park SH, Sim HB, Ramos SC, Kim H, Choi YJ, Park DH, Park KW, Jeong BG, Kim DH, Kang KY, Kim JJ. Anti-obesity and immunomodulatory effects of oil and fermented extract dried from Tenebrio molitor larvae on aged obese mice. Anim Cells Syst (Seoul) 2024; 28:340-352. [PMID: 39011371 PMCID: PMC11249154 DOI: 10.1080/19768354.2024.2374547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
Preventing disease and maintaining the health of the elderly are crucial goals for an aging population, with obesity and immune function restoration being of paramount importance. Obesity, particularly visceral obesity characterized by excessive fat accumulation around the abdominal organs, is linked to chronic conditions such as diabetes, hypertension, cardiovascular diseases, and immune dysfunction. Globally, obesity is considered a disease, prompting significant research interest in its treatment. Therefore, it is essential to explore potential therapeutic and preventive strategies to address obesity and the decline in immune function brought about by aging. Tenebrio molitor larvae (TML), commonly known as 'mealworms,' are rich in unsaturated fatty acids, including oleic and linoleic acids, and essential amino acids, such as isoleucine and tyrosine. In this study, we aimed to investigate the effects of the consumption of TML oil and mealworm fermented extract (MWF-1) on obesity and immunological changes in aged obese mice. Our data showed reduced body fat in 23-week-old C57BL/6 mice fed processed TML products for 6 weeks. Additionally, the characteristically high levels of serum triglycerides decreased by treating with TML oil. The immune responsiveness results confirmed an increase in B cells by treating with MWF-1, while cytokine levels (interferon-gamma, tumor necrosis factor-alpha, interleukin-2, and -6) were restored to levels similar to young mice. These results suggest that TML oil and MWF-1 are promising dietary supplements for addressing obesity and restoring immune function.
Collapse
Affiliation(s)
- Seul-Ki Mun
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Chang Joo Jang
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Semi Jo
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Si-Hyoun Park
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Hyun Bo Sim
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Sonny C Ramos
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Hyeongyeong Kim
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Yu-Jeong Choi
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Dae-Han Park
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Kyung-Wuk Park
- R&D team, Suncheon Research Center for Bio Health Care, Suncheon, Republic of Korea
| | - Beom-Gyun Jeong
- R&D team, Suncheon Research Center for Bio Health Care, Suncheon, Republic of Korea
| | - Dae Heon Kim
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
- CCRIPO Inc., Daejeon, Republic of Korea
| | - Kyung-Yun Kang
- R&D team, Suncheon Research Center for Bio Health Care, Suncheon, Republic of Korea
| | - Jong-Jin Kim
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| |
Collapse
|
5
|
Alsolaiss J, Leeming G, Da Silva R, Alomran N, Casewell NR, Habib AG, Harrison RA, Modahl CM. Investigating Snake-Venom-Induced Dermonecrosis and Inflammation Using an Ex Vivo Human Skin Model. Toxins (Basel) 2024; 16:276. [PMID: 38922170 PMCID: PMC11209077 DOI: 10.3390/toxins16060276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Snakebite envenoming is a neglected tropical disease that causes >100,000 deaths and >400,000 cases of morbidity annually. Despite the use of mouse models, severe local envenoming, defined by morbidity-causing local tissue necrosis, remains poorly understood, and human-tissue responses are ill-defined. Here, for the first time, an ex vivo, non-perfused human skin model was used to investigate temporal histopathological and immunological changes following subcutaneous injections of venoms from medically important African vipers (Echis ocellatus and Bitis arietans) and cobras (Naja nigricollis and N. haje). Histological analysis of venom-injected ex vivo human skin biopsies revealed morphological changes in the epidermis (ballooning degeneration, erosion, and ulceration) comparable to clinical signs of local envenoming. Immunostaining of these biopsies confirmed cell apoptosis consistent with the onset of necrosis. RNA sequencing, multiplex bead arrays, and ELISAs demonstrated that venom-injected human skin biopsies exhibited higher rates of transcription and expression of chemokines (CXCL5, MIP1-ALPHA, RANTES, MCP-1, and MIG), cytokines (IL-1β, IL-1RA, G-CSF/CSF-3, and GM-CSF), and growth factors (VEGF-A, FGF, and HGF) in comparison to non-injected biopsies. To investigate the efficacy of antivenom, SAIMR Echis monovalent or SAIMR polyvalent antivenom was injected one hour following E. ocellatus or N. nigricollis venom treatment, respectively, and although antivenom did not prevent venom-induced dermal tissue damage, it did reduce all pro-inflammatory chemokines, cytokines, and growth factors to normal levels after 48 h. This ex vivo skin model could be useful for studies evaluating the progression of local envenoming and the efficacy of snakebite treatments.
Collapse
Affiliation(s)
- Jaffer Alsolaiss
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (R.D.S.); (N.A.); (N.R.C.); (R.A.H.); (C.M.M.)
- Abqaiq General Hospital, Rural Health Network, Eastern Health Cluster, Ministry of Health, Abqaiq 33241, Saudi Arabia
| | - Gail Leeming
- Department of Veterinary Anatomy, Physiology and Pathology, School of Veterinary Science, University of Liverpool, Liverpool L69 7ZX, UK;
| | - Rachael Da Silva
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (R.D.S.); (N.A.); (N.R.C.); (R.A.H.); (C.M.M.)
| | - Nessrin Alomran
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (R.D.S.); (N.A.); (N.R.C.); (R.A.H.); (C.M.M.)
- Qatif Medical Fitness Center, Clinical Laboratory Department, Qatif Health Network, Eastern Health Cluster, Ministry of Health, Qatif 31911, Saudi Arabia
| | - Nicholas R. Casewell
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (R.D.S.); (N.A.); (N.R.C.); (R.A.H.); (C.M.M.)
| | - Abdulrazaq G. Habib
- African Snakebite Research Group (ASRG) Project, Bayero University, Kano 700251, Nigeria;
| | - Robert A. Harrison
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (R.D.S.); (N.A.); (N.R.C.); (R.A.H.); (C.M.M.)
| | - Cassandra M. Modahl
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (R.D.S.); (N.A.); (N.R.C.); (R.A.H.); (C.M.M.)
| |
Collapse
|
6
|
Chaiyabutr N, Noiprom J, Promruangreang K, Vasaruchapong T, Laoungbua P, Khow O, Chanhome L, Sitprija V. Acute phase reactions in Daboia siamensis venom and fraction-induced acute kidney injury: the role of oxidative stress and inflammatory pathways in in vivo rabbit and ex vivo rabbit kidney models. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20230070. [PMID: 38808074 PMCID: PMC11131233 DOI: 10.1590/1678-9199-jvatitd-2023-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/25/2024] [Indexed: 05/30/2024] Open
Abstract
Background This study examines the direct nephrotoxic effects of Daboia siamensis venom (RVV) and venom fractions in in vivo and isolated perfused kidneys (IPK) to understand the role of inflammation pathways and susceptibility to oxidative stress in venom or fraction-induced acute renal failure. Methods We administered RVV and its venom fractions (PLA2, MP, LAAO, and PDE) to rabbits in vivo and in the IPK model. We measured oxidative stress biomarkers (SOD, CAT, GSH, and MDA) in kidney tissue, as well as inflammatory cytokines (TNF-α, IL-1β, IFN-γ, IL-4, IL-5, and IL-10), MDA and GSH levels in plasma and urine. We also calculated fractional excretion (FE) for pro-/anti-inflammatory cytokines and oxidative stress biomarkers, including the ratios of pro-/anti-inflammatory cytokines in urine after envenomation. Results In both kidney models, significant increases in MDA, SOD, CAT, and GSH levels were observed in kidney tissues, along with elevated concentrations of MDA and GSH in plasma and urine after injecting RVV and venom fractions. Moreover, RVV injections led to progressive increases in FEMDA and decreases in FEGSH. The concentrations of IL-4, IL-5, IL-10, IFN-γ, and TNF-α in plasma increased in vivo, as well as in the urine of the IPK model, but not for IL-1β in both plasma and urine after RVV administrations. Urinary fractional excretion of TNF-α, IL-1β, IFN-γ, IL-4, IL-5, and IL-10 tended to decrease in vivo but showed elevated levels in the IPK model. A single RVV injection in vivo disrupted the balance of urinary cytokines, significantly reducing either the TNF-α/IL-10 ratio or the IFN-γ/IL-10 ratio. Conclusion RVV induces renal tubular toxicity by increasing oxidative stress production and elevating inflammatory cytokines in urine. During the acute phase of acute kidney injury, the balance of urine cytokines shifts toward anti-inflammatory dominance within the first two hours post-RVV and venom fractions.
Collapse
Affiliation(s)
- Narongsak Chaiyabutr
- Queen Saovabha Memorial Institute, The Thai Red Cross Society,
Pathumwan, Bangkok, Thailand
| | - Jureeporn Noiprom
- Department of Research and Development, Queen Saovabha Memorial
Institute, The Thai Red Cross Society, Bangkok, Thailand
| | - Kanyanat Promruangreang
- Department of Research and Development, Queen Saovabha Memorial
Institute, The Thai Red Cross Society, Bangkok, Thailand
| | - Taksa Vasaruchapong
- Snake Farm, Queen Saovabha Memorial Institute, The Thai Red Cross
Society, Bangkok, Thailand
| | - Panithi Laoungbua
- Snake Farm, Queen Saovabha Memorial Institute, The Thai Red Cross
Society, Bangkok, Thailand
| | - Orawan Khow
- Department of Research and Development, Queen Saovabha Memorial
Institute, The Thai Red Cross Society, Bangkok, Thailand
| | - Lawan Chanhome
- Snake Farm, Queen Saovabha Memorial Institute, The Thai Red Cross
Society, Bangkok, Thailand
| | - Visith Sitprija
- Queen Saovabha Memorial Institute, The Thai Red Cross Society,
Pathumwan, Bangkok, Thailand
| |
Collapse
|
7
|
Rahmanian E, Tanideh N, Karbalay-Doust S, Mehrabani D, Rezazadeh D, Ketabchi D, EskandariRoozbahani N, Hamidizadeh N, Rahmanian F, Namazi MR. The effect of topical magnesium on healing of pre-clinical burn wounds. Burns 2024; 50:630-640. [PMID: 37980271 DOI: 10.1016/j.burns.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 09/26/2023] [Accepted: 10/26/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Magnesium (Mg) is an essential factor in the healing process. This study aimed to evaluate the effect of Mg creams on healing burn wounds in the rat model. METHODS To induce burns under general anaesthesia, a 2 × 2 cm2, 100 °C plate was placed for 12 s between the scapulas in 100 male adult Sprague Dawley rats. Animals were divided into five groups (n = 20); positive control (induced burn without treatment); vehicle control (received daily Eucerin cream base topically); comparative control (induced burn and treated daily with Alpha burn cream topically); Treatment 1 and 2 (received daily Mg cream 2% and 4% topically, respectively). All animals were bled for hematological assessment of malondialdehyde (MDA) and TNF-α and sacrificed on days 0, 1, 7, 14, and 21 after interventions for biomechanical, histological, and stereological studies. RESULTS Stereologically speaking, in treatment groups an increase in dermal collagen volume and fibroblasts was noticed. In treatment groups, the length of vessels, angiogenesis, and skin stretch increased, but the wound area, MDA, and TNF-α level decreased. CONCLUSION Mg cream was effective in healing burns.
