1
|
Sørensen KV, Justesen JM, Ängquist L, Bork-Jensen J, Hartmann B, Jørgensen NR, Rungby J, Sørensen HT, Vaag A, Nielsen JS, Holst JJ, Pedersen O, Linneberg A, Hansen T, Grarup N. Rare MTNR1B variants causing diminished MT2 signalling associate with elevated HbA 1c levels but not with type 2 diabetes. Diabetologia 2025; 68:1016-1030. [PMID: 40064676 PMCID: PMC12021717 DOI: 10.1007/s00125-025-06381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/10/2024] [Indexed: 04/25/2025]
Abstract
AIMS/HYPOTHESIS An intronic variant (rs10830963) in MTNR1B (encoding the melatonin receptor type 2 [MT2]) has been shown to strongly associate with impaired glucose regulation and elevated type 2 diabetes prevalence. However, MTNR1B missense variants have shown conflicting results on type 2 diabetes. Thus, we aimed to gain further insights into the impact of MTNR1B coding variants on type 2 diabetes prevalence and related phenotypes. METHODS We conducted a cross-sectional study, performing MTNR1B variant burden testing of glycaemic phenotypes (N=248,454, without diabetes), other cardiometabolic phenotypes (N=330,453) and type 2 diabetes prevalence (case-control study; N=263,739) in the UK Biobank. Similar burden testing with glycaemic phenotypes was performed in Danish Inter99 participants without diabetes (N=5711), and type 2 diabetes prevalence (DD2 cohort serving as cases [N=2930] and Inter99 serving as controls [N=4243]). Finally, we evaluated the effects of MTNR1B variants on the melatonin-induced glucose regulation response in a recall-by-genotype study of individuals without diabetes. RESULTS In the UK Biobank, MTNR1B variants were not associated with cardiometabolic phenotypes, including type 2 diabetes prevalence, except that carriers of missense MTNR1B variants causing impaired MT2 signalling exhibited higher HbA1c levels compared with non-carriers (effect size, β, 0.087 SD [95% CI 0.039, 0.135]). Similarly, no significant associations were observed with phenotypes associated with glycaemic phenotypes in the Inter99 population. However, carriers of variants impairing MT2 signalling demonstrated a nominally significant lower glucose-stimulated insulin response (β -0.47 SD [95% CI -0.82, -0.11]). A reduced insulin response was also observed in carriers of variants impairing MT2 signalling (β -476.0 [95% CI -928.6, -24.4]) or the rs10830963 variant (β -390.8 [95% CI -740.1, -41.6]) compared with non-carriers after melatonin treatment. CONCLUSIONS/INTERPRETATION The higher type 2 diabetes prevalence previously observed in carriers of missense MTNR1B variants causing impairment in MT2 signalling was not replicated in the UK Biobank, yet carriers had elevated HbA1c levels. DATA AVAILABILITY Data (Inter99 cohort and recall-by-genotype study) are available on reasonable request from the corresponding author. Requests for DD2 data are through the application form at https://dd2.dk/forskning/ansoeg-om-data . Access to UK Biobank data can be requested through the UK Biobank website ( https://www.ukbiobank.ac.uk/enable-your-research ).
Collapse
Affiliation(s)
- Kimmie V Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johanne M Justesen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Ängquist
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niklas R Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Translational Research Centre, Rigshospitalet, Copenhagen, Denmark
| | - Jørgen Rungby
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev Hospital, Herlev, Denmark
| | - Henrik T Sørensen
- Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark
- Department of Epidemiology, Boston University, Boston, MA, USA
| | - Allan Vaag
- Steno Diabetes Center Copenhagen, Herlev Hospital, Herlev, Denmark
- Lund University Diabetes Care, Lund University, Malmö, Sweden
- Department of Endocrinology, Skåne University Hospital, Malmö, Sweden
| | - Jens S Nielsen
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Herlev-Gentofte Hospital, Copenhagen, Denmark
| | - Allan Linneberg
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Research and Prevention, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Lima ACDS, Cruvinel NT, da Silva NR, Mendes MM, Duarte ACS, Coelho ASG, Vimaleswaran KS, Horst MA. Interaction Between Dietary Fiber Intake and MTNR1B rs10830963 Polymorphism on Glycemic Profiles in Young Brazilian Adults. Genes (Basel) 2025; 16:497. [PMID: 40428319 PMCID: PMC12110926 DOI: 10.3390/genes16050497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND/OBJECTIVE The single-nucleotide polymorphism (SNP) rs10830963 in the melatonin receptor 1B (MTNR1B) gene influences insulin secretion and glucose metabolism and has been associated with an increased risk of type-2 diabetes. This study aimed to explore the interaction between dietary intake and the MTNR1B rs10830963 polymorphism on glycemic profiles in young Brazilian adults. METHODS This cross-sectional study assessed 200 healthy young adults (19-24 years), evaluating the MTNR1B rs10830963 genotype, anthropometric parameters, glycemic markers (fasting insulin, glucose, HOMA-IR, and HOMA-β), and dietary intake via three 24 h dietary recalls. Genotype-diet interactions were tested using multivariate linear regression models adjusted for confounders. RESULTS The carriers of the G allele exhibited a positive association with fasting insulin levels (p = 0.003), insulin/glucose ratio (p = 0.004), HOMA-IR (p = 0.003), and HOMA-β (p = 0.018). Energy-adjusted fiber intake showed a significant genotype-specific interaction only in carriers of the G allele, where higher dietary fiber intake was significantly associated with lower fasting insulin (pinteraction = 0.034) and HOMA-IR (pinteraction = 0.028). CONCLUSION Our findings indicate that the MTNR1B rs10830963 polymorphism is associated with glycemic markers, and dietary fiber intake may attenuate the adverse effects of the MTNR1B rs10830963 G allele on glycemic profiles in young Brazilian adults. This highlights the potential role of fiber in improving health outcomes for individuals carrying this risk allele. To validate these results and assess the broader implications for the Brazilian population, further intervention studies and larger-scale research are essential.
Collapse
Affiliation(s)
- Ana Carolina da Silva Lima
- Nutritional Genomics Research Group, Faculty of Nutrition, Federal University of Goiás, Goiania 74605-080, GO, Brazil; (A.C.d.S.L.); (N.T.C.); (N.R.d.S.); (M.M.M.); (A.C.S.D.)
| | - Nathália Teixeira Cruvinel
- Nutritional Genomics Research Group, Faculty of Nutrition, Federal University of Goiás, Goiania 74605-080, GO, Brazil; (A.C.d.S.L.); (N.T.C.); (N.R.d.S.); (M.M.M.); (A.C.S.D.)
| | - Nara Rubia da Silva
- Nutritional Genomics Research Group, Faculty of Nutrition, Federal University of Goiás, Goiania 74605-080, GO, Brazil; (A.C.d.S.L.); (N.T.C.); (N.R.d.S.); (M.M.M.); (A.C.S.D.)
| | - Marcela Moraes Mendes
- Nutritional Genomics Research Group, Faculty of Nutrition, Federal University of Goiás, Goiania 74605-080, GO, Brazil; (A.C.d.S.L.); (N.T.C.); (N.R.d.S.); (M.M.M.); (A.C.S.D.)
| | - Amélia Cristina Stival Duarte
- Nutritional Genomics Research Group, Faculty of Nutrition, Federal University of Goiás, Goiania 74605-080, GO, Brazil; (A.C.d.S.L.); (N.T.C.); (N.R.d.S.); (M.M.M.); (A.C.S.D.)