Collapse
Affiliation(s)
- Elham Rahmanian
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran, And Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem cells technology research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saied Karbalay-Doust
- Histomorphometry and Stereology research Center, Shiraz University of Medical Sciences, Shiraz, iran
| | - Davood Mehrabani
- Stem Cell Technology Research Center, Shiraz, Iran. and Li Ka Shing Center for Health Research and Innovation, University of Alberta, Edmonton, AB, Canada
| | - Davood Rezazadeh
- Molecular Medicine Department, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Deniz Ketabchi
- Haj Daei Clinic, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Narges EskandariRoozbahani
- Clinical research development center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasrin Hamidizadeh
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzad Rahmanian
- Paramedic of Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mohammad Reza Namazi
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
Riva F, Draghi S, Inglesi A, Filipe J, Cremonesi P, Lavazza A, Cavadini P, Vigo D, Agradi S, Menchetti L, Di Giancamillo A, Aidos L, Modina SC, Fehri NE, Pastorelli G, Serra V, Balzaretti CM, Castrica M, Severgnini M, Brecchia G, Curone G. Bovine Colostrum Supplementation in Rabbit Diet Modulates Gene Expression of Cytokines, Gut-Vascular Barrier, and Red-Ox-Related Molecules in the Gut Wall. Animals (Basel) 2024; 14:800. [PMID: 38473185 DOI: 10.3390/ani14050800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Rabbits, pivotal in the EU as livestock, pets, and experimental animals, face bacterial infection challenges, prompting a quest for alternatives to curb antibiotic resistance. Bovine colostrum (BC), rich in immunoregulatory compounds, antimicrobial peptides, and growth factors, is explored for disease treatment and prevention. This study assesses BC diet supplementation effects on rabbit intestines, examining gene expression. Thirty female New Zealand White rabbits at weaning (35 days) were divided into three experimental groups: control (commercial feed), 2.5% BC, and 5% BC. The diets were administered until slaughtering (81 days). BC-upregulated genes in the jejunum included IL-8, TGF-β, and CTNN-β1 at 5% BC, while PLVAP at 2.5% BC. Antioxidant-related genes (SOD1, GSR) were downregulated in the cecum and colon with 2.5% BC. BC 5% promoted IL-8 in the jejunum, fostering inflammation and immune cell migration. It also induced genes regulating inflammatory responses (TGF-β) and gastrointestinal permeability (CTNN-β1). BC 5% enhanced antioxidant activity in the cecum and colon, but no significant impact on anti-myxo antibody production was observed. These results suggest that BC has significant effects on the rabbit gastrointestinal tract's inflammatory and antioxidant response, but further research is required to fully understand its histological and physiological impact.
Collapse
Affiliation(s)
- Federica Riva
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Susanna Draghi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Alessia Inglesi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Joel Filipe
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Paola Cremonesi
- Istituto di Biologia e Biotecnologia Agraria (IBBA), National Research Council (CNR), Via Einstein, 26900 Lodi, Italy
| | - Antonio Lavazza
- Virology Laboratory, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via Bianchi 9, 25124 Brescia, Italy
| | - Patrizia Cavadini
- Virology Laboratory, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via Bianchi 9, 25124 Brescia, Italy
| | - Daniele Vigo
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Stella Agradi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Laura Menchetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93-95, 62024 Matelica, Italy
| | - Alessia Di Giancamillo
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy
| | - Lucia Aidos
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Silvia Clotilde Modina
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Nour Elhouda Fehri
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Grazia Pastorelli
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Valentina Serra
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Claudia Maria Balzaretti
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Marta Castrica
- Dipartimento di Biomedicina Comparata e Alimentazione-BCA, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Marco Severgnini
- Institute of Biomedical Technologies (ITB), National Research Council (CNR), Via Fratelli Cervi 93, 20090 Segrate, Italy
| | - Gabriele Brecchia
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Giulio Curone
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| |
Collapse
|
9
|
Urcar Gelen S, Ozkanlar S, Gedikli S, Atasever M. The investigation of the effects of monosodium glutamate on healthy rats and rats with STZ-induced diabetes. J Biochem Mol Toxicol 2024; 38:e23612. [PMID: 38084638 DOI: 10.1002/jbt.23612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/14/2023] [Accepted: 11/21/2023] [Indexed: 01/18/2024]
Abstract
Monosodium glutamate (MSG, E621) is a flavor-enhancing food additive used widely in the food preparation industry and consumed regularly. It is considered that long-term consumption of MSG causes metabolic syndrome and obesity. Diabetes mellitus (DM) is a chronic metabolic disease characterized by high blood sugar, polyuria, polydipsia, and polyphagia, in which insulin secreted from pancreatic β cells is inadequate for maintaining blood glucose homeostasis. Rats were application 65 mg/kg streptozotocin (STZ) solution intraperitoneally and a diabetes model was created. For this purpose, freshly prepared STZ was injected into the peritoneum. Tumor necrosis factor-α, interleukin (IL)-10, IL-6, and IL-1β levels in STZ, MSG, and STZ + MSG groups were found to be significantly increased in inflammation parameters measured on the 28th day of administration when compared to the Control Group (p < 0.001). Also, although malondialdehyde (MDA) levels increased significantly in the STZ + MSG group when compared to the control group (p < 0.001), glutathione (GSH), and superoxide dismutase (SOD) levels were significantly decreased in the STZ, MSG, and STZ + MSG groups when compared to the control group (p < 0.001). Also, although glucose levels increased significantly in STZ and STZ + MSG at the end of the 28th day (p < 0.01), insulin levels decreased in STZ, MSG, and STZ + MSG groups when compared to the control groups (p < 0.01). As a result, it was found that STZ and MSG application significantly increased cytokine production, increased MDA, which is an oxidant parameter in pancreatic tissue, and decreased antioxidants (GSH and SOD) when compared to the control groups. It was also found that MSG disrupted the normal histological structure in pancreatic cells, and the damage was much more in both exocrine and endocrine pancreatic areas in the STZ + MSG group when compared to the STZ and MSG groups. It was considered that with the increased use of MSG, the susceptibility to DM might increase along with tissue damage significantly in diabetic groups, therefore, MSG must be used in a limited and controlled manner.
Collapse
Affiliation(s)
- Sevda Urcar Gelen
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Seckin Ozkanlar
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Semin Gedikli
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Mustafa Atasever
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
10
|
Lechner J, von Baehr V, Notter F, Schick F. Osseointegration and osteoimmunology in implantology: assessment of the immune sustainability of dental implants using advanced sonographic diagnostics: research and case reports. J Int Med Res 2024; 52:3000605231224161. [PMID: 38259068 PMCID: PMC10807457 DOI: 10.1177/03000605231224161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
OBJECTIVE Bone marrow defects of the jaw (BMDJ) surrounding dental implants, in combination with impaired bone-to-implant contact (BIC), are difficult to detect in X-rays. This study evaluated BMDJ surrounding titanium (Ti-Impl) and ceramic (Cer-Impl) dental implants and incomplete BIC using a new trans-alveolar ultrasonography device (TAU) with numerical scaling for BIC. METHODS The titanium stimulation test (Ti-Stim) was used to detect immune overactivation in response to titanium. Bone density surrounding implants was measured using TAU. We also validated osteoimmune dysregulation. RESULTS TAU values showed reduced BIC and decreased osseointegration for Ti-Impl. Moreover, TAU values in the Cer-Impl group were more than twice those in the Ti-Impl cohort. The multiplex analysis of C-C motif chemokine 5 (CCL5, also known as RANTES) expression revealed a 20-fold increase in BMDJ surrounding Ti-Impl. Higher levels of CCL5 inflammation were present in the positive Ti-Stim group. CONCLUSIONS Our data indicate that Cer-Impl have an osteoimmune advantage over Ti-Impl. The key determinant for osteoimmune sustainability appears to be the absence of inflammation at the implant site. We therefore recommend the use of TAU to assess the implant site prior to implantation.
Collapse
Affiliation(s)
| | - Volker von Baehr
- Department of Immunology and Allergology, Institute for Medical Diagnostics, Berlin, Germany
| | | | | |
Collapse
|
11
|
Labropoulou V, Wang L, Magkrioti C, Smagghe G, Swevers L. Single domain von Willebrand factor type C "cytokines" and the regulation of the stress/immune response in insects. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22071. [PMID: 38288483 DOI: 10.1002/arch.22071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 02/01/2024]
Abstract
The single domain von Willebrand factor type C (SVWC) appears in small secreted peptides that are arthropod-specific and are produced following environmental stress or pathogen exposure. Most research has focused on proteins with SVWC domain that are induced after virus infection and are hypothesized to function as "cytokines" to regulate the innate immune response. The expansion of SVWC genes in insect species indicates that many other functions remain to be discovered. Research in shrimp has elucidated the adaptability of Vago-like peptides in the innate immune response against bacteria, fungi and viruses after activation by Jak-STAT and/or Toll/Imd pathways in which they can act as pathogen-recognition receptors or cytokine-like signaling molecules. SVWC factors also appear in scorpion venoms and tick saliva, underlining their versatility to acquire new functions. This review discusses the discovery and function of SVWC peptides from insects to crustaceans and chelicerates and reveals the enormous gaps in knowledge that remain to be filled to understand this enigmatic group of secreted peptides.
Collapse
Affiliation(s)
- Vassiliki Labropoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, Athens, Greece
| | - Luoluo Wang
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou, China
| | - Christiana Magkrioti
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, Athens, Greece
| | - Guy Smagghe
- Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Institute of Entomology, Guizhou University, Guizhou, China
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, Athens, Greece
| |
Collapse
|
12
|
Soleymani S, Janati-Fard F, Housaindokht MR. Designing a bioadjuvant candidate vaccine targeting infectious bursal disease virus (IBDV) using viral VP2 fusion and chicken IL-2 antigenic epitope: A bioinformatics approach. Comput Biol Med 2023; 163:107087. [PMID: 37321098 DOI: 10.1016/j.compbiomed.2023.107087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/17/2023]
Abstract
Infectious Bursal Disease (IBD) is a common and contagious viral infection that significantly affects the poultry industry. This severely suppresses the immune system in chickens, thereby threating their health and well-being. Vaccination is the most effective strategy for preventing and controlling this infectious agent. The development of VP2-based DNA vaccines combined with biological adjuvants has recently received considerable attention due to their effectiveness in eliciting both humoral and cellular immune responses. In this study, we applied bioinformatics tools to design a fused bioadjuvant candidate vaccine from the full-length sequence of the VP2 protein of IBDV isolated in Iran using the antigenic epitope of chicken IL-2 (chiIL-2). Furthermore, to improve the antigenic epitope presentation and to maintain the three-dimensional structure of the chimeric gene construct, the P2A linker (L) was used to fuse the two fragments. Our in-silico analysis for the design of a candidate vaccine indicates that a continuous sequence of amino acid residues ranging from 105 to 129 in chiIL-2 is proposed as a B cell epitope by epitope prediction servers. The final 3D structure of the VP2-L-chiIL-2105-129 was subjected to physicochemical property determination, molecular dynamic simulation, and antigenic site determination. The results of these analyses led to the development of a stable candidate vaccine that is non-allergenic and has the potential for antigenic surface display potential and adjuvant activity. Finally, it is necessary to investigate the immune response induced by our proposed vaccine in avian hosts. Notably, increasing the immunogenicity of DNA vaccines can be achieved by combining antigenic proteins with molecular adjuvants using the principle of rational vaccine design.
Collapse
Affiliation(s)
- Safoura Soleymani
- Research and Technology Center of Biomolecules, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Fatemeh Janati-Fard
- Research and Technology Center of Biomolecules, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mohammad Reza Housaindokht
- Research and Technology Center of Biomolecules, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
13
|
Liu J, Liu Y, Liu Y, Guo X, Lü Z, Zhou X, Liu H, Chi C. Molecular cloning, expression analysis and immune-related functional identification of tumor necrosis factor alpha (TNFα) in Sepiella japonica under bacteria stress. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108509. [PMID: 36581254 DOI: 10.1016/j.fsi.2022.108509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/01/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Tumor necrosis factor α (TNFα), a cytokine mainly secreted by active macrophages and monocytes, causes hemorrhagic necrosis of tumor tissues, kills tumor cells, regulates inflammatory responses, and plays a crucial role in innate immunity. In this study, TNFα of Sepiella japonica (named as SjTNFα) was acquired, whose full-length cDNA was 1206 bp (GenBank accession no. ON357428), containing a 5' UTR of 185 bp, a 3' UTR of 137 bp and an open reading frame (ORF) of 1002bp to encode a putative peptide of 333 amino acids for constructing the transmembrane domain and the cytoplasmic TNF domain. Its predicted pI was 8.69 and the theoretical molecular weight was 44.72 KDa. Multiple sequence alignment and phylogenetic analysis showed that SjTNFα had the highest homology to Octopus sinensis, they fell into a unified branch and further clustered with other animals. Real-time PCR indicated that SjTNFα was widely expressed in all subject tissues, including spleen, pancreas, gill, heart, brain, optic lobe, liver and intestine, and exhibited the highest in the liver and the lowest in the brain. The relative expression of SjTNFα varied at the developmental period of juvenile stage, pre-spawning and oviposition in the squid, with the highest in the liver at the juvenile stage and oviposition, and in the optic lobe of pre-spawning. After being infected with Vibrio parahaemolyticus and Aeromonas hydrophila, the expression of SjTNFα in liver and gill were both upregulated with time, and the highest expression appeared at 24 h and 8 h in liver for different infection, and at 4 h in gill consistently. Cell localization showed that SjTNFα distributed on membrane of HEK293 cells because it was a type II soluble transmembrane protein. When HEK293 cells were stimulated with LPS of different concentrations, the NF-κB pathway was activated in the nucleus and the corresponding mRNA was transferred through the intracellular signal transduction pathway, resulting in the synthesis and release of TNFα, which made the expression of SjTNFα was up-regulated obviously. These findings showed that SjTNFα might play an essential role in the defense of S. japonica against bacteria challenge, which contributed to the understanding of the intrinsic immune signaling pathway of Cephalopoda and the further study of host-pathogen interactions.