- Health Research Coordination, Organization: State Department of Health from Goiás (SES-GO), Goiânia 74853-070, GO, Brazil
| | | | - Karani S. Vimaleswaran
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6DZ, UK
- The Institute for Food, Nutrition, and Health, University of Reading, Reading RG6 6AH, UK
| | - Maria Aderuza Horst
- Nutritional Genomics Research Group, Faculty of Nutrition, Federal University of Goiás, Goiania 74605-080, GO, Brazil; (A.C.d.S.L.); (N.T.C.); (N.R.d.S.); (M.M.M.); (A.C.S.D.)
| |
Collapse
|
3
|
Aranda-Martínez P, Fernández-Martínez J, Díaz-Casado ME, Ramírez-Casas Y, Martín-Estebané M, López-Rodríguez A, Escames G, Acuña-Castroviejo D. Lack of asmt1 or asmt2 Yields Different Phenotypes and Malformations in Larvae to Adult Zebrafish. Int J Mol Sci 2025; 26:3912. [PMID: 40332753 PMCID: PMC12027777 DOI: 10.3390/ijms26083912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Melatonin is an indolamine derived from tryptophan, which is highly conserved throughout evolution, including in zebrafish, where it controls important cellular processes, such as circadian rhythms, oxidative stress, inflammation, and mitochondrial homeostasis. These functions of melatonin and its synthesis route are quite similar to those in humans. One of the most important enzymes in melatonin synthesis is acetylserotonin O-methyltransferase (ASMT), the rate-limiting enzyme, which catalyzes its final step. Due to genome duplication, zebrafish has two genes for this enzyme, asmt1 and asmt2. These genes show differential expression; asmt1 is primarily expressed in the retina and the pineal gland, and asmt2 is expressed in peripheral tissues, indicating different functions. Therefore, the aim of this work was to develop a mutant model for each asmt gene and to analyze their phenotypic effects in zebrafish. The results showed that the loss of 80% of the asmt2 gene affected melatonin concentration and consequently disrupted the sleep/wake rhythm in larvae, decreasing by 50% the distance traveled. In contrast, the loss of asmt1 had a greater influence on the physical condition of adults, as locomotor activity decreased by 50%, and 75% showed malformations. These data reveal distinct functional roles of melatonin depending on their site of production that may affect the development of zebrafish.
Collapse
Affiliation(s)
- Paula Aranda-Martínez
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (P.A.-M.); (J.F.-M.); (Y.R.-C.); (M.M.-E.); (A.L.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs. Granada), Hospital Clínico Universitario San Cecilio, 18016 Granada, Spain
| | - José Fernández-Martínez
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (P.A.-M.); (J.F.-M.); (Y.R.-C.); (M.M.-E.); (A.L.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs. Granada), Hospital Clínico Universitario San Cecilio, 18016 Granada, Spain
| | - María Elena Díaz-Casado
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (P.A.-M.); (J.F.-M.); (Y.R.-C.); (M.M.-E.); (A.L.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs. Granada), Hospital Clínico Universitario San Cecilio, 18016 Granada, Spain
| | - Yolanda Ramírez-Casas
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (P.A.-M.); (J.F.-M.); (Y.R.-C.); (M.M.-E.); (A.L.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs. Granada), Hospital Clínico Universitario San Cecilio, 18016 Granada, Spain
| | - María Martín-Estebané
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (P.A.-M.); (J.F.-M.); (Y.R.-C.); (M.M.-E.); (A.L.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs. Granada), Hospital Clínico Universitario San Cecilio, 18016 Granada, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Alba López-Rodríguez
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (P.A.-M.); (J.F.-M.); (Y.R.-C.); (M.M.-E.); (A.L.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs. Granada), Hospital Clínico Universitario San Cecilio, 18016 Granada, Spain
| | - Germaine Escames
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (P.A.-M.); (J.F.-M.); (Y.R.-C.); (M.M.-E.); (A.L.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs. Granada), Hospital Clínico Universitario San Cecilio, 18016 Granada, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Darío Acuña-Castroviejo
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (P.A.-M.); (J.F.-M.); (Y.R.-C.); (M.M.-E.); (A.L.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs. Granada), Hospital Clínico Universitario San Cecilio, 18016 Granada, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- UGC de Laboratorios Clínicos, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain
| |
Collapse
|
4
|
Sheibani M, Hosseinzadeh A, Fatemi I, Naeini AJ, Mehrzadi S. Practical application of melatonin for pancreas disorders: protective roles against inflammation, malignancy, and dysfunctions. Pharmacol Rep 2025; 77:315-332. [PMID: 39604705 DOI: 10.1007/s43440-024-00683-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
Melatonin, a hormone primarily produced by the pineal gland, exhibits a range of physiological functions that extend beyond its well-known role in regulating circadian rhythms. This hormone influences energy metabolism, modulates insulin sensitivity, and plays a significant role in controlling sleep patterns and food intake. Notably, melatonin is also synthesized in various peripheral organs, including the gastrointestinal system and pancreas, suggesting its function as a local hormone. The presence of melatonin receptors in the pancreas underscores its relevance in pancreatic physiology. Pancreatic disorders, such as diabetes mellitus (DM), pancreatitis, and pancreatic cancer, often stem from inflammatory processes. The majority of these conditions are characterized by dysregulated immune responses and oxidative stress. Melatonin's anti-inflammatory properties are mediated through the inhibition of pro-inflammatory cytokines and the activation of antioxidant enzymes, which help to mitigate cellular damage. Furthermore, melatonin has demonstrated pro-apoptotic effects on cancer cells, promoting cell death in malignant tissues while preserving healthy cells. Thus, melatonin emerges as a multifaceted agent with significant therapeutic potential for pancreatic disorders. Its ability to reduce inflammation and oxidative stress positions it as a promising adjunct therapy for conditions such as diabetes mellitus, pancreatitis, and pancreatic cancer. By modulating immune responses and enhancing cellular resilience through antioxidant mechanisms, melatonin not only addresses the symptoms but also targets the underlying pathophysiological processes associated with these disorders. This review aims to categorize and summarize the impacts of melatonin on pancreatic functions and disorders, emphasizing its potential as a therapeutic agent for managing pancreatic dysfunctions. Future research should focus on elucidating the precise mechanisms by which melatonin exerts its protective effects on pancreatic tissues and exploring optimal dosing strategies for clinical applications. The integration of melatonin into treatment regimens may enhance existing therapies and offer new hope for individuals suffering from pancreatic dysfunctions.
Collapse
Affiliation(s)
- Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Islamic Republic of Iran
| | - Ali Jamshidi Naeini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Le Collen L, Froguel P, Bonnefond A. Towards the recognition of oligogenic forms of type 2 diabetes. Trends Endocrinol Metab 2025; 36:109-117. [PMID: 38955653 DOI: 10.1016/j.tem.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
The demarcation between monogenic and polygenic type 2 diabetes (T2D) is less distinct than previously believed. Notably, recent research has highlighted a new entity, that we suggest calling oligogenic forms of T2D, serving as a genetic link between these two forms. In this opinion article, we have reviewed scientific advances that suggest categorizing genes involved in oligogenic T2D. Research focused on polygenic T2D has faced challenges in deepening our comprehension of the pathophysiology of T2D due to the inability to directly establish causal links between a signal and the molecular mechanisms underlying the disease. However, the study of oligogenic forms of T2D has illuminated distinct causal connections between genes and disease risk, thereby indicating potential new drug targets.
Collapse
Affiliation(s)
- Lauriane Le Collen
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille University Hospital, Lille, France; University of Lille, Lille, France; Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Nancy, France
| | - Philippe Froguel
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille University Hospital, Lille, France; University of Lille, Lille, France; Department of Metabolism, Imperial College London, Hammersmith Hospital, London, UK
| | - Amélie Bonnefond
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille University Hospital, Lille, France; University of Lille, Lille, France; Department of Metabolism, Imperial College London, Hammersmith Hospital, London, UK.
| |
Collapse
|
6
|
Zhang S, Bian W, Wang Y, Shen M, Qian Y, Dai H, Zheng S, Fu Q, Xu K, Yang T, Jiang H. The MTNR1B Rs724030 variant is associated with islet function and women waist-to-hip ratio in healthy subjects. Front Endocrinol (Lausanne) 2025; 15:1398687. [PMID: 39886031 PMCID: PMC11779613 DOI: 10.3389/fendo.2024.1398687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 12/26/2024] [Indexed: 02/01/2025] Open
Abstract
Objective This study aims to investigate the associations between MTNR1B rs724030 A>G variant and prediabetes risk, along with their correlations with clinical features, including plasma glucose and serum insulin levels during oral glucose tolerance test (OGTT), islet function, insulin resistance, and plasma lipid levels. In particular, we investigated whether there are sex dimorphisms in the impact of this variant on islet function/insulin resistance. Methods We included 3415 glucose-tolerant healthy and 1744 prediabetes individuals based on OGTT. Binary logistic regression was performed to evaluate the relationships between rs724030 in MTNR1B and prediabetes under the additive model. Additionally, multiple linear regression was utilized to investigate the associations between this variant and glycemic-related quantitative traits and lipid levels. Results While no association was observed between the rs724030 variant in MTNR1B and prediabetes risk in the overall cohort (P > 0.05), we found the G allele of this variant was associated with higher fasting and 30-minute plasma glucose levels, decreased Insulinogenic Index (IGI), and oral disposition index (DIo) (P = 0.009, 0.001, 0.001, and 0.007, respectively) in the normal glucose tolerance (NGT) individuals with normal BMI levels. Furthermore, we also found significant associations between this variant and IGI, corrected insulin response (CIR), and DIo (All P < 0.001) in female individuals whose waist-to-hip ratio (WHR) is greater than 0.85, with considerable heterogeneity (Phet = 0.009, 0.030, and 0.049, respectively) to male participants in the NGT individuals, but not in the impaired fasting glucose (IFG)/impaired glucose tolerance (IGT) individuals. Additionally, no association was observed between this variant and insulin clearance (All P > 0.05). Conclusions The MTNR1B rs724030 variant contributes to glycemic traits and islet function, and its effects have sex dimorphisms in the NGT individuals after stratifying by WHR. All these findings provide a basis for accurately assessing islet function in healthy populations and offer a new perspective on precision prevention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tao Yang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hemin Jiang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Nath A, Ghosh S, Bandyopadhyay D. Role of melatonin in mitigation of insulin resistance and ensuing diabetic cardiomyopathy. Life Sci 2024; 355:122993. [PMID: 39154810 DOI: 10.1016/j.lfs.2024.122993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Addressing insulin resistance or hyperinsulinemia might offer a viable treatment approach to stop the onset of diabetic cardiomyopathy, as these conditions independently predispose to the development of the disease, which is initially characterized by diastolic abnormalities. The development of diabetic cardiomyopathy appears to be driven mainly by insulin resistance or impaired insulin signalling and/or hyperinsulinemia. Oxidative stress, hypertrophy, fibrosis, cardiac diastolic dysfunction, and, ultimately, systolic heart failure are the outcomes of these pathophysiological alterations. Melatonin is a ubiquitous indoleamine, a widely distributed compound secreted mainly by the pineal gland, and serves a variety of purposes in almost every living creature. Melatonin is found to play a leading role by improving myocardial cell metabolism, decreasing vascular endothelial cell death, reversing micro-circulation disorders, reducing myocardial fibrosis, decreasing oxidative and endoplasmic reticulum stress, regulating cell autophagy and apoptosis, and enhancing mitochondrial function. This review highlights a relationship between insulin resistance and associated cardiomyopathy. It explores the potential therapeutic strategies offered by the neurohormone melatonin, an important antioxidant that plays a leading role in maintaining glucose homeostasis by influencing the glucose transporters independently and through its receptors. The vast distribution of melatonin receptors in the body, including beta cells of pancreatic islets, asserts the role of this indole molecule in maintaining glucose homeostasis. Melatonin controls the production of GLUT4 and/or the phosphorylation process of the receptor for insulin and its intracellular substrates, activating the insulin-signalling pathway through its G-protein-coupled membrane receptors.
Collapse
Affiliation(s)
- Anupama Nath
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science, Technology and Agriculture, 92 APC Road, Kolkata 700 009, India
| | - Songita Ghosh
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science, Technology and Agriculture, 92 APC Road, Kolkata 700 009, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science, Technology and Agriculture, 92 APC Road, Kolkata 700 009, India.
| |
Collapse
|
8
|
Brito Nunes C, Borges MC, Freathy RM, Lawlor DA, Qvigstad E, Evans DM, Moen GH. Understanding the Genetic Landscape of Gestational Diabetes: Insights into the Causes and Consequences of Elevated Glucose Levels in Pregnancy. Metabolites 2024; 14:508. [PMID: 39330515 PMCID: PMC11434570 DOI: 10.3390/metabo14090508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Background/Objectives: During pregnancy, physiological changes in maternal circulating glucose levels and its metabolism are essential to meet maternal and fetal energy demands. Major changes in glucose metabolism occur throughout pregnancy and consist of higher insulin resistance and a compensatory increase in insulin secretion to maintain glucose homeostasis. For some women, this change is insufficient to maintain normoglycemia, leading to gestational diabetes mellitus (GDM), a condition characterized by maternal glucose intolerance and hyperglycaemia first diagnosed during the second or third trimester of pregnancy. GDM is diagnosed in approximately 14.0% of pregnancies globally, and it is often associated with short- and long-term adverse health outcomes in both mothers and offspring. Although recent studies have highlighted the role of genetic determinants in the development of GDM, research in this area is still lacking, hindering the development of prevention and treatment strategies. Methods: In this paper, we review recent advances in the understanding of genetic determinants of GDM and glycaemic traits during pregnancy. Results/Conclusions: Our review highlights the need for further collaborative efforts as well as larger and more diverse genotyped pregnancy cohorts to deepen our understanding of the genetic aetiology of GDM, address research gaps, and further improve diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Caroline Brito Nunes
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
| | - Maria Carolina Borges
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Rachel M. Freathy
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4PY, UK;
| | - Deborah A. Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Elisabeth Qvigstad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - David M. Evans
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK
- Frazer Institute, University of Queensland, Brisbane 4102, Australia
| | - Gunn-Helen Moen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Frazer Institute, University of Queensland, Brisbane 4102, Australia
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
9
|
Park YJ, Moon S, Choi J, Kim J, Kim HJ, Son HY, Im SW, Kim JI. Genome-wide association study for metabolic syndrome reveals APOA5 single nucleotide polymorphisms with multilayered effects in Koreans. Lipids Health Dis 2024; 23:272. [PMID: 39198834 PMCID: PMC11351254 DOI: 10.1186/s12944-024-02248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND AND PURPOSE Genome-wide association studies (GWAS) of metabolic syndrome (MetS) have predominantly focused on non-Asian populations, with limited representation from East Asian cohorts. Moreover, previous GWAS analyses have primarily emphasized the significance of top single nucleotide polymorphisms (SNPs), poorly explaining other SNP signals in linkage disequilibrium. This study aimed to reveal the interaction between rs651821 and rs2266788, the principal variants of apolipoprotein A5 (APOA5), within the most significant loci identified through GWAS on MetS. METHODS GWAS on MetS and its components was conducted using the data from the Korean Genome and Epidemiology Study (KoGES) city cohort comprising 58,600 individuals with available biochemical, demographic, lifestyle factors, and the most significant APOA5 locus was analyzed further in depth. RESULTS According to GWAS of MetS and its diagnostic components, a significant association between the APOA5 SNPs rs651821/rs2266788 and MetS/triglycerides/high-density lipoprotein phenotypes was revealed. However, a conditional analysis employing rs651821 unveiled a reversal in the odds ratio for rs2266788. Therefore, rs651821 and rs2266788 emerged as independent and opposing signals in the extended GWAS analysis, i.e., the multilayered effects. Further gene-environment interaction analyses regarding lifestyle factors such as smoking, alcohol consumption, and physical activity underscored these multilayered effects. CONCLUSION This study unveils the intricate interplay between rs651821 and rs2266788 derived from MetS GWAS. Removing the influence of lead SNP reveals an independent protective signal associated with rs2266788, suggesting a multilayered effect between these SNPs. These findings underline the need for novel perspectives in future MetS GWAS.