Collapse
Affiliation(s)
- Jiaxin Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Yue Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Yongxin Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Xiaoxian Guo
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Zhenming Lü
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Xu Zhou
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Huihui Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| | - Changfeng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| |
Collapse
|
14
|
Shen C, Zhang M, Liang H, He J, Zhang B, Liang B. Gene cloning and functional study of PmKSPI from Pinctada fucata martensii. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1157-1165. [PMID: 36400373 DOI: 10.1016/j.fsi.2022.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/28/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Kunitz-type serine protease inhibitors (KSPI) are a family of serine protease inhibitors (SPIs) and are extensively found in animals, plants, and microbes. SPI can inhibit proteases that may be harmful or unwanted to its cells. Here, a four-domain Kunitz-type SPI, PmKSPI, was cloned by RACE in the pearl oyster Pinctada fucata martensii. The full-length cDNA sequence of PmKSPI was 1318 bp, including the 5' UTR (25 bp), the 3' UTR (96 bp) and ORF (1197 bp). Homology analysis indicated that PmKSPI had the highest resemblance (30.14%) with its homolog in Crassostrea gigas. Phylogenetic analysis revealed that PmKSPI clustered with homologs in other molluscs. We found that PmKSPI mRNA expression in P. f. martensii was distributed in all six tissues, with the highest level in the mantle, and almost no expression in other tissues. After PAMPs challenge, expression of PmKSPI mRNA in the mantle was significantly up-regulated. The recombinant protein rPmKSPI significantly inhibited the growth of 5 kinds of Gram-negative bacteria but had little effect on Gram-positive bacterial activity. Transmission electron microscopy showed that plasmolysis occurred in two Gram-negative bacteria species when treated with rPmKSPI. rPmKSPI may thus have a bactericidal effect by destroying the bacterial cell membrane or cell walls and releasing its contents. Therefore, our results suggest that PmKSPI is tightly associated with the immunological defence of P. f. martensii.
Collapse
Affiliation(s)
- Chenghao Shen
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Meizhen Zhang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Haiying Liang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, Guangdong, 524088, China.
| | - Junjun He
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Bin Zhang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Bidan Liang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| |
Collapse
|
15
|
Gupta K, Desai R, Jawade K, Jagtap DD, Modi D, Jain R, Dandekar P. Determination of functional similarity of biosimilar H9P2S from an investigational CHO clone with Adalimumab. 3 Biotech 2022; 12:315. [PMID: 36276478 PMCID: PMC9547763 DOI: 10.1007/s13205-022-03384-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Biosimilars, which are replicas of innovator pharmaceuticals, constitute the most significant share of biopharmaceutical products. These products are associated with structural and manufacturing complexities and are hence considered as similar to innovator drugs. Adalimumab is a monoclonal antibody that has been approved by the US FDA for blocking TNF-α. Adalimumab, also known as Humira, is preferred over other anti-TNF-α mAbs because of its lower immunogenicity and enhanced clinical efficacy. As cost-effective mAb development is still a challenging area, we developed an in-house stable CHO-K1 cell line for the production of recombinant monoclonal mAb against TNF-α. This clone yielded H9P2S, as a biosimilar against TNF-α, for which several functional assays were conducted to prove its biosimilarity to Adalimumab. Two batches of H9P2S and their subsequent dilutions were compared with Adalimumab. H9P2S and Adalimumab showed highly similar TNF-α binding and neutralizing activities, confirming the suitability of our clone for yielding biosimilar drugs. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03384-z.
Collapse
Affiliation(s)
- Kritika Gupta
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019 India
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, 400019 India
| | - Ranjeet Desai
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019 India
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, 400019 India
| | - Ketki Jawade
- Cellular and Structural Biology Division, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, 400012 India
| | - Dhanashree D. Jagtap
- Cellular and Structural Biology Division, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, 400012 India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, 400012 India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, 400019 India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019 India
| |
Collapse
|
16
|
Joulaei H, Keshani P, Foroozanfar Z, Zamanian D, Hassani A, Parvizi F, Khadem Y, Omidifar N, Davarpanah MA. Serum zinc associated with immunity and inflammatory markers in Covid-19. Open Med (Wars) 2022; 17:702-711. [PMID: 35480398 PMCID: PMC8990765 DOI: 10.1515/med-2022-0469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 01/01/2022] [Accepted: 03/09/2022] [Indexed: 01/08/2023] Open
Abstract
This study aimed to assess the association between serum zinc level with some inflammatory and immunity factors and the duration of hospitalization and mortality rate in patients diagnosed with Covid-19. In this cross-sectional study, blood samples were taken from polymerase chain reaction (PCR) positive patients. New patients diagnosed with Covid-19, admitted to different public hospital wards, were considered eligible for entering the study. The study was done on 179 hospitalized patients diagnosed with Covid-19. Fourteen patients died during the hospitalization and the in-hospital mortality rate was 7.8%, with 9.1% (13 patients) of patients with serum zinc level less than 70 mcg/dL and 3.4% (1 patient) of patients with zinc levels more than 70 mcg/dL. Higher levels of zinc were significantly associated with a higher and lower level of interferon-gamma (IFN-γ) (p-value = 0.035) and interleukin (IL)-6 (p-value = 0.004), respectively. The level of serum zinc did not have a significant association with mortality even after adjusting for confounding factors. The relationship between zinc level and the duration of hospitalization was also not significant. In conclusion, serum zinc level had an association with IL-6 and IFN-γ level, but it did not have any significant association with hospital duration or mortality.
Collapse
Affiliation(s)
- Hassan Joulaei
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Parisa Keshani
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Zohre Foroozanfar
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Daniel Zamanian
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences , Shiraz , Iran
| | | | - Fateme Parvizi
- School of Medicine, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Yasaman Khadem
- School of Medicine, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Navid Omidifar
- Clinical Education Research Center, and Department of Pathology, School of Medicine, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Mohammad Ali Davarpanah
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
17
|
Matsushima K, Yang D, Oppenheim JJ. Interleukin-8: An evolving chemokine. Cytokine 2022; 153:155828. [PMID: 35247648 DOI: 10.1016/j.cyto.2022.155828] [Citation(s) in RCA: 207] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022]
Abstract
Early in the 1980s several laboratories mistakenly reported that partially purified interleukin-1 (IL-1) was chemotactic for neutrophils. However, further investigations by us, revealed that our purified IL-1 did not have neutrophil chemotactic activity and this activity in the LPS-stimulated human monocyte conditioned media could clearly be separated from IL-1 activity on HPLC gel filtration. This motivated Teizo Yoshimura and Kouji Matsushima to purify the monocyte-derived neutrophil chemotactic factor (MDNCF), present in LPS conditioned media and molecularly clone the cDNA for MDNCF. They found that MDNCF protein (later renamed IL-8, and finally termed CXCL8) is first translated as a precursor form consisting of 99 amino acid residues and the signal peptide is then removed, leading to the secretion and processing of biologically active IL-8 of 72 amino acid form (residues 28-99). There are four cysteine residues forming two disulfide linkage and 14 basic amino acid residues which result in a very basic property for the binding of IL-8 to heparan sulfate-proteoglycan. The IL-8 gene consists of 4 exons and 3 introns. IL-8 is produced by various types of cells in inflammation. The 5'-flanking region of IL-8 gene contains several nuclear factor binding sites, and NF-κB in combination with AP-1 or C/EBP synergistically activates IL-8 gene in response to IL-1 and TNFα. Two receptors exist for IL-8, CXCR1 and CXCR2 in humans, which belong to γ subfamily of GTP binding protein (G-protein) coupled rhodopsin-like 7 transmembrane domain receptors. Rodents express CXCR2 and do not produce IL-8, but produce numerous homologues instead. Once IL-8 binds to the receptor, β and γ subunits of G-protein are released from Gα (Gαi2 in neutrophils) and activate PI3Kγ, PLCβ2/β3, PLA2 and PLD. Gαi2 inhibits adenyl cyclase to decrease cAMP levels. Small GTPases Ras/Rac/Rho/cdc42/Rap1, PKC and AKT (PKB) exist down-stream of β and γ subunits and regulate cell adhesion, actin polymerization, membrane protrusion, and eventually cell migration. PLCβ activation generates IP3 and induces Ca++ mobilization, DAG generation to activate protein kinase C to lead granule exocytosis and respiratory burst. MDNCF was renamed interleukin 8 (IL-8) at the International Symposium on Novel Neutrophil Chemotactic Activating Polypeptides, London, UK in 1989. The discovery of IL-8 prompted us to also purify and molecularly clone the cDNA of MCAF/MCP-1 responsible for monocyte chemotaxis, and other groups to identify a large family of chemotactic cytokines capable of attracting other types of leukocytes. In 1992, most of the investigators contributing to the discovery of this new family of chemotactic cytokines gathered in Baden, Austria and agreed to name this family "chemokines" and subsequently established the CXCL/CCL and CXCR/CCR nomenclature. The discovery of chemokines resulted in solving the long-time enigma concerning the mechanism of cell type specific leukocyte infiltration into inflamed tissues and provided a molecular basis for immune and hematopoietic cell migration and interactions under physiological as well as pathological conditions. To our surprise based on its recently identified multifunctional activities, IL-8 has evolved from a neutrophil chemoattractant to a promising therapeutic target for a wide range of inflammatory and neoplastic diseases. IL-8 was initially characterized as a chemoattractant of neutrophils engaged in acute inflammation and then discovered to also be chemotactic for endothelial cells with a major role in angiogenesis. These two activities of IL-8 foster its stimulatory effect on tumor growth. This is abetted by recent additional discoveries showing that IL-8 has stimulatory effects on stem cells and can therefore directly promote the growth of receptor expressing cancer stem cells. IL-8 by interacting with bone marrow stem/progenitor cells has also the capacity to mobilize and release hematopoietic cells into the peripheral circulation. This includes the mobilization of neutrophilic myeloid-derived suppressor cells (N-MDSC) to infiltrate into tumors and thus further promotes the immune escape of tumors. Finally, the capacity of IL-8 to induce trans-differentiation of epithelial cancer cells into mesenchymal phenotype (EMT) increases the malignancy of tumors by promoting their metastatic spread and resistance to chemotherapeutics and cytotoxic immune cells. These observations have stimulated considerable current efforts to develop receptor antagonists for IL-8 and humanized anti-IL-8 antibody for the therapy of cancer, particularly in combination with immune checkpoint inhibitors, such as anti-PD-1/PD-L1 antibodies.
Collapse
Affiliation(s)
- Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - De Yang
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Joost J Oppenheim
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
18
|
Bolina-Santos E, Chaves DG, da Silva-Malta MCF, Carmo RA, Barbosa-Stancioli EF, Lobato Martins M. HCV infection in hemophilia A patients is associated with altered cytokines and chemokines profile and might modulate the levels of FVIII inhibitor. J Med Virol 2021; 94:683-691. [PMID: 34738645 DOI: 10.1002/jmv.27432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
Prevalence of hepatitis C virus (HCV) is high in hemophilia A patients and the development of FVIII inhibitor is another challenge in the management of these individuals. The influence of HCV infection in the occurrence of inhibitors was investigated by the comparison of clinical and laboratory data from noninfected (NI, n = 96) and chronically HCV-infected (HCV, n = 58) hemophilia A patients. Concentrations of plasmatic cytokines (IL-2, IL-4, IL-6, IL-10, TNF, IFN-γ, and IL-17A) and chemokines (CCL2, CCL5, CXCL8, CXCL9, and CXCL10) were quantified from patients' samples. The results showed that older age, use of cryoprecipitate and fresh frozen plasma, and severe hemophilia were associated with HCV infection, whereas exclusive use of virus inactivated clotting factors was a protector factor to acquiring HCV infection. HCV infection was strongly associated with low levels of inhibitor (OR = 20.53, p < 0.001). Patients with a history of inhibitor (INB+) presented a mixed immune profile characterized by higher levels of pro-and anti-inflammatory cytokines than those without a history of inhibitor (INB-). The highest levels of CCL2 and CXCL8 were seen in HCVINB- , whereas CXCL9 and CXCL10 in HCVINB+ . Heatmap analysis of the set of cytokines and chemokines concentration distributed HCV patients into two distinct clusters, HCVINB+ and HCVINB- , both characterized by low concentrations of IL-4, while noninfected patients were grouped in a single block regardless of inhibitor development history (NIINB-/INB+ ). This finding suggests that the strong association between HCV infection and low levels of factor VIII inhibitors might be due to the modulation of the cytokine and chemokine network established by the antiviral response.