Collapse
Affiliation(s)
- Young Jun Park
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sungji Moon
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Jaeyong Choi
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea
| | - Juhyun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hyun-Jin Kim
- National Cancer Control Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Ho-Young Son
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea.
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Sun-Wha Im
- Department of Biochemistry and Molecular Biology, Kangwon National University School of Medicine, One Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
| | - Jong-Il Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
10
|
Guo H, Peng H, Wang S, Hou T, Li Y, Zhang H, Jiang J, Ma B, Wang M, Wu Y, Qin X, Tang X, Chen D, Li J, Hu Y, Wu T. Healthy Lifestyles Modify the Association of Melatonin Receptor 1B Gene and Ischemic Stroke: A Family-Based Cohort Study in Northern China. J Pineal Res 2024; 76:e13000. [PMID: 39101387 DOI: 10.1111/jpi.13000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/15/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Limited research has reported the association between MTNR1B gene polymorphisms and ischemic stroke (IS), and there is insufficient evidence on whether adopting a healthy lifestyle can mitigate genetic risks in this context. This study aimed to investigate the associations between MTNR1B gene variants (rs10830963 and rs1387153) and IS, examining the potential effect of gene-lifestyle interactions on IS risk. Conducted in northern China, this family-based cohort study involved 5116 initially IS-free subjects. Genotype data for rs10830963 and rs1387153 in MTNR1B were collected. Eight modifiable lifestyle factors, including body mass index (BMI), smoking, alcohol consumption, dietary habits, physical activity, sedentary time, sleep duration, and chronotype, were considered in calculating healthy lifestyle scores. Multilevel Cox models were used to examine the associations between MTNR1B variants and IS. Participants carrying the rs10830963-G and rs1387153-T alleles exhibited an elevated IS risk. Each additional rs10830963-G allele and rs1387153-T allele increased the IS risk by 36% (HR = 1.36, 95% CI, 1.12-1.65) and 32% (HR = 1.32, 95% CI, 1.09-1.60), respectively. Participants were stratified into low, medium, and high healthy lifestyle score groups (1537, 2188, and 1391 participants, respectively). Genetic-lifestyle interactions were observed for rs10830963 and rs1387153 (p for interaction < 0.001). Notably, as the healthy lifestyle score increased, the effect of MTNR1B gene variants on IS risk diminished (p for trend < 0.001). This study underscores the association between the MTNR1B gene and IS, emphasizing that adherence to a healthy lifestyle can mitigate the genetic predisposition to IS.
Collapse
Affiliation(s)
- Huangda Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Hexiang Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Siyue Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Tianjiao Hou
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yixin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Hanyu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jin Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Bohao Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Mengying Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Yiqun Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Xueying Qin
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Xun Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Dafang Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Jing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Tao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| |
Collapse
|
11
|
Zambrano C, Garitaonaindia MT, Salmerón D, Pérez-Sanz F, Tchio C, Picinato MC, de Medina FS, Luján J, Scheer FAJL, Saxena R, Martínez-Augustin O, Garaulet M. Melatonin decreases human adipose tissue insulin sensitivity. J Pineal Res 2024; 76:e12965. [PMID: 38860494 DOI: 10.1111/jpi.12965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024]
Abstract
Melatonin is a pineal hormone that modulates the circadian system and exerts soporific and phase-shifting effects. It is also involved in many other physiological processes, such as those implicated in cardiovascular, endocrine, immune, and metabolic functions. However, the role of melatonin in glucose metabolism remains contradictory, and its action on human adipose tissue (AT) explants has not been demonstrated. We aimed to assess whether melatonin (a pharmacological dose) influences insulin sensitivity in human AT. This will help better understand melatonin administration's effect on glucose metabolism. Abdominal AT (subcutaneous and visceral) biopsies were obtained from 19 participants with severe obesity (age: 42.84 ± 12.48 years; body mass index: 43.14 ± 8.26 kg/m2) who underwent a laparoscopic gastric bypass. AT biopsies were exposed to four different treatments: control (C), insulin alone (I) (10 nM), melatonin alone (M) (5000 pg/mL), and insulin plus melatonin combined (I + M). All four conditions were repeated in both subcutaneous and visceral AT, and all were performed in the morning at 8 a.m. (n = 19) and the evening at 8 p.m. (in a subsample of n = 12). We used western blot analysis to determine insulin signaling (using the pAKT/tAKT ratio). Furthermore, RNAseq analyses were performed to better understand the metabolic pathways involved in the effect of melatonin on insulin signaling. As expected, insulin treatment (I) increased the pAKT/tAKT ratio compared with control (p < .0001). Furthermore, the addition of melatonin (I + M) resulted in a decrease in insulin signaling as compared with insulin alone (I); this effect was significant only during the evening time (not in the morning time). Further, RNAseq analyses in visceral AT during the evening condition (at 8 p.m.) showed that melatonin resulted in a prompt transcriptome response (around 1 h after melatonin addition), particularly by downregulating the insulin signaling pathway. Our results show that melatonin reduces insulin sensitivity in human AT during the evening. These results may partly explain the previous studies showing a decrease in glucose tolerance after oral melatonin administration in the evening or when eating late when endogenous melatonin is present.
Collapse
Affiliation(s)
- Carolina Zambrano
- Department of Physiology, Regional Campus of International Excellence, University of Murcia, Murcia, Spain
- Research Biomedical Institute of Murcia (IMIB)-Arrixaca, Murcia, Spain
| | - Mireia Tena Garitaonaindia
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Ibs Granada, Instituto de Nutrición y Tecnología de los Alimentos (INYTA) José Mataix, University of Granada, Granada, Spain
| | - Diego Salmerón
- Research Biomedical Institute of Murcia (IMIB)-Arrixaca, Murcia, Spain
- Health and Social Sciences Department, University of Murcia, Murcia, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | | | - Cynthia Tchio
- Center for Genomic Medicine, Massachusetts General Hospital, Cambridge, Massachusetts, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | | | - Fermín Sánchez de Medina
- Department of Pharmacology, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Ibs Granada, Universidad de Granada, Granada, Spain
| | - Juan Luján
- General Surgery Service, Hospital Quirónsalud Murcia, Murcia, Spain
| | - Frank A J L Scheer
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Richa Saxena
- Center for Genomic Medicine, Massachusetts General Hospital, Cambridge, Massachusetts, USA
| | - Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Ibs Granada, Instituto de Nutrición y Tecnología de los Alimentos (INYTA) José Mataix, University of Granada, Granada, Spain
| | - Marta Garaulet
- Department of Physiology, Regional Campus of International Excellence, University of Murcia, Murcia, Spain
- Research Biomedical Institute of Murcia (IMIB)-Arrixaca, Murcia, Spain
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Sinnott-Armstrong N, Strausz S, Urpa L, Abner E, Valliere J, Palta P, Dashti HS, Daly M, Pritchard JK, Saxena R, Jones SE, Ollila HM. Genetic variants affect diurnal glucose levels throughout the day. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604631. [PMID: 39091879 PMCID: PMC11291026 DOI: 10.1101/2024.07.22.604631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Circadian rhythms not only coordinate the timing of wake and sleep but also regulate homeostasis within the body, including glucose metabolism. However, the genetic variants that contribute to temporal control of glucose levels have not been previously examined. Using data from 420,000 individuals from the UK Biobank and replicating our findings in 100,000 individuals from the Estonian Biobank, we show that diurnal serum glucose is under genetic control. We discover a robust temporal association of glucose levels at the Melatonin receptor 1B ( MTNR1B) (rs10830963, P = 1e-22) and a canonical circadian pacemaker gene Cryptochrome 2 ( CRY2) loci (rs12419690, P = 1e-16). Furthermore, we show that sleep modulates serum glucose levels and the genetic variants have a separate mechanism of diurnal control. Finally, we show that these variants independently modulate risk of type 2 diabetes. Our findings, together with earlier genetic and epidemiological evidence, show a clear connection between sleep and metabolism and highlight variation at MTNR1B and CRY2 as temporal regulators for glucose levels.
Collapse
|
13
|
Liu M, Yu X, Shi J, Su J, Wei M, Zhu Q. Establishing causal relationships between insomnia and gestational diabetes mellitus using Mendelian randomization. Heliyon 2024; 10:e33638. [PMID: 39071716 PMCID: PMC11283095 DOI: 10.1016/j.heliyon.2024.e33638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Background Gestational diabetes mellitus (GDM) is a common condition observed globally, and previous studies have suggested a link between GDM and insomnia. The objective of this study was to elucidate the causative relationship between insomnia and GDM, and to investigate the influence of factors related to insomnia on GDM. Methods We performed bidirectional Mendelian randomization (MR) analyses using single nucleotide polymorphisms (SNPs) as genetic instruments for exposure and mediators, thereby minimizing bias due to confounding and reverse causation. The Cochran Q test was utilized for heterogeneity analysis, MR-Egger regression for pleiotropy assessment, and the leave-one-out method for evaluating the robustness of the results. Additionally, we determined the causal relationships between GDM and other factors such as coffee consumption, alcohol intake, and household income. Results Insomnia was positively associated with GDM, as indicated by 39 SNPs (OR = 1.27, 95 % CI 1.12-1.439, P-value = 0.008). Conversely, the MR analysis did not reveal any causal relationship between GDM and insomnia (OR = 1.032, 95 % CI 0.994-1.071, P-value = 0.99). Additionally, no causal relationship was observed between coffee consumption, alcohol intake, household income, and GDM (all P-values >0.05). Conclusion Our study indicates that insomnia elevates the risk of GDM, thereby establishing a causal link with GDM, independent of coffee consumption, alcohol intake, and household income.
Collapse
Affiliation(s)
- Minne Liu
- Department of Education, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- School of General Practice and Continuing Education, Capital Medical University, Beijing 100069, China
| | - Xianfeng Yu
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Jie Shi
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jiahui Su
- Faculty of Psychology, Tianjin Normal University, Tianjin 300382, China
| | - Min Wei
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Qingshuang Zhu
- Department of Education, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Department of Gynecology and Obstetrics, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| |
Collapse
|
14
|
Vella M, Mohan S, Christie H, Bailey KR, Cobelli C, Dalla Man C, Matveyenko A, Egan AM, Vella A. Diabetes-associated Genetic Variation in MTNR1B and Its Effect on Islet Function. J Endocr Soc 2024; 8:bvae130. [PMID: 39011323 PMCID: PMC11249077 DOI: 10.1210/jendso/bvae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Indexed: 07/17/2024] Open
Abstract
Context Multiple common genetic variants have been associated with type 2 diabetes, but the mechanism by which they predispose to diabetes is incompletely understood. One such example is variation in MTNR1B, which implicates melatonin and its receptor in the pathogenesis of type 2 diabetes. Objective To characterize the effect of diabetes-associated genetic variation at rs10830963 in the MTNR1B locus on islet function in people without type 2 diabetes. Design The association of genetic variation at rs10830963 with glucose, insulin, C-peptide, glucagon, and indices of insulin secretion and action were tested in a cohort of 294 individuals who had previously undergone an oral glucose tolerance test (OGTT). Insulin sensitivity, β-cell responsivity to glucose, and Disposition Indices were measured using the oral minimal model. Setting The Clinical Research and Translation Unit at Mayo Clinic, Rochester, MN. Participants Two cohorts were utilized for this analysis: 1 cohort was recruited on the basis of prior participation in a population-based study in Olmsted County. The other cohort was recruited on the basis of TCF7L2 genotype at rs7903146 from the Mayo Biobank. Intervention Two-hour, 7-sample OGTT. Main Outcome Measures Fasting, nadir, and integrated glucagon concentrations. Results One or 2 copies of the G-allele at rs10830963 were associated with increased postchallenge glucose and glucagon concentrations compared to subjects with the CC genotype. Conclusion The effects of rs10830963 on glucose homeostasis and predisposition to type 2 diabetes are likely to be partially mediated through changes in α-cell function.
Collapse
Affiliation(s)
- Max Vella
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Sneha Mohan
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Hannah Christie
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Kent R Bailey
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Claudio Cobelli
- Department of Women and Children's Health, University of Padova, 35128 Padova, Italy
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, 35128 Padova, Italy
| | - Aleksey Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Aoife M Egan
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Adrian Vella
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
15
|
郭 煌, 彭 和, 王 斯, 侯 天, 李 奕, 章 涵, 王 梦, 武 轶, 秦 雪, 唐 迅, 李 劲, 陈 大, 胡 永, 吴 涛. [A ssociations of short-term ambient particulate matter exposure and MTNR1B gene with triglyceride-glucose index: A family-based study]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2024; 56:375-383. [PMID: 38864120 PMCID: PMC11167541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVE To explore the effects of short-term particulate matter (PM) exposure and the melatonin receptor 1B (MTNR1B) gene on triglyceride-glucose (TyG) index utilizing data from Fang-shan Family-based Ischemic Stroke Study in China (FISSIC). METHODS Probands and their relatives from 9 rural areas in Fangshan District, Beijing, were included in the study. PM data were obtained from fixed monitoring stations of the National Air Pollution Monitoring System. TyG index was calculated by fasting triglyceride and glucose concentrations. The associations of short-term PM exposure and rs10830963 polymorphism of the MTNR1B gene with the TyG index were assessed using mixed linear models, in which covariates such as age, sex, and lifestyles were adjusted for. Gene-environment inter-action analysis was furtherly performed using the maximum likelihood methods to explore the potential effect modifier role of rs10830963 polymorphism in the association of PM with TyG index. RESULTS A total of 4 395 participants from 2 084 families were included in the study, and the mean age of the study participants was (58.98±8.68) years, with 53. 90% females. The results of association analyses showed that for every 10 μg/m3 increase in PM2.5 concentration, TyG index increased by 0.017 (95%CI: 0.007-0.027), while for per 10 μg/m3 increment in PM10, TyG index increased by 0.010 (95%CI: 0.003-0.017). And the associations all had lagged effects. In addition, there was a positive association between the rs10830963 polymorphism and the TyG index. For per increase in risk allele G, TyG index was elevated by 0.040 (95%CI: 0.004-0.076). The TyG index was 0.079 (95%CI: 0.005-0.152) higher in carriers of the GG genotype compared with carriers of the CC genotype. The interaction of rs10830963 polymorphism with PM exposure had not been found to be statistically significant in the present study. CONCLUSION Short-term exposure to PM2.5 and PM10 were associated with higher TyG index. The G allele of rs10830963 polymorphism in the MTNR1B gene was associated with the elevated TyG index.