Collapse
Affiliation(s)
- Eduarda Bolina-Santos
- Departamento de Microbiologia, Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel G Chaves
- Serviço de Pesquisa, Gerência de Desenvolvimento Técnico Científico, Fundação Hemominas, Belo Horizonte, Minas Gerais, Brazil
| | - Maria C F da Silva-Malta
- Serviço de Pesquisa, Gerência de Desenvolvimento Técnico Científico, Fundação Hemominas, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo A Carmo
- Ambulatório de Infectologia, Hemocentro de Belo Horizonte, Fundação Hemominas, Belo Horizonte, Minas Gerais, Brazil
| | - Edel F Barbosa-Stancioli
- Departamento de Microbiologia, Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marina Lobato Martins
- Serviço de Pesquisa, Gerência de Desenvolvimento Técnico Científico, Fundação Hemominas, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
19
|
Illiano A, Pinto G, Gaglione R, Arciello A, Amoresano A. Inflammation protein quantification by multiple reaction monitoring mass spectrometry in lipopolysaccharide-stimulated THP-1 cells. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9166. [PMID: 34270816 PMCID: PMC9285679 DOI: 10.1002/rcm.9166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 05/06/2023]
Abstract
RATIONALE Inflammation is a cascade of events mediated by a cytokine network triggering the cellular response. In order to monitor the modulation of the crucial inflammatory proteins, e.g., Tumour Necrosis Factor-α (TNF-α), Interferon-γ (INF-γ), Interleukin-8 (IL-8) and Interleukin-10 (IL-10), upon stimulation with endotoxins, differentiated and undifferentiated THP-1 cells were treated with lipopolysaccharides (LPSs) from E. coli, key cell wall components of Gram-negative bacteria. METHODS The multiple reaction monitoring mass spectrometry (MRM-MS) method was optimized by using the standard proteins to be quantified, in order to construct external calibration curves and define the analytical parameters. The developed method was used to quantify the above-mentioned inflammatory proteins in THP-1 differentiated cells upon stimulation with LPSs with high accuracy, sensitivity, and robustness. RESULTS The analysis of such proteins in MRM mode allowed the kinetics of stimulation along the time up to 24 h to be followed and the MS results were found to be comparable with those obtained by Western-blotting. A significant increase in TNF-α release triggered a cascade mechanism leading to the production of INF-γ and IL-8. IL-10, instead, was found to be constant throughout the process. CONCLUSIONS The developed MRM-MS method allowed the quantification of TNF-α, INF-γ, IL-8 and IL-10 along a time-course from 2 to 24 h. Hence, a trace of the kinetics of the inflammatory response in THP-1 cells upon stimulation with E. coli LPSs was obtained. Finally, the extensibility of the developed MRM method to serum samples and other matrices demonstrated the versatility of the approach and the possibility to quantify multiple target proteins in different biological samples by using a few microliters in a single analysis.
Collapse
Affiliation(s)
- Anna Illiano
- CEINGE Advanced BiotechnologiesUniversity of Naples Federico IINaplesItaly
- Department of Chemical SciencesUniversity of Naples Federico IINaplesItaly
- Consorzio Interuniversitario Istituto Nazionale Biostrutture e BiosistemiRomeItaly
| | - Gabriella Pinto
- Department of Chemical SciencesUniversity of Naples Federico IINaplesItaly
- Consorzio Interuniversitario Istituto Nazionale Biostrutture e BiosistemiRomeItaly
| | - Rosa Gaglione
- Department of Chemical SciencesUniversity of Naples Federico IINaplesItaly
| | - Angela Arciello
- Department of Chemical SciencesUniversity of Naples Federico IINaplesItaly
| | - Angela Amoresano
- Department of Chemical SciencesUniversity of Naples Federico IINaplesItaly
- Consorzio Interuniversitario Istituto Nazionale Biostrutture e BiosistemiRomeItaly
| |
Collapse
|
20
|
Hussain MS, Sharma P, Dhanjal DS, Khurana N, Vyas M, Sharma N, Mehta M, Tambuwala MM, Satija S, Sohal SS, Oliver BGG, Sharma HS. Nanotechnology based advanced therapeutic strategies for targeting interleukins in chronic respiratory diseases. Chem Biol Interact 2021; 348:109637. [PMID: 34506765 DOI: 10.1016/j.cbi.2021.109637] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/22/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023]
Abstract
Both communicable and non-communicable chronic respiratory conditions have accorded for suffering of millions of people of all ages and stated to be leading cause of death, morbidity, economic and social pressures, and disability-adjusted life-years (DALYs) worldwide. These illnesses impair patient's health and negatively impacts families and society, particularly in low and middle-income countries. Chronic respiratory diseases (CRDs) affect different organs of respiratory system, involving airways, parenchyma, and pulmonary vasculature. As the number of respiratory diseases are exponentially escalating but still the stakeholders are not paying attention towards its serious complications. Currently, the treatment being used primarily focusses only on alleviating symptoms of these illness rather delivering the therapeutic agent at target site for optimal care and/or prevention. Lately, extensive research is being conducted on airways and systemic inflammation, oxidative stress, airway, or parenchymal rehabilitation. From which macrophages, neutrophils, and T cells, as well as structural cells as fibroblasts, epithelial, endothelial, and smooth muscle cells have been found to be active participants that are involved in these chronic respiratory diseases. The pathogenesis of all these chronic respiratory diseases gets caused differently via mediators and proteins, including cytokines, chemokines, growth factors and oxidants. Presently, the target of prescription therapies is to reduce the inflammation of airways and relieve the airway contraction. In all studies, cytokines have been found to play an imperative role in fostering chronic airway inflammation and remodelling. Owing to the limitations of conventional treatments, the current review aims to summarize the current knowledge about the chronic respiratory disease and discuss further about the various conventional methods that can be used for treating this ailment. Additionally, it also highlights and discusses about the advanced drug delivery system that are being used for targeting the interleukins for the treatment of CRDs.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Parvarish Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Manish Vyas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Neha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, Londonderry, BT52 1SA, United Kingdom
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, 7248, Australia
| | - Brian G G Oliver
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Hari S Sharma
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands.
| |
Collapse
|
21
|
Cosenza M, Sacchi S, Pozzi S. Cytokine Release Syndrome Associated with T-Cell-Based Therapies for Hematological Malignancies: Pathophysiology, Clinical Presentation, and Treatment. Int J Mol Sci 2021; 22:ijms22147652. [PMID: 34299273 PMCID: PMC8305850 DOI: 10.3390/ijms22147652] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 01/08/2023] Open
Abstract
Cytokines are a broad group of small regulatory proteins with many biological functions involved in regulating the hematopoietic and immune systems. However, in pathological conditions, hyperactivation of the cytokine network constitutes the fundamental event in cytokine release syndrome (CRS). During the last few decades, the development of therapeutic monoclonal antibodies and T-cell therapies has rapidly evolved, and CRS can be a serious adverse event related to these treatments. CRS is a set of toxic adverse events that can be observed during infection or following the administration of antibodies for therapeutic purposes and, more recently, during T-cell-engaging therapies. CRS is triggered by on-target effects induced by binding of chimeric antigen receptor (CAR) T cells or bispecific antibody to its antigen and by subsequent activation of bystander immune and non-immune cells. CRS is associated with high circulating concentrations of several pro-inflammatory cytokines, including interleukins, interferons, tumor necrosis factors, colony-stimulating factors, and transforming growth factors. Recently, considerable developments have been achieved with regard to preventing and controlling CRS, but it remains an unmet clinical need. This review comprehensively summarizes the pathophysiology, clinical presentation, and treatment of CRS caused by T-cell-engaging therapies utilized in the treatment of hematological malignancies.
Collapse
|
22
|
Up-regulation of CXCL8 expression is associated with a poor prognosis and enhances tumor cell malignant behaviors in liver cancer. Biosci Rep 2021; 40:226000. [PMID: 32766720 PMCID: PMC7441367 DOI: 10.1042/bsr20201169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/24/2022] Open
Abstract
CXCL8, a member of CXC chemokines, was constitutively expressed in many types of human cancers, and its overexpression has been shown to play a critical role in promoting tumorigenesis. The purpose of the present study was to determine CXCL8 expression in a commercial human liver tissue microarray, and elucidate the effects and underlying mechanisms by which CXCL8 is involved in the malignant progression of human liver cancer. Our data showed that high level expression of CXCL8 in tissues with liver cancer was identified as compared with non-cancer tissues, and its up-regulation was closely associated with clinical stage and tumor infiltration. In vitro, exogenous CXCL8 at concentrations of 10, 20 or 40 ng/ml obviously stimulated the proliferation abilities of HepG2 cells. Coupled with this, 10, 20 or 40 ng/ml of exogenous CXCL8 also triggered a significant elevation in HepG2 cells migration. Additionally, overexpression of CXCL8 in HepG2 cells also resulted in increased cell proliferation and migration capacities. Finally, Western blotting analysis showed that overexpression of CXCL8 increased the expression of ERK, p-ERK and survivin, decreased the expression of caspase-3 and BAX at protein level.
Collapse
|
23
|
Fonseca Dos Reis E, Viney M, Masuda N. Network analysis of the immune state of mice. Sci Rep 2021; 11:4306. [PMID: 33619299 PMCID: PMC7900184 DOI: 10.1038/s41598-021-83139-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/21/2021] [Indexed: 11/09/2022] Open
Abstract
The mammalian immune system protects individuals from infection and disease. It is a complex system of interacting cells and molecules, which has been studied extensively to investigate its detailed function, principally using laboratory mice. Despite the complexity of the immune system, it is often analysed using a restricted set of immunological parameters. Here we have sought to generate a system-wide view of the murine immune response, which we have done by undertaking a network analysis of 120 immune measures. To date, there has only been limited network analyses of the immune system. Our network analysis identified a relatively low number of communities of immune measure nodes. Some of these communities recapitulate the well-known T helper 1 vs. T helper 2 cytokine polarisation (where ordination analyses failed to do so), which validates the utility of our approach. Other communities we detected show apparently novel juxtapositions of immune nodes. We suggest that the structure of these other communities might represent functional immunological units, which may require further empirical investigation. These results show the utility of network analysis in understanding the functioning of the mammalian immune system.
Collapse
Affiliation(s)
| | - Mark Viney
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Naoki Masuda
- Department of Mathematics, State University of New York at Buffalo, Buffalo, 14260, USA. .,Computational and Data-Enabled Science and Engineering Program, State University of New York at Buffalo, Buffalo, 14260, USA. .,Faculty of Science and Engineering, Waseda University, Tokyo, 169-8555, Japan.
| |
Collapse
|
24
|
Chauhan P, Nair A, Patidar A, Dandapat J, Sarkar A, Saha B. A primer on cytokines. Cytokine 2021; 145:155458. [PMID: 33581983 DOI: 10.1016/j.cyto.2021.155458] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/19/2022]
Abstract
Cytokines are pleiotropic polypeptides that control the development of and responses mediated by immune cells. Cytokine classification predominantly relies on [1] the target receptor(s), [2] the primary structural features of the extracellular domains of their receptors, and [3] their receptor composition. Functionally, cytokines are either pro-inflammatory or anti-inflammatory, hematopoietic colony-stimulating factors, developmental and would healing maintaining immune homeostasis. When the balance in C can form complex networks amongst themselves that may affect the homeostasis and diseases. Cytokines can affect resistance and susceptibility for many diseases and their availability in the host cytokine production and interaction is disturbed, immunopathogenesis sets in. Therefore, cytokine-targeting bispecific, and chimeric antibodies form a significant mode of immnuo-therapeutics Although the field has grown deep and wide, many areas of cytokine biology remain unknown. Here, we have reviewed these cytokines along with the organization, signaling, and functions through respective cytokine-receptor-families. Being part of the special issue on the Role of Cytokines in Leishmaniasis, this review is intended to be used as an organized primer on cytokines and not a resource for detailed discussion- for which a two-volume Handbook of cytokines is available- on each of the cytokines. Priming the readers on cytokines, we next brief the role of cytokines in Leishmaniasis. In the brief, we do not provide an account of each of the involved cytokines known to date, instead, we offer a temporal relationship between the cytokines and the progress of the infection towards the alternate outcomes- healing or non-healing- of the infection.