Collapse
Affiliation(s)
- 煌达 郭
- 北京大学公共卫生学院流行病与卫生统计学系, 北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 和香 彭
- 北京大学公共卫生学院流行病与卫生统计学系, 北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 斯悦 王
- 北京大学公共卫生学院流行病与卫生统计学系, 北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 天姣 侯
- 北京大学公共卫生学院流行病与卫生统计学系, 北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 奕昕 李
- 北京大学公共卫生学院流行病与卫生统计学系, 北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 涵宇 章
- 北京大学公共卫生学院流行病与卫生统计学系, 北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 梦莹 王
- 北京大学公共卫生学院营养与食品卫生学系, 北京 100191Department of Nutrition and Food Hygiene, Peking University School of Public Health, Beijing, 100191, China
- 重大疾病流行病学教育部重点实验室(北京大学), 北京 100191Key Laboratory of Epidemiology of Major Diseases(Peking University), Ministry of Education, Beijing 100191, China
| | - 轶群 武
- 北京大学公共卫生学院流行病与卫生统计学系, 北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
- 重大疾病流行病学教育部重点实验室(北京大学), 北京 100191Key Laboratory of Epidemiology of Major Diseases(Peking University), Ministry of Education, Beijing 100191, China
| | - 雪英 秦
- 北京大学公共卫生学院流行病与卫生统计学系, 北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
- 重大疾病流行病学教育部重点实验室(北京大学), 北京 100191Key Laboratory of Epidemiology of Major Diseases(Peking University), Ministry of Education, Beijing 100191, China
| | - 迅 唐
- 北京大学公共卫生学院流行病与卫生统计学系, 北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
- 重大疾病流行病学教育部重点实验室(北京大学), 北京 100191Key Laboratory of Epidemiology of Major Diseases(Peking University), Ministry of Education, Beijing 100191, China
| | - 劲 李
- 北京大学公共卫生学院流行病与卫生统计学系, 北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
- 重大疾病流行病学教育部重点实验室(北京大学), 北京 100191Key Laboratory of Epidemiology of Major Diseases(Peking University), Ministry of Education, Beijing 100191, China
| | - 大方 陈
- 北京大学公共卫生学院流行病与卫生统计学系, 北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
- 重大疾病流行病学教育部重点实验室(北京大学), 北京 100191Key Laboratory of Epidemiology of Major Diseases(Peking University), Ministry of Education, Beijing 100191, China
| | - 永华 胡
- 北京大学公共卫生学院流行病与卫生统计学系, 北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
- 重大疾病流行病学教育部重点实验室(北京大学), 北京 100191Key Laboratory of Epidemiology of Major Diseases(Peking University), Ministry of Education, Beijing 100191, China
| | - 涛 吴
- 北京大学公共卫生学院流行病与卫生统计学系, 北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
- 重大疾病流行病学教育部重点实验室(北京大学), 北京 100191Key Laboratory of Epidemiology of Major Diseases(Peking University), Ministry of Education, Beijing 100191, China
| |
Collapse
|
16
|
Aliyu U, Umlai UKI, Toor SM, Elashi AA, Al-Sarraj YA, Abou−Samra AB, Suhre K, Albagha OME. Genome-wide association study and polygenic score assessment of insulin resistance. Front Endocrinol (Lausanne) 2024; 15:1384103. [PMID: 38938516 PMCID: PMC11208314 DOI: 10.3389/fendo.2024.1384103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024] Open
Abstract
Insulin resistance (IR) and beta cell dysfunction are the major drivers of type 2 diabetes (T2D). Genome-Wide Association Studies (GWAS) on IR have been predominantly conducted in European populations, while Middle Eastern populations remain largely underrepresented. We conducted a GWAS on the indices of IR (HOMA2-IR) and beta cell function (HOMA2-%B) in 6,217 non-diabetic individuals from the Qatar Biobank (QBB; Discovery cohort; n = 2170, Replication cohort; n = 4047) with and without body mass index (BMI) adjustment. We also developed polygenic scores (PGS) for HOMA2-IR and compared their performance with a previously derived PGS for HOMA-IR (PGS003470). We replicated 11 loci that have been previously associated with HOMA-IR and 24 loci that have been associated with HOMA-%B, at nominal statistical significance. We also identified a novel locus associated with beta cell function near VEGFC gene, tagged by rs61552983 (P = 4.38 × 10-8). Moreover, our best performing PGS (Q-PGS4; Adj R2 = 0.233 ± 0.014; P = 1.55 x 10-3) performed better than PGS003470 (Adj R2 = 0.194 ± 0.014; P = 5.45 x 10-2) in predicting HOMA2-IR in our dataset. This is the first GWAS on HOMA2 and the first GWAS conducted in the Middle East focusing on IR and beta cell function. Herein, we report a novel locus in VEGFC that is implicated in beta cell dysfunction. Inclusion of under-represented populations in GWAS has potentials to provide important insights into the genetic architecture of IR and beta cell function.