Collapse
Affiliation(s)
- Prashant Chauhan
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Arathi Nair
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Ashok Patidar
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Jagneshwar Dandapat
- P.G. Department of Biotechnology, Utkal University, Bhubaneswar 751004, India
| | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneswar 751024, India
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India; Trident Academy of Creative Technology, Bhubaneswar 751024, India; Department of Allied Health Sciences, BLDE (Deemed University), Vijayapura 562135, India.
| |
Collapse
|
25
|
Chavant A, Gautier-Veyret E, Chhun S, Guilhaumou R, Stanke-Labesque F. [Pharmacokinetic changes related to acute infection. Examples from the SARS-CoV-2 pandemic]. Therapie 2020; 76:319-333. [PMID: 33129512 PMCID: PMC7833468 DOI: 10.1016/j.therap.2020.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/18/2020] [Accepted: 10/12/2020] [Indexed: 01/08/2023]
Abstract
The knowledge of factors of pharmacokinetic variability is important in order to personalize pharmacological treatment, particularly for drugs with a narrow therapeutic range for which pharmacological therapeutic monitoring is recommended. Inflammation is a protective response against acute infections and injuries that contributes to intra- and inter-individual variability in drug exposure by modulating the activity of enzymes involved in drug metabolism, and by altering the binding of drugs to plasma proteins. The understanding of the impact of inflammation on drug metabolism and the related clinical consequences allow to better take into consideration the effect of inflammation on the variability of drug exposure. We first summarized the molecular mechanisms by which inflammation contributes to the inhibition of drug metabolism enzymes. We then presented an updated overview of the consequences of the outcome of acute infectious event on pharmacokinetic exposure of drugs with a narrow therapeutic range and that are substrates of cytochrome P450, and the related clinical consequences. Finally, in the context of the COVID-19 pandemic, we reported examples of drug overexposures in COVID- 19 infected patients.
Collapse
Affiliation(s)
- Anaëlle Chavant
- Laboratoire de pharmacologie-pharmacogénétique-toxicologie, pôle de biologie et pathologie, CHU Grenoble Alpes, 38700 La Tronche, France
| | - Elodie Gautier-Veyret
- Laboratoire de pharmacologie-pharmacogénétique-toxicologie, pôle de biologie et pathologie, CHU Grenoble Alpes, 38700 La Tronche, France; University Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, 38043 Grenoble, France
| | - Stéphanie Chhun
- UFR de médecine Paris centre, 75015 Paris, France; Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, 75015 Paris, France; Laboratoire d'immunologie biologique, département médico universitaire BioPhyGen, hôpital universitaire Necker-enfants malades, AP-HP, 75015 Paris, France
| | - Romain Guilhaumou
- Unité de pharmacologie clinique et pharmacovigilance AP-HM, 13354 Marseille, France; Aix Marseille Univ, Inserm, INS Inst Neurosci Syst, 13354 Marseille, France
| | - Françoise Stanke-Labesque
- Laboratoire de pharmacologie-pharmacogénétique-toxicologie, pôle de biologie et pathologie, CHU Grenoble Alpes, 38700 La Tronche, France; University Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, 38043 Grenoble, France.
| |
Collapse
|
26
|
Mohammadi H, Manouchehri H, Changizi R, Bootorabi F, Khorramizadeh MR. Concurrent metformin and silibinin therapy in diabetes: assessments in zebrafish ( Danio rerio) animal model. J Diabetes Metab Disord 2020; 19:1233-1244. [PMID: 33553026 DOI: 10.1007/s40200-020-00637-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/14/2020] [Indexed: 01/11/2023]
Abstract
Objective In this study, zebrafish was used as a biological model to induce type 2 diabetes mellitus through glucose. Then, the effect of metformin and silibinin combination was examined on elevated blood glucose, intestinal tissues, liver enzymes, and TNF-α, IFN-γ, INL1β genes as inflammation marker genes. Methods The liver enzymes (AST, ALT, and ALP) derived from fish viscera homogenate supernatants were assayed in an auto-analyzer. The expression of target genes was quantified on RNA extracted from the tails by an in-house RT-PCR method, with fine intestine tissue staining performed by hematoxylin and eosin protocol (H&E). Result In the glucose-free treatments, metformin and silymarin decreased the levels of AST, ALT, and ALP enzymes in the blood. The combination of these two drugs had also a significant role in reducing glucose levels. The body weight increased significantly in the control group which was affected by glucose concentration, with the lowest body weight gain observed in the metformin group. The expression of INL-1β gene was significantly enhanced in the control group and the highest IFN-γ expression was observed in both control groups with glucose (G + CTRL) and without glucose (G-CTRL) (p < 0.05). The lowest level of TNF-α gene expression was observed in the control + glucose group (G + CTRL) (p < 0.05). Diabetic state causes weak absorption whereby the fish body demands to increase absorption level by enhancing the amount of acidic goblet cells thereby acidifying the environment in the gastric tracts. Conclusion Collectively, this study indicated that treatment with metformin and Silibinin could improve metabolic-mediated performances by reducing the expression of inflammatory genes and blood glucose, modulating liver enzymes, and ameliorating the intestinal inflammation in type 2 diabetic zebrafish model.
Collapse
Affiliation(s)
- Hassan Mohammadi
- Department of Aquaculture Science, Babol Branch, Islamic Azad University, Babol, Iran
| | - Hamed Manouchehri
- Department of Aquaculture Science, Babol Branch, Islamic Azad University, Babol, Iran
| | - Reza Changizi
- Department of Aquaculture Science, Babol Branch, Islamic Azad University, Babol, Iran
| | - Fatemeh Bootorabi
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mohammad Reza Khorramizadeh
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, and Zebra fish core Facility (ZFIN ID : ZDB-LAB-190117-2), Endocrinology and Metabolism research Institute, Tehran university of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Comparative Analysis of the Occurrence and Role of CX3CL1 (Fractalkine) and Its Receptor CX3CR1 in Hemophilic Arthropathy and Osteoarthritis. J Immunol Res 2020; 2020:2932696. [PMID: 32884948 PMCID: PMC7455839 DOI: 10.1155/2020/2932696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Objective Hemophilic arthropathy is characterized by recurrent bleeding episodes in patients with hemophilia leading to irreversible joint degeneration. The involvement of CX3CL1 (fractalkine) and its receptor CX3CR1 was observed in the pathogenesis of numerous arthritis-associated diseases. Taking this into account, we have presented a study investigating the role of the CX3CL1/CX3XR1 axis in the course of hemophilic arthropathy, including the CX3CL1-dependent expression of CD56+, CD68+, and CD31+ cells along with evaluation of articular cartilage and synovial membrane morphology. Methods The study was carried out using cases (n = 20) of end-stage hemophilic arthropathy with a severe type of hemophilia A and control cases (n = 20) diagnosed with osteoarthritis. The biofluids including blood serum and synovial fluid were obtained intraoperatively for the evaluation of CX3CL1 using the ELISA test. Tissue specimens including articular cartilage and synovial membrane were similarly collected during surgery and stained immunohistologically using selected antibodies including anti-CX3CR1, anti-CD56, anti-CD68, and anti-CD31. Additionally, the analysis included the assessment of articular cartilage, synovial membrane, and blood vessel morphology. Results In our study, we have documented increased average concentration of CX3CL1 in the blood serum of the study group (7.16 ± 0.53 ng/ml) compared to the control group (5.85 ± 0.70 ng/ml) without statistically significant difference in synovial fluid concentration at the same time. We have observed an increased macrophage presence with more marked proliferation and fibrosis of the synovial membrane in the study group. Remaining results such as expression of CX3CR1 presence of NK cells and larger surface area of blood vessels within the synovial membrane were noted also without statistical significance. Conclusions This study has demonstrated collective CX3CL1/CX3CR1 axis involvement in hemophilic arthropathy pathogenesis introducing new interesting diagnostics and a therapeutic target.
Collapse
|
28
|
Medara N, Lenzo JC, Walsh KA, Darby IB, O'Brien-Simpson NM, Reynolds EC. T helper 17 cell-related cytokines in serum and saliva during management of periodontitis. Cytokine 2020; 134:155186. [PMID: 32717609 DOI: 10.1016/j.cyto.2020.155186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/27/2022]
Abstract
AIM T helper (Th)17 cells are implicated in the pathogenesis of periodontitis. This study investigated the effect of periodontal management on fifteen Th17-related cytokines in serum and saliva in periodontitis patients. MATERIALS AND METHODS Periodontal parameters, serum and saliva were collected from 40 healthy controls and 54 periodontitis subjects before treatment, and 3-, 6- and 12-months post-treatment. Cytokine concentrations of IL-1β, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, IFN-γ, sCD40L and TNF-α were determined by Luminex assay. RESULTS IL-1β, IL-6, sCD40L and TNF-α in serum, and IL-1β, IL-6, IL-25 and IL-31 in saliva were significantly higher at baseline compared to health and decreased with treatment. In contrast, serum IL-31 was significantly lower at baseline compared to health and increased with treatment. In addition, salivary IL-10, IL-17A, IL-17F, IL-23, IL-33, IFN-γ and TNF-α also displayed treatment-related reduction. Correlation networks showed that cytokines in saliva displayed a higher number of correlations compared to serum in periodontitis. CONCLUSION Treatment generally decreased cytokine concentrations except for serum IL-31 which showed a treatment-related increase. Serum cytokine concentrations may not be reflective of salivary cytokines. Saliva may be a better medium for cytokine detection compared to serum. Serum IL-31 and salivary IL-1β, IL-6, IL-10 and TNF-α were significant predictors for mean probing depth and may be potential biomarkers of interest in the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Nidhi Medara
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Jason C Lenzo
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Katrina A Walsh
- Austin Hospital, 145 Studley Rd, Heidelberg, VIC 3084, Australia.
| | - Ivan B Darby
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Neil M O'Brien-Simpson
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Eric C Reynolds
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| |
Collapse
|
29
|
Stability of 12 T-helper cell-associated cytokines in human serum under different pre-analytical conditions. Cytokine 2020; 129:155044. [PMID: 32109722 DOI: 10.1016/j.cyto.2020.155044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/16/2020] [Accepted: 02/15/2020] [Indexed: 11/23/2022]
Abstract
Cytokines are soluble and readily analyzed signaling molecules which reveal vital cues about the state of the immune system. As such, they serve in diagnosis and monitoring of immune-related disorders, where strictly controlled handling of the samples including storage and freeze/thawing procedures are required. In basic research and clinical trials, human serum samples can be left for long-term storage before processing. Storage space is commonly limited in scientific laboratories, which require storage of fewer but larger aliquots of patient serum samples. There are also practical limitations to the number of analytes to be processed at the same time. Further, new findings and technological progress might prompt analysis of hitherto unconsidered or undetectable molecules. Repeated freeze/thawing of serum samples is therefore a likely scenario, raising the question of the stability of the measured analytes under such conditions. To address this question, we subjected serum samples with spiked-in T-helper cell associated cytokines to several cycles of freeze/thawing under different conditions, including storage at -20 °C or -80 °C and thawing at 4 °C, 22 °C, and 37 °C, respectively. The concentration of TNF-α, IL-4, IL-17F, and IL-22 decreased after storage at room temperature for 4 h before freezing. Generally, storage at -20 °C resulted in reduced cytokine concentrations. This contrasts storage at -80 °C, which gave stable analyte concentrations; unaffected by repeated freeze/thaw cycles. The study presented here highlights the need for sentinel samples with known cytokine concentrations as internal control for the freeze/thaw process.
Collapse
|
30
|
Molecular and biological characterization of the immunological potency of Newcastle disease virus oil emulsion-inactivated vaccines prepared from field isolate obtained from vaccinated chickens outbreak. Braz J Microbiol 2019; 51:815-826. [PMID: 31840214 DOI: 10.1007/s42770-019-00203-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023] Open
Abstract
This study was conducted to characterize the immunological parameters of chickens vaccinated with two formulated inactivated vaccines, water in oil (WO) and water in oil in water (WOW), prepared from velogenic Newcastle disease virus (vNDV) genotype VIIj isolated from outbreak among vaccinated chickens. Six groups (G1-G6) of commercial broiler chickens were established (n = 20). The G1-G3 were received homologous (WO and WOW) and heterologous (LaSota) inactivated vaccines, respectively. The G4 was vaccinated with live heterologous (LaSota) vaccine, while G5 and G6 were kept as control positive and control negative non-vaccinated groups. The antibody titers were measured against vNDV and LaSota antigens using hemagglutination inhibition (HI) test, the cytokine gene expressions of IFNγ, IL1β, IL4, IL6, IL8, and IL18 were quantified using real-time RT-PCR, and the virus shedding was titrated on chicken embryo fibroblast cells after challenging by vNDV. The classical clinical signs and 100% mortality were observed only in G5 after vNDV challenging. The highest HI titers were detected in G1, G2, and G3 using NDV/168 antigen with no significant differences among them. These groups showed higher HI titer than G4 (2-4log2). Cytokine gene expression of IFNγ, IL1, IL6, IL8, and IL18 were significantly downregulated in vaccinated chickens with upregulation of IL4 than non-vaccinated challenge group. Viral shedding titers were significantly (0.0001, p ≤ 0.001) reduced in all samples form vaccinated chickens. In conclusion, the prepared vaccines produced highly efficient immunological responses and could be used for controlling the NDV infection.
Collapse
|
31
|
Li L, Bo W, Chen H, XiaoWei L, Hongbao L, Peng Z. Hemoperfusion plus continuous veno-venous hemofiltration in the treatment of patients with multiple organ failure after wasp stings. Int J Artif Organs 2019; 43:143-149. [PMID: 31621466 DOI: 10.1177/0391398819881459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE This study aimed to evaluate the clinical effects of hemoperfusion plus continuous veno-venous hemofiltration in the treatment of patients with multiple organ failure after wasp stings and investigate its impacts on cytokines. METHODS A total of 12 patients with multiple organ failure after wasp stings admitted to Xijing Hospital were included in the present study between January 2017 and January 2019. All patients received hemoperfusion plus continuous veno-venous hemofiltration treatment in addition to conventional treatment after admission. Procedure of treatment was conducted as the following: hemoperfusion (2 h/day) and followed by continuous veno-venous hemofiltration (22 h/day) for at least 5 days. Patients' clinical features, serum laboratory tests, and hemodynamic variables were monitored. The blood samples were taken to measure the changes of plasma cytokines. RESULTS All 12 patients survived in the observation period. After hemoperfusion plus continuous veno-venous hemofiltration treatment, there were significant improvements in indicators of liver function, renal function, state of consciousness, and mediators in blood circulation, including alanine transaminase, aspartate transaminase, creatine kinase, blood urea nitrogen, serum creatinine, myoglobin, C-reactive protein, and so on. In these patients, acid-base metabolism returned to normal levels; Acute Physiology and Chronic Health Evaluation II score, Simplified Acute Physiology Score II score, and Sequential Organ Failure Assessment score lowered markedly. Furthermore, the plasma levels of interleukin 1β, interleukin 4, interleukin 6, interleukin 8, and interleukin 10 in these patients were significantly decreased; no significant change was shown in the level of tumor necrosis factor α. CONCLUSION Our results revealed that hemoperfusion plus continuous veno-venous hemofiltration was effective in the management of patients with multiple organ failure after wasp sting via the non-specific removal of the wasp venom and inflammatory cytokines.
Collapse
Affiliation(s)
- Li Li
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wang Bo
- Department of Clinical Epidemiology, Fourth Military Medical University, Xi'an, China
| | - Huang Chen
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liu XiaoWei
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liu Hongbao
- Department of Nephrology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhang Peng
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
32
|
Shim HS, Park HJ, Woo J, Lee CJ, Shim I. Role of astrocytic GABAergic system on inflammatory cytokine-induced anxiety-like behavior. Neuropharmacology 2019; 160:107776. [PMID: 31513788 DOI: 10.1016/j.neuropharm.2019.107776] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 09/07/2019] [Accepted: 09/08/2019] [Indexed: 11/30/2022]
Abstract
Recent studies have shown that not only neurons but astrocytes contain a considerable amount of γ-aminobutyric acid (GABA), which can be released and activate the receptors responsive to GABA. The purpose of this study is to test whether gliotransmitters from astrocytes may play a role in etiology of anxiety symptoms. Intracerebroventricular (i.c.v.) infusion of interleukin-1β (IL-1β), one of potent inflammatory cytokines, induced anxiety-like behaviors and activated the glial fibrillary acidic protein (GFAP) in the paraventricular nucleus (PVN) of the hypothalamus. Pretreatment with astrocytes toxin, l-α-aminoadipate (L-AAA) reduced anxiety-like behaviors and the GFAP expression in the PVN. Intraparaventricular nucleus (iPVN) infusion of IL-1β produced markedly anxiety-like behaviors and increased release of GABA from astrocytes. However, treatment of glial cell inhibitor, L-AAA or blocker of Bestrophin-1 (Best1), 5-Nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) markedly inactivated astrocytes and also reduced the anxiety-like behaviors. Treatment of L-AAA or NPPB decreased IL-1β-induced gliotransmitter GABA release measured by in vivo microdialysis. These results suggest that selective inhibition of astrocytes or astocytic GABA release in the PVN may serve as an effective therapeutic strategy for treating anxiety and affective disorders.
Collapse
Affiliation(s)
- Hyun Soo Shim
- Department of Physiology, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongys0daemun-gu, Seoul, 02447, South Korea; Center for Neuroscience, Brain Science Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Hyun Jung Park
- Department of Physiology, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongys0daemun-gu, Seoul, 02447, South Korea; Department of Food Science and Biotechnology, Kyonggi University, 154-42, Gwanggyosan-ro, Youngtong-gu, Suwon, Gyeonggi, 16227, South Korea
| | - Junsung Woo
- Center for Neuroscience, Brain Science Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - C Justin Lee
- Center for Neuroscience, Brain Science Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongys0daemun-gu, Seoul, 02447, South Korea.
| |
Collapse
|
33
|
Lopez BS, Hurley DJ, Giancola S, Giguère S, Felippe MJB, Hart KA. The effect of age on foal monocyte-derived dendritic cell (MoDC) maturation and function after exposure to killed bacteria. Vet Immunol Immunopathol 2019; 210:38-45. [PMID: 30947978 DOI: 10.1016/j.vetimm.2018.11.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/25/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023]
Abstract
Neonatal foals are uniquely susceptible to certain infections early in life. Dendritic cells (DC) are vital in the transition between the innate and adaptive immune response to infection, but DC biology in foals is not fully characterized. Monocyte-derived DC represent a suitable in vitro model similar to DC that differentiate from monocytes recruited from circulation. We hypothesized that foal monocyte-derived DC (MoDC) would exhibit age-dependent phenotypic and functional differences compared to adult horse MoDC. MoDC generated from 9 horses (collected once) and from 8 foals (collected at 1, 7, and 30 days-of-age) were exposed to killed whole cell Escherichia coli or Staphylococcus aureus bacteria. MoDC expression of MHC class II (MHC class-II), CD86, and CD14 were measured by flow cytometry, and supernatant cytokine concentrations of IL-4, IL-17, IFN-γ, and IL-10 were quantified with a validated immunoassay. The percentage of MoDC expressing MHC class-II and CD86 was lower and CD14 was higher for cells generated from 1-day-old foals compared to cells generated from adult horses (P < 0.0001). Bacterial exposure increased the percentage of cells expressing CD86 at all ages (P < 0.0001). Bacteria-exposed MoDC from 1-day-old foals produced significantly less IL-4, IL-17, and IFN-γ than adult MoDC produced in response to bacterial exposure (P ≤ 0.04). Following bacterial exposure, foal MoDC phenotype and cytokine secretion were different than those of mature horses. These differences could reduce the ability of foals to generate a protective immune response against bacterial infection.
Collapse
Affiliation(s)
- Brina S Lopez
- From the Department of Large Animal Medicine, 2200 College Station Road, University of Georgia College of Veterinary Medicine, Athens, GA, 30602, USA
| | - David J Hurley
- From the Department of Population Health, 2200 College Station Road, University of Georgia College of Veterinary Medicine, Athens, GA, 30602, USA
| | - Shyla Giancola
- From the Department of Large Animal Medicine, 2200 College Station Road, University of Georgia College of Veterinary Medicine, Athens, GA, 30602, USA
| | - Steeve Giguère
- From the Department of Large Animal Medicine, 2200 College Station Road, University of Georgia College of Veterinary Medicine, Athens, GA, 30602, USA
| | - M Julia B Felippe
- Equine Immunology Laboratory, Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Kelsey A Hart
- From the Department of Large Animal Medicine, 2200 College Station Road, University of Georgia College of Veterinary Medicine, Athens, GA, 30602, USA.
| |
Collapse
|
34
|
Zhong Y, Wu X, Li J, Lan Q, Jing Q, Min L, Ren C, Hu X, Lambert A, Cheng Q, Yang Z. Multiplex immunoassay of chicken cytokines via highly-sensitive chemiluminescent imaging array. Anal Chim Acta 2019; 1049:213-218. [PMID: 30612653 PMCID: PMC11938695 DOI: 10.1016/j.aca.2018.10.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 12/30/2022]
Abstract
Quantitative detection of multiple chicken cytokines is a good evaluation of cell-mediated immunity in chickens after disease infection or vaccination. However, current assay methods for chicken cytokines cannot meet the needs of clinical diagnosis due to unsatisfactory sensitivity and low assay throughput. Herein, a sensitive chemiluminescence (CL) imaging immunosensor array has been developed for high-throughput detection of multiple chicken cytokines. The chicken cytokines immunosensor array was prepared by assembling different cytokine capture antibodies onto a disposable silanized glass chip, where horseradish peroxidase and antibody-conjugated gold nanoparticles were used as multienzymatic amplification probe for CL imaging signal amplification. By using a sandwich assay mode, the amplified CL signals from each sensing array cell were collected for quantitation. Using chicken interleukin-4 and chicken interferon-γ as model cytokines, this novel multiplexed and amplified method demonstrated simultaneous measurement of the two chicken cytokines in the linear ranges of 0.008-0.12 ng/mL and 0.005-0.20 ng/mL, respectively, which yields limits of detection down to 2 pg/mL and 3 pg/mL. The CL imaging array method reported here also demonstrated high specificity, good repeatability, and high stability and accuracy, providing a novel multiplex immunoassay strategy for highly sensitive and high-throughput detection of chicken cytokines and further disease diagnosis in poultry.
Collapse
Affiliation(s)
- Yihong Zhong
- Guangling College, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Xinyue Wu
- Guangling College, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Juan Li
- Guangling College, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Qingchun Lan
- Guangling College, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Qingling Jing
- Guangling College, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Lingfeng Min
- Department of Laboratory Medicine and Clinical Medical College of Yangzhou University, Subei Peoples' Hospital of Jiangsu Province, Yangzhou, 225001, PR China
| | - Chuanli Ren
- Department of Laboratory Medicine and Clinical Medical College of Yangzhou University, Subei Peoples' Hospital of Jiangsu Province, Yangzhou, 225001, PR China
| | - Xiaoya Hu
- Guangling College, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Alexander Lambert
- Environmental Toxicology and Department of Chemistry, University of California, Riverside, CA, 92521, United States
| | - Quan Cheng
- Environmental Toxicology and Department of Chemistry, University of California, Riverside, CA, 92521, United States.
| | - Zhanjun Yang
- Guangling College, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China.
| |
Collapse
|
35
|
Zhong Y, Tang X, Li J, Lan Q, Min L, Ren C, Hu X, Torrente-Rodríguez RM, Gao W, Yang Z. A nanozyme tag enabled chemiluminescence imaging immunoassay for multiplexed cytokine monitoring. Chem Commun (Camb) 2019; 54:13813-13816. [PMID: 30460939 DOI: 10.1039/c8cc07779g] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report a new concept of a chemiluminescence imaging nanozyme immunoassay (CINIA), in which nanozymes are exploited as catalytic tags for simultaneous multiplex detection of cytokines. The CINIA provides a novel and universal nanozyme-labeled multiplex immunoassay strategy for high-throughput detection of relevant biomarkers and further disease diagnosis.
Collapse
Affiliation(s)
- Yihong Zhong
- Guangling College, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Polyphenol-associated oxidative stress and inflammation in a model of LPS-induced inflammation in glial cells: do we know enough for responsible compounding? Inflammopharmacology 2018; 27:189-197. [PMID: 30547263 DOI: 10.1007/s10787-018-0549-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/08/2018] [Indexed: 10/27/2022]
Abstract
Cyanidin and chlorogenic acid are polyphenols from plant origin that are present in many common fruits, particularly in berries. To corroborate the protective or detrimental effects of both compounds from a neuro-inflammatory perspective, in vitro experiments were carried out in human astrocytes (U-373). Astrocytes were pre-treated with a range of concentrations of either cyanidin, chlorogenic acid or a combined treatment for a period of 30 min, before exposure to Escherichia coli lipopolysaccharide (LPS) challenge for 23.5 h, after which cytotoxicity (propidium iodide exclusion assay), cytoprotective effects (XTT assay) and effects on functional capacity (secretion of pro-inflammatory cytokines IL-6 and MCP-1) were evaluated. No treatment resulted in cytotoxicity, but high dose (20 µg/mL) LPS significantly reduced mitochondrial reductive capacity (p < 0.001). This effect was prevented in a dose-dependent manner by both cyanidin and chlorogenic acid, as well as by the combination treatment. However, in the absence of LPS, IL-6 secretion was significantly increased in response to 2 µM of either cyanidin or chlorogenic acid (both p < 0.0001), as well as the combination treatment (p < 0.01). MCP-1 secretion followed a similar trend, but did not reach statistical significance. Although we acknowledge the requirement for in vivo investigations to validate our interpretations, current data highlight the potential risk for antioxidant toxicity that is linked to high dose supplementation with single compound antioxidants. Research focused at elucidating synergistic effects between different antioxidants is required to minimise risk of adverse effects.