Collapse
Affiliation(s)
- Usama Aliyu
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Umm-Kulthum Ismail Umlai
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Salman M. Toor
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Asma A. Elashi
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Yasser A. Al-Sarraj
- Qatar Genome Program (QGP), Qatar Foundation Research, Development and Innovation, Qatar Foundation (QF), Doha, Qatar
| | | | - Karsten Suhre
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Doha, Qatar
- Department of Biophysics and Physiology, Weill Cornell Medicine, New York, NY, United States
| | - Omar M. E. Albagha
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| |
Collapse
|
17
|
Speksnijder EM, Bisschop PH, Siegelaar SE, Stenvers DJ, Kalsbeek A. Circadian desynchrony and glucose metabolism. J Pineal Res 2024; 76:e12956. [PMID: 38695262 DOI: 10.1111/jpi.12956] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 05/09/2024]
Abstract
The circadian timing system controls glucose metabolism in a time-of-day dependent manner. In mammals, the circadian timing system consists of the main central clock in the bilateral suprachiasmatic nucleus (SCN) of the anterior hypothalamus and subordinate clocks in peripheral tissues. The oscillations produced by these different clocks with a period of approximately 24-h are generated by the transcriptional-translational feedback loops of a set of core clock genes. Glucose homeostasis is one of the daily rhythms controlled by this circadian timing system. The central pacemaker in the SCN controls glucose homeostasis through its neural projections to hypothalamic hubs that are in control of feeding behavior and energy metabolism. Using hormones such as adrenal glucocorticoids and melatonin and the autonomic nervous system, the SCN modulates critical processes such as glucose production and insulin sensitivity. Peripheral clocks in tissues, such as the liver, muscle, and adipose tissue serve to enhance and sustain these SCN signals. In the optimal situation all these clocks are synchronized and aligned with behavior and the environmental light/dark cycle. A negative impact on glucose metabolism becomes apparent when the internal timing system becomes disturbed, also known as circadian desynchrony or circadian misalignment. Circadian desynchrony may occur at several levels, as the mistiming of light exposure or sleep will especially affect the central clock, whereas mistiming of food intake or physical activity will especially involve the peripheral clocks. In this review, we will summarize the literature investigating the impact of circadian desynchrony on glucose metabolism and how it may result in the development of insulin resistance. In addition, we will discuss potential strategies aimed at reinstating circadian synchrony to improve insulin sensitivity and contribute to the prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Esther M Speksnijder
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
| | - Peter H Bisschop
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
| | - Sarah E Siegelaar
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
| | - Dirk Jan Stenvers
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Odriozola A, González A, Álvarez-Herms J, Corbi F. Host genetics and nutrition. ADVANCES IN GENETICS 2024; 111:199-235. [PMID: 38908900 DOI: 10.1016/bs.adgen.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Optimal nutrition is essential for health and physiological performance. Nutrition-related diseases such as obesity and diabetes are major causes of death and reduced quality of life in modern Western societies. Thanks to combining nutrigenetics and nutrigenomics, genomic nutrition allows the study of the interaction between nutrition, genetics and physiology. Currently, interrelated multi-genetic and multifactorial phenotypes are studied from a multiethnic and multi-omics approach, step by step identifying the important role of pathways, in addition to those directly related to metabolism. It allows the progressive identification of genetic profiles associated with specific susceptibilities to diet-related phenotypes, which may facilitate individualised dietary recommendations to improve health and quality of life.
Collapse
Affiliation(s)
- Adrián Odriozola
- Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Adriana González
- Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jesús Álvarez-Herms
- Phymo® Lab, Physiology, and Molecular Laboratory, Collado Hermoso, Segovia, Spain
| | - Francesc Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), Centre de Lleida, Universitat de Lleida (UdL), Lleida, Spain
| |
Collapse
|
19
|
Gubin D. Chronotherapeutic Approaches. CHRONOBIOLOGY AND CHRONOMEDICINE 2024:536-577. [DOI: 10.1039/bk9781839167553-00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
The chapter provides a comprehensive review of current approaches to personalized chronodiagnosis and chronotherapy. We discuss circadian clock drug targets that aim to affect cellular clock machinery, circadian mechanisms of pharmacokinetics/pharmacodynamics, and chronotherapeutic approaches aimed at increasing treatment efficacy and minimizing its side effects. We explore how chronotherapy can combat acquired and compensatory drug resistance. Non-pharmacological interventions for clock preservation and enhancement are also overviewed, including light treatment, melatonin, sleep scheduling, time-restricted feeding, physical activity, and exercise.
Collapse
Affiliation(s)
- Denis Gubin
- aTyumen State Medical University, Tyumen, Russia
- bTyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia
| |
Collapse
|
20
|
Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Barone Gibbs B, Beaton AZ, Boehme AK, Commodore-Mensah Y, Currie ME, Elkind MSV, Evenson KR, Generoso G, Heard DG, Hiremath S, Johansen MC, Kalani R, Kazi DS, Ko D, Liu J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Perman SM, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Tsao CW, Urbut SM, Van Spall HGC, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Palaniappan LP, American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024; 149:e347-e913. [PMID: 38264914 PMCID: PMC12146881 DOI: 10.1161/cir.0000000000001209] [Citation(s) in RCA: 845] [Impact Index Per Article: 845.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
BACKGROUND The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2024 AHA Statistical Update is the product of a full year's worth of effort in 2023 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. The AHA strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional global data, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
21
|
Cardinali DP, Pandi-Perumal SR, Brown GM. Melatonin as a Chronobiotic and Cytoprotector in Non-communicable Diseases: More than an Antioxidant. Subcell Biochem 2024; 107:217-244. [PMID: 39693027 DOI: 10.1007/978-3-031-66768-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A circadian disruption, manifested by disturbed sleep and low-grade inflammation, is commonly seen in noncommunicable diseases (NCDs). Cardiovascular, respiratory and renal disorders, diabetes and the metabolic syndrome, cancer, and neurodegenerative diseases are among the most common NCDs prevalent in today's 24-h/7 days Society. The decline in plasma melatonin, which is a conserved phylogenetic molecule across all known aerobic creatures, is a constant feature in NCDs. The daily evening melatonin surge synchronizes both the central pacemaker located in the hypothalamic suprachiasmatic nuclei (SCN) and myriads of cellular clocks in the periphery ("chronobiotic effect"). Melatonin is the prototypical endogenous chronobiotic agent. Several meta-analyses and consensus studies support the use of melatonin to treat sleep/wake cycle disturbances associated with NCDs. Melatonin also has cytoprotective properties, acting primarily not only as an antioxidant by buffering free radicals, but also by regulating inflammation, down-regulating pro-inflammatory cytokines, suppressing low-grade inflammation, and preventing insulin resistance, among other effects. Melatonin's phylogenetic conservation is explained by its versatility of effects. In animal models of NCDs, melatonin treatment prevents a wide range of low-inflammation-linked alterations. As a result, the therapeutic efficacy of melatonin as a chronobiotic/cytoprotective drug has been proposed. Sirtuins 1 and 3 are at the heart of melatonin's chronobiotic and cytoprotective function, acting as accessory components or downstream elements of circadian oscillators and exhibiting properties such as mitochondrial protection. Allometric calculations based on animal research show that melatonin's cytoprotective benefits may require high doses in humans (in the 100 mg/day range). If melatonin is expected to improve health in NCDs, the low doses currently used in clinical trials (i.e., 2-10 mg) are unlikely to be beneficial. Multicentre double-blind studies are required to determine the potential utility of melatonin in health promotion. Moreover, melatonin dosage and levels used should be re-evaluated based on preclinical research information.
Collapse
Affiliation(s)
- Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina.
| | - Seithikurippu R Pandi-Perumal
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Gregory M Brown
- Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Xu Z, Shi Y, Wei C, Li T, Wen J, Du W, Yu Y, Zhu T. Causal relationship between glycemic traits and bone mineral density in different age groups and skeletal sites: a Mendelian randomization analysis. J Bone Miner Metab 2024; 42:90-98. [PMID: 38157037 DOI: 10.1007/s00774-023-01480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/25/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Previous research has confirmed that patients with type 2 diabetes mellitus tend to have higher bone mineral density (BMD), but it is unknown whether this pattern holds true for individuals without diabetes. This Mendelian randomization (MR) study aims to investigate the potential causal relationship between various glycemic trait (including fasting glucose, fasting insulin, 2-h postprandial glucose, and glycated hemoglobin) and BMD in non-diabetic individuals. The investigation focuses on different age groups (15-30, 30-45, 45-60, and 60 + years) and various skeletal sites (forearm, lumbar spine, and hip). MATERIALS AND METHODS We utilized genome-wide association study data from large population-based cohorts to identify robust instrumental variables for each glycemic traits parameter. Our primary analysis employed the inverse-variance weighted method, with sensitivity analyses conducted using MR-Egger, weighted median, MR-PRESSO, and multivariable MR methods to assess the robustness and potential horizontal pleiotropy of the study results. RESULTS Fasting insulin showed a negative modulating relationship on both lumbar spine and forearm. However, these associations were only nominally significant. No significant causal association was observed between blood glucose traits and BMD across the different age groups. The direction of fasting insulin's causal effects on BMD showed inconsistency between genders, with potentially decreased BMD in women with high fasting insulin levels and an increasing trend in BMD in men. CONCLUSIONS In the non-diabetic population, currently available evidence does not support a causal relationship between glycemic traits and BMD. However, further investigation is warranted considering the observed gender differences.