Collapse
|
37
|
Xu X, Liu J, Wang Y, Si Y, Wang X, Wang Z, Zhang Q, Yu H, Wang X. Kunitz-type serine protease inhibitor is a novel participator in anti-bacterial and anti-inflammatory responses in Japanese flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2018; 80:22-30. [PMID: 29859305 DOI: 10.1016/j.fsi.2018.05.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/16/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
Kunitz-type serine protease inhibitor (KSPI) interacts with serine protease (SP) to regulate cascade reactions in vivo and plays essential roles in innate immunity. Theoretical considerations support various functions of kspi, but further studies are required for full characterization of these functions. In this study, a KSPI molecule was identified from Japanese flounder (Paralichthys olivaceus), and was named Pokspi. The full-length cDNA sequence of Pokspi was 2810 nt, containing an open reading frame of 1527 nt, which encoded a polypeptide of 509 amino acid residues. PoKspi protein contained five conversed domains, namely, MANEC, PKD, LDLa and two Kunitz domains. Homology analysis revealed that Pokspi shared the highest similarity (83%) with its homolog in Cynoglossus semilaevis. Phylogenetic analysis indicated that Pokspi clustered with the homologs in other fishes. The mRNA transcripts of Pokspi were detected in all tested tissues, with the highest expression level in gill, followed by kidney and intestine. Its elevated expression in response to the application of Edwardsiella tarda (in vivo) and pathogen-associated molecular pattern (in vitro) suggested the involvement of Pokspi in the essential immune defense against various pathogens. Recombinant PoKspi (rPoKspi) purified from Escherichia coli exhibited not only serine protease inhibitor activities but also a broad spectrum of anti-microbial effect in a manner that was independent of any host factors. In addition, the recombinant PoKspi protein could cause the down-regulation of pro-inflammatory factors TNF-α and IL-1β. In conclusion, Pokspi is a biologically active serine protease inhibitor endowed with anti-bacterial and anti-inflammatory property. This study provides strong evidences for understanding the innate immune defense in Japanese flounder.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Yujue Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Yu Si
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Xuangang Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Zhigang Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China.
| |
Collapse
|
38
|
Válková L, Ševčíková J, Pávková Goldbergová M, Weiser A, Dlouhý A. Osteoarthritic process modifies expression response to NiTi alloy presence. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:146. [PMID: 30167902 DOI: 10.1007/s10856-018-6156-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Nickel-titanium alloy (nitinol, NiTi) is a biomaterial with unique thermal shape memory, superelasticity and high damping properties. Therefore NiTi has been used in medical applications. In this in vitro study, the effect of NiTi alloy (with two surface modifications - helium and hydrogen) on gene expression profile of selected interleukins (IL-1β, IL-6 and IL-8) and matrix metalloproteinases (MMP-1 and MMP-2) in human physiological osteoblasts and human osteoarthritic osteoblasts was examined to respond to a question of the different behavior of bone tissue in the implantation of metallic materials in the presence of cells affected by the osteoarthritic process. The cells were cultivated in contact with NiTi and with or without LPS (bacterial lipolysaccharide). Changes in expression of target genes were calculated by 2-ΔΔCt method. An increased gene expression of IL-1β in osteoarthritic osteoblasts, with even higher expression in cells collected directly from the metal surface was observed. In case of physiological osteoblasts, the change in expression was detected after LPS treatment in cells surrounding the disc. Higher expression levels of IL-8 were observed in osteoarthritic osteoblasts after NiTi treatment in contact with alloy, and in physiological osteoblasts without relation to location in combination of NiTi and LPS. IL-6 was slightly increased in physiological osteoblastes after application of LPS. MMP-1 expression level was obviously significantly higher in osteoarthritic osteoblasts with differences regarding the metal surface and location. MMP-2 expression was decreased in both cell lines after LPS treatment. In conclusion, results of present study show that the NiTi alloy and the treatment by LPS, especially repeated doses of LPS, change the gene expression of selected ILs and MMPs in human osteoblast cell cultures. Some of the changes were depicted solely to osteoarthritic osteoblasts.
Collapse
Affiliation(s)
- Lucie Válková
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Jana Ševčíková
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Monika Pávková Goldbergová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| | - Adam Weiser
- Academy of Sciences CR, Institute of Physics of Materials, Zizkova 22, 616 62, Brno, Czech Republic
| | - Antonín Dlouhý
- Academy of Sciences CR, Institute of Physics of Materials, Zizkova 22, 616 62, Brno, Czech Republic
| |
Collapse
|
39
|
Abstract
The goal-oriented control policies of cybernetic models have been used to predict metabolic phenomena such as the behavior of gene knockout strains, complex substrate uptake patterns, and dynamic metabolic flux distributions. Cybernetic theory builds on the principle that metabolic regulation is driven towards attaining goals that correspond to an organism’s survival or displaying a specific phenotype in response to a stimulus. Here, we have modeled the prostaglandin (PG) metabolism in mouse bone marrow derived macrophage (BMDM) cells stimulated by Kdo2-Lipid A (KLA) and adenosine triphosphate (ATP), using cybernetic control variables. Prostaglandins are a well characterized set of inflammatory lipids derived from arachidonic acid. The transcriptomic and lipidomic data for prostaglandin biosynthesis and conversion were obtained from the LIPID MAPS database. The model parameters were estimated using a two-step hybrid optimization approach. A genetic algorithm was used to determine the population of near optimal parameter values, and a generalized constrained non-linear optimization employing a gradient search method was used to further refine the parameters. We validated our model by predicting an independent data set, the prostaglandin response of KLA primed ATP stimulated BMDM cells. We show that the cybernetic model captures the complex regulation of PG metabolism and provides a reliable description of PG formation.
Collapse
|
40
|
Merendino RA, Arena A, Gangemi S, Ruello A, Losi E, Bene A, D'Ambrosio FP. In Vitro Interleukin-8 Production by Monocytes Treated with Lithium Chloride from Breast Cancer Patients. TUMORI JOURNAL 2018; 86:149-52. [PMID: 10855853 DOI: 10.1177/030089160008600208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Aims and background Since interleukin-8 (IL-8) has a suppressive effect on hematopoiesis, lithium induces leukocytosis and granulocytosis and mononuclear cells are defective in patients affected by neoplastic disease, we analyzed IL-8 production by monocytes obtained from patients with non-metastatic breast cancer (BCaMO) and metastatic breast cancer (BCaM1) and the effect of lithium chloride (LiCI) on these cells. Lithium salt compounds are used to limit the degree and duration of neutropenia in patients receiving chemotherapy for cancer and acute leukemia. Lithium influences the hematopoietic system, which is known to be regulated by numerous cytokines including IL-8. Methods We selected three groups of subjects (15 per group): patients affected by BCaMO, BCaM1 and healthy donors (HD) matched for sex and age. IL-8 release was assessed in supernatants of lipopolysaccharide (LPS) and/or LiCI-treated monocyte cultures. Results Monocytes from BCaM1 released higher IL-8 levels than monocytes from BCaMO (P <0.0001); the IL-8 levels of both groups were significantly higher (P <0.0001) than those of HD. In vitro LiCI treatment reduced IL-8 production by monocytes obtained from all subjects compared to the same cells when untreated or LPS treated. The suppressive effect of LiCI on IL-8 production by monocytes from breast cancer patients was particularly marked in monocytes from BCaMO with respect to those from BCaM1. LPS treatment increased the IL-8 production more in BCaM1 monocytes than in BCaMO monocytes. Moreover, combined LPS/LiCI treatment of monocytes significantly (P <0.0001) downregulated the release of IL-8 compared to treatment with LPS alone. Conclusions Our data demonstrate that monocytes from BCaM1 release larger amounts of IL-8 than monocytes from BCaMO and from HD. Lithium was able to downregulate IL-8 production by monocytes from different subgroups. Further studies are needed to clarify if the improvement of the hematopoietic system in vivo observed following lithium therapy could reside, at least in part, in the ability of lithium to downregulate this chemokine.
Collapse
Affiliation(s)
- R A Merendino
- Department of Human Pathology, University of Messina Medical School, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Pan T, Liu T, Tan S, Wan N, Zhang Y, Li S. Lower Selenoprotein T Expression and Immune Response in the Immune Organs of Broilers with Exudative Diathesis Due to Selenium Deficiency. Biol Trace Elem Res 2018; 182:364-372. [PMID: 28780654 DOI: 10.1007/s12011-017-1110-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022]
Abstract
The objective of the present study was to investigate whether dietary selenium (Se) deficiency would affect the expression of selenoprotein T (SelT) and immune response in the immune organs of broilers. Changes in expression of inflammatory cytokines and oxidative stress response caused by Se deficiency can lead to organism damage, which in turn leads to immune response. Sixty (1-day-old) broilers were divided into the control group and Se-deficiency group. Animal models with exudative diathesis were duplicated in the broilers by feeding them Se-deficient diet for 20 days. After the Se-deficient group exhibited symptoms of exudative diathesis, all the broilers were euthanized, and their immune organs were taken for analysis. The tissues including spleen, bursa of Fabricius, and thymus were treated to determine the pathological changes (including microscopic and ultramicroscopic), the messenger RNA (mRNA) expression levels of SelT and its synthetase (SecS and SPS1), cytokine mRNA expression levels, and antioxidant status. The microscopic and ultramicroscopic analyses showed that immune tissues were obviously injured in the Se-deficient group. The mRNA expression of SelT was decreased compared with that in the control group. Meanwhile, the mRNA expression levels of SecS and SPS1 were downregulated. In the Se-deficient group, the mRNA expression levels of IL-1R and IL-1β were higher than those of three control organs. Additionally, the IL-2 and INF-γ mRNA expression levels were lower than those of the control group. The activity of CAT was decreased, and the contents of H2O2 and •OH were increased due to Se deficiency. Pearson method analysis showed that the expression of SelT had a positive correlation with IL-2, INF-γ, SecS, and SPS1 and a negative correlation with IL-1R and IL-1β. In summary, these data indicated that Se-deficient diet decreased the SelT expression and its regulation of oxidative stress, and it inhibited a pleiotropic mechanism of the immune response.
Collapse
Affiliation(s)
- Tingru Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Tianqi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Siran Tan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Na Wan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yiming Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
42
|
Bennett AC, Smith C. Immunomodulatory effects of Sceletium tortuosum (Trimesemine™) elucidated in vitro: Implications for chronic disease. JOURNAL OF ETHNOPHARMACOLOGY 2018; 214:134-140. [PMID: 29253615 DOI: 10.1016/j.jep.2017.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/07/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sceletium tortuosum, among other Sceletium species, was traditionally used by the Khoisan people of Southern Africa for relief of pain-related ailments. However, the commercial availability of this supplement has greatly expanded due to anecdotal claims of its mood-elevating and anxiolytic properties. Unrelated research has elucidated a significant link between cytokines and the mediation of depression. Therefore, the effect of Sceletium supplementation on immune cell functionality is of interest, since the efficacy of potential depression treatments could, at least in part, rely on downregulation of pro-inflammatory signalling. AIM OF THE STUDY The current study evaluated the immunomodulatory effects of a Sceletium extract, both basally and in the context of acute endotoxin stimulation. MATERIALS AND METHODS Primary human monocytes were supplemented with either a 0.01mg/ml or 1mg/ml Sceletium extract dose, with or without E. coli LPS stimulation in vitro, for 24h. Mitochondrial viability, as an indirect measure of cytotoxicity, and cytokine release in response to the treatment intervention were assessed. RESULTS Sceletium extract treatment was associated with increased mitochondrial viability, as well as up-regulated IL-10 release under basal conditions. LPS exposure significantly decreased mitochondrial viability, but this was prevented completely under Sceletium-treated conditions. The acute inflammatory response to LPS stimulation was not negatively affected. Sceletium treatment conferred most significant effects at a dose of 0.01mg/ml. CONCLUSIONS Sceletium exerts significant cytoprotective effects in the setting of endotoxin stimulation. Cytokine assessment indicated that Sceletium possesses mild anti-inflammatory properties, but does not hinder the mounting of an adequate immune response to acute immune challenge. These findings indicate that Sceletium may be beneficial for the attenuation of cytokine-induced depression, as well as in systemic low-grade inflammation.
Collapse
Affiliation(s)
- Amber C Bennett
- Department of Physiological Sciences, Science Faculty, Stellenbosch University, Stellenbosch, South Africa
| | - Carine Smith
- Department of Physiological Sciences, Science Faculty, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
43
|
Sceletium tortuosum may delay chronic disease progression via alkaloid-dependent antioxidant or anti-inflammatory action. J Physiol Biochem 2018. [PMID: 29520661 DOI: 10.1007/s13105-018-0620-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The link between obesity-induced systemic inflammation and decreased insulin signalling is well-known. It is also known that peripherally produced inflammatory cytokines can cross the blood-brain barrier, resulting in the release of neurotoxins that can ultimately lead to the demise of central nervous system integrity. A high-mesembrine Sceletium tortuosum extract was recently shown to possess cytoprotective and mild anti-inflammatory properties in monocytes and to target specific p450 enzymes to reduce adrenal glucocorticoid synthesis. This is significant since the aetiology of both obesity and diabetes is linked to inflammation and excess glucocorticoid production. Given the interlinked nature of glucocorticoid action and inflammation, central immunomodulatory effects of two Sceletium tortuosum extracts prepared by different extraction methods were investigated. Human astrocytes were pre-treated for 30 min, before exposure to Escherichia coli lipopolysaccharide for 23.5 h (in the presence of treatment). Cytotoxicity, mitotoxicity and cytokine responses (basally and in response to inflammatory stimulus) were assessed. In addition, total polyphenol content, antioxidant capacity and selected neural enzyme inhibition capacity were assessed for both extracts. The high-mesembrine Sceletium extract exerted cytoprotective and anti-inflammatory effects. In contrast, the high delta7-mesembrenone extract, rich in polyphenols, exhibited potent antioxidant effect, although with relatively higher risk of adverse effects with overdose. We conclude that both Sceletium tortuosum extracts may be employed as either a preventative supplement or complimentary treatment in the context of obesity and diabetes; however, current data also highlights the impact that extraction methods can have on plant product mechanism of action.
Collapse
|
44
|
Wojdasiewicz P, Poniatowski ŁA, Nauman P, Mandat T, Paradowska-Gorycka A, Romanowska-Próchnicka K, Szukiewicz D, Kotela A, Kubaszewski Ł, Kotela I, Kurkowska-Jastrzębska I, Gasik R. Cytokines in the pathogenesis of hemophilic arthropathy. Cytokine Growth Factor Rev 2018; 39:71-91. [DOI: 10.1016/j.cytogfr.2017.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 11/09/2017] [Indexed: 01/26/2023]
|
45
|
Wang Z, Han W. Biomarkers of cytokine release syndrome and neurotoxicity related to CAR-T cell therapy. Biomark Res 2018; 6:4. [PMID: 29387417 PMCID: PMC5778792 DOI: 10.1186/s40364-018-0116-0] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/02/2018] [Indexed: 12/22/2022] Open
Abstract
Severe cytokine release syndrome (CRS) and neurotoxicity following chimeric antigen receptor T cell (CAR-T) therapy can be life-threatening in some cases, and management of those toxicities is still a great challenge for physicians. Researchers hope to understand the pathophysiology of CRS and neurotoxicity, and identify predictive biomarkers that can forecast those toxicities in advance. Some risk factors for severe CRS and/or neurotoxicity including patient and treatment characteristics have been identified in multiple clinical trials of CAR-T cell therapy. Moreover, several groups have identified some predictive biomarkers that are able to determine beforehand which patients may suffer severe CRS and/or neurotoxicity during CAR-T cell therapy, facilitating testing of early intervention strategies for those toxicities. However, further studies are needed to better understand the biology and related risk factors for CRS and/or neurotoxicity, and determine if those identified predictors can be extrapolated to other series. Herein, we review the pathophysiology of CRS and neurotoxicity, and summarize the progress of predictive biomarkers to improve CAR-T cell therapy in cancer.
Collapse
Affiliation(s)
- Zhenguang Wang
- Molecular & Immunological Department, Bio-therapeutic Department, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853 China
| | - Weidong Han
- Molecular & Immunological Department, Bio-therapeutic Department, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853 China
| |
Collapse
|
46
|
Resveratrol pretreatment reduces circulating inflammatory interleukins in CCl 4 -induced hepatotoxicity rats. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.bfopcu.2017.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Yan Y, Wang J, Qu B, Zhang Y, Wei Y, Liu H, Wu C. CXCL13 and TH1/Th2 cytokines in the serum and cerebrospinal fluid of neurosyphilis patients. Medicine (Baltimore) 2017; 96:e8850. [PMID: 29381995 PMCID: PMC5708994 DOI: 10.1097/md.0000000000008850] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/29/2017] [Accepted: 11/02/2017] [Indexed: 11/30/2022] Open
Abstract
Neurosyphilis is a chronic infectious disease with involvement of central nervous system infection by Treponema pallidum. This study was to investigate the contents of B lymphocyte chemokine 1 (BLC-1/chemokine [C-X-C motif] ligand 13), Th1 cytokines (Interleukin [IL]-2, IL-12, and Interferon [IFN]-γ), and Th2 cytokines (IL-6 and IL-10) in serum and cerebrospinal fluid (CSF) of HIV-negative patients with neurosyphilis before and after treatment, aiming to elucidate roles of CXCL13 and Th1/Th2 cytokines in immune response to and pathogenesis of neurosyphilis.Enzyme-linked immunosorbent assay was employed to detect the contents of CXCL13, IL-2, IL-12, IFN-γ, IL-6, and IL-10 in serum and CSF of 47 HIV-negative patients with neurosyphilis, 36 syphilis patients without neurological involvement and 23 controls (noninfectious intracranial disease) before, 3 and 12 months after treatment with high dose penicillin.Results showed that there was no significant difference in blood CXCL13 content among 3 groups (P > .05); CSF CXCL13 content in neurosyphilis patients was significantly higher than in other 2 groups (P < .001), and positively related to leucocyte count, protein concentration, and IgG index. IL-6 and IL-10 contents of the serum and CSF in neurosyphilis patients were markedly higher than in other 2 groups (P < .05 or .01), but IL-2, IL-12, and IFN-γ of the serum and CSF were significantly lower than in other 2 groups (P < .05 or .01). The IL-6, IL-10, IL-2, IL-12, and IFN-γ contents of the serum and CSF were comparable between control group and syphilis group (P > .05). CSF CXCL13 content was positively related with IL-6 and IL-10 content, while negatively related to IL-12 content in neurosyphilis patients. CSF IL-6 content was negatively related with IL-12 content. In neurosyphilis patients, the CSF CXCL13 content reduced significantly at 3 and 12 months (P < .001), the CSF IL-2 and IL-12 contents increased significantly at 12 months, and CSF IL-6 contents reduced significantly at 12 months after treatment (P < .05 or .01).It is concluded that neurosyphilis patients did not have normal immune function. CXCL13 and Th1/Th2 cytokines are involved in the immune response of neurosyphilis patients. CSF CXCL13 and Th1/Th2 cytokines contents may be used for the diagnosis and evaluation of therapeutic efficacy of neurosyphilis.
Collapse
Affiliation(s)
| | | | - Bin Qu
- Department of Dermatology, Hangzhou Clinical College of Medical University of Anhui, Hangzhou Third Hospital, Hangzhou, Zhejiang, P. R. China
| | | | | | | | | |
Collapse
|
48
|
Hoseinifar SH, Khodadadian Zou H, Kolangi Miandare H, Van Doan H, Romano N, Dadar M. Enrichment of common carp (Cyprinus carpio) diet with medlar (Mespilus germanica) leaf extract: Effects on skin mucosal immunity and growth performance. FISH & SHELLFISH IMMUNOLOGY 2017; 67:346-352. [PMID: 28602735 DOI: 10.1016/j.fsi.2017.06.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/04/2017] [Accepted: 06/06/2017] [Indexed: 06/07/2023]
Abstract
A feeding trial was performed to assess the effects of dietary Medlar (Mespilus germanica) leaf extract (MLE) on the growth performance, skin mucus non-specific immune parameters as well as mRNA levels of immune and antioxidant related genes in the skin of common carp (Cyprinus carpio) fingerlings. Fish were fed diets supplemented with graded levels (0, 0.25, 0.50, and 1.00%) of MLE for 49 days. The results revealed an improvement to the growth performance and feed conversion ratio in MLE fed carps (P < 0.05), regardless of the inclusion level. The immunoglobulin levels and interleukin 8 levels in the skin mucous and skin, respectively, revealed significant increment in fish fed 1% MLE (P < 0.05) in comparison with the other MLE treatments and control group. Also, feeding on 0.25% and 0.50% MLE remarkably increased skin mucus lysozyme activity (P < 0.05). However, there were no significant difference between MLE treated groups and control (P > 0.05) in case protease activity in the skin mucous or tumor necrosis factor alpha and interleukin 1 beta gene expression in the skin of carps (P > 0.05). The expression of genes encoding glutathione reductase and glutathione S-transferase alpha were remarkably increased in MLE fed carps compared to the control group (P < 0.05) while carp fed 0.50% or 1.00% MLE had significantly increased glutathione peroxidase expression in their skin (P < 0.05). The present results revealed the potentially beneficial effects of MLE on the mucosal immune system and growth performance in common carp fingerlings.
Collapse
Affiliation(s)
- Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Hassan Khodadadian Zou
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hamed Kolangi Miandare
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Nicholas Romano
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
49
|
HCV-induced regulatory alterations of IL-1β, IL-6, TNF-α, and IFN-ϒ operative, leading liver en-route to non-alcoholic steatohepatitis. Inflamm Res 2017; 66:477-486. [PMID: 28285394 DOI: 10.1007/s00011-017-1029-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 12/13/2022] Open
Abstract
Over the course of time, Hepatitis C has become a universal health menace. Its deleterious effects on human liver encompass a lot of physiological, genetic as well as epigenetic alterations. Fatty liver (Hepatic steatosis) is an inflammation having multifactorial ancestries; one of them is HCV (steatohepatitis). HCV boosts several cellular pathways involving up-regulation of a number of cytokines. Current study reviews the regulation of some selective key cytokines during HCV infection, to help generate an improved understanding of their role. These cytokines, IL-1β, IL-6, TNF-α, and IFN-ϒ, are inflammatory markers of the body. These particular markers along with others help hepatocytes against viral infestation. However, recently, their association has been found in degradation of liver on the trail heading to non-alcoholic steatohepatitis (NASH). Consequently, the disturbance in their equilibrium has been repeatedly reported during HCV infection. Quite a number of findings are affirming their up-regulation. Although these cell markers are stimulated by hepatocytes as their standard protection mechanism, but modern studies have testified the paradoxical nature of this defense line. Nevertheless, direct molecular or epigenetic research is needed to question the actual molecular progressions and directions commanding liver to steatosis, cirrhosis, or eventually HCC (Hepatocellular Carcinoma).
Collapse
|
50
|
Apaer S, Tuxun T, Ma HZ, Zhang H, Aierken A, Aini A, Li YP, Lin RY, Wen H. Parasitic infection as a potential therapeutic tool against rheumatoid arthritis. Exp Ther Med 2016; 12:2359-2366. [PMID: 27698735 DOI: 10.3892/etm.2016.3660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/15/2016] [Indexed: 12/11/2022] Open
Abstract
Parasites, which are a recently discovered yet ancient dweller in human hosts, remain a great public health burden in underdeveloped countries, despite preventative efforts. Rheumatoid arthritis is a predominantly cosmopolitan health problem with drastic morbidity rates, although encouraging progress has been achieved regarding treatment. However, although various types of methods and agents have been applied clinically, their broad usage has been limited by their adverse effects and/or high costs. Sustained efforts have been exerted on the 'hygiene hypothesis' since the 1870s. The immunosuppressive nature of parasitic infections may offer potential insight into therapeutic strategies for rheumatoid arthritis, in which the immune system is overactivated. An increasing number of published papers are focusing on the preventive and/or curative effect of various parasitic infection on rheumatoid arthritis from experimental studies to large-scale epidemiological studies and clinical trials. Therefore, the present review aimed to provide a general literature review on the possible beneficial role of parasitic infection on rheumatoid arthritis.
Collapse
Affiliation(s)
- Shadike Apaer
- State Key Laboratory of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China; Department of Liver and Laparoscopic Surgery, Digestive and Vascular Centre, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Tuerhongjiang Tuxun
- State Key Laboratory of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China; Department of Liver and Laparoscopic Surgery, Digestive and Vascular Centre, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Hai-Zhang Ma
- State Key Laboratory of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Heng Zhang
- State Key Laboratory of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Amina Aierken
- Department of Ultrasonography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Abudusalamu Aini
- State Key Laboratory of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Yu-Peng Li
- State Key Laboratory of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Ren-Yong Lin
- State Key Laboratory of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Hao Wen
- State Key Laboratory of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China; Department of Liver and Laparoscopic Surgery, Digestive and Vascular Centre, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| |
Collapse
|