Collapse
Affiliation(s)
- Zhangmeng Xu
- Department of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu, Sichuan, China
- Department-2 of Neck Shoulder Back and Leg Pain, Department of Preventive Treatment, Sichuan Province Orthopaedic Hospital, Chengdu, Sichuan, China
| | - Yushan Shi
- Department of Medical Laboratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Changhong Wei
- Department of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu, Sichuan, China
| | - Tao Li
- Department-2 of Neck Shoulder Back and Leg Pain, Department of Preventive Treatment, Sichuan Province Orthopaedic Hospital, Chengdu, Sichuan, China
| | - Jiang Wen
- Department-2 of Neck Shoulder Back and Leg Pain, Department of Preventive Treatment, Sichuan Province Orthopaedic Hospital, Chengdu, Sichuan, China
| | - Wanli Du
- Department-2 of Neck Shoulder Back and Leg Pain, Department of Preventive Treatment, Sichuan Province Orthopaedic Hospital, Chengdu, Sichuan, China
| | - Yaming Yu
- Department-2 of Neck Shoulder Back and Leg Pain, Department of Preventive Treatment, Sichuan Province Orthopaedic Hospital, Chengdu, Sichuan, China.
- Department of preventive treatment, Sichuan Province Orthopaedic Hospital, No. 132 West 1st Section, 1st Ring Road in Chengdu, Chengdu, Sichuan, China.
| | - Tianmin Zhu
- Department of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu, Sichuan, China.
| |
Collapse
|
23
|
Dowaidar M. Gene-environment interactions that influence CVD, lipid traits, obesity, diabetes, and hypertension appear to be able to influence gene therapy. Mol Aspects Med 2023; 94:101213. [PMID: 37703607 DOI: 10.1016/j.mam.2023.101213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Most mind boggling diseases are accepted to be impacted by both genetic and environmental elements. As of late, there has been a flood in the improvement of different methodologies, concentrate on plans, and measurable and logical techniques to examine gene-environment cooperations (G × Es) in enormous scope studies including human populaces. The many-sided exchange between genetic elements and environmental openings has long charmed the consideration of clinicians and researchers looking to grasp the complicated starting points of diseases. While single variables can add to disease, the blend of genetic variations and environmental openings frequently decides disease risk. The fundamental point of this paper is to talk about the Gene-Environment Associations That Impact CVD, Lipid Characteristics, Obesity, Diabetes, and Hypertension Have all the earmarks of being Ready to Impact Gene Therapy. This survey paper investigates the meaning of gene-environment collaborations (G × E) in disease advancement. The intricacy of genetic and environmental communications in disease causation is explained, underlining the multifactorial idea of many circumstances. The job of gene-environment cooperations in cardiovascular disease, lipid digestion, diabetes, obesity, and hypertension is investigated. This audit fixates on Gene by Environment (G × E) collaborations, investigating their importance in disease etiology.
Collapse
Affiliation(s)
- Moataz Dowaidar
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia; Interdisciplinary Research Center for Health & Biosciences, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
24
|
Roberts FL, Cataldo LR, Fex M. Monoamines' role in islet cell function and type 2 diabetes risk. Trends Mol Med 2023; 29:1045-1058. [PMID: 37722934 DOI: 10.1016/j.molmed.2023.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/20/2023]
Abstract
The two monoamines serotonin and melatonin have recently been highlighted as potent regulators of islet hormone secretion and overall glucose homeostasis in the body. In fact, dysregulated signaling of both amines are implicated in β-cell dysfunction and development of type 2 diabetes mellitus (T2DM). Serotonin is a key player in β-cell physiology and plays a role in expansion of β-cell mass. Melatonin regulates circadian rhythm and nutrient metabolism and reduces insulin release in human and rodent islets in vitro. Herein, we focus on the role of serotonin and melatonin in islet physiology and the pathophysiology of T2DM. This includes effects on hormone secretion, receptor expression, genetic variants influencing β-cell function, melatonin treatment, and compounds that alter serotonin availability and signaling.
Collapse
Affiliation(s)
- Fiona Louise Roberts
- Lund University Diabetes Centre, Department of Clinical Sciences, Unit for Molecular Metabolism, SE-21428 Malmö, Sweden
| | - Luis Rodrigo Cataldo
- Lund University Diabetes Centre, Department of Clinical Sciences, Unit for Molecular Metabolism, SE-21428 Malmö, Sweden; The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Malin Fex
- Lund University Diabetes Centre, Department of Clinical Sciences, Unit for Molecular Metabolism, SE-21428 Malmö, Sweden.
| |
Collapse
|
25
|
Guo C, He J, Deng X, Wang D, Yuan G. Potential therapeutic value of melatonin in diabetic nephropathy: improvement beyond anti-oxidative stress. Arch Physiol Biochem 2023; 129:1250-1261. [PMID: 34048666 DOI: 10.1080/13813455.2021.1933539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/18/2021] [Indexed: 12/23/2022]
Abstract
Diabetic nephropathy (DN) is a common complication of diabetes, and it is also the main cause of chronic renal failure. Physiological/pathological changes mediated by high glucose are the main factors causing injury of DN, including the enhancement of polyol pathway, the accumulation of advanced glycation products (AGEs), and the activation of protein kinase C (PKC) and transforming growth factor-β (TGF-β) signals. In addition, the abnormal activation of renin-angiotensin system (RAS) and oxidative stress are also involved. Melatonin is a physiological hormone mainly secreted by the pineal gland which has been proved to be related to diabetes. Studies have shown that exogenous melatonin intervention can reduce blood glucose and alleviate high glucose mediated pathological damage. At the same time, melatonin also has a strong antioxidant effect, and can inhibit the activation of RAS. Therefore, it is of great significance to explore the therapeutic effect and value of melatonin on DN.
Collapse
Affiliation(s)
- Chang Guo
- Department of Nephrology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jianqiang He
- Department of Nephrology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xia Deng
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Dong Wang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
26
|
Li Q, Zhang S, Wang H, Wang Z, Zhang X, Wang Y, Yuan J. Association of rotating night shift work, CLOCK, MTNR1A, MTNR1B genes polymorphisms and their interactions with type 2 diabetes among steelworkers: a case-control study. BMC Genomics 2023; 24:232. [PMID: 37138267 PMCID: PMC10157991 DOI: 10.1186/s12864-023-09328-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/21/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND The purpose of this study is to investigate the association of rotating night shift work, CLOCK, MTNR1A, MTNR1B genes polymorphisms and their interactions with type 2 diabetes among steelworkers. METHODS A case-control study was conducted in the Tangsteel company in Tangshan, China. The sample sizes of the case group and control group were 251 and 451, respectively. The logistic regression, log-linear model and generalized multifactor dimensionality (GMDR) method were used to investigate the interaction between circadian clock gene, melatonin receptor genes and rotating night shift work on type 2 diabetes among steelworkers. Relative excess risk due to interaction (RERI) and attributable proportions (AP) were used to evaluate additive interactions. RESULTS Rotating night shift work, current shift status, duration of night shifts, and average frequency of night shifts were associated with an increased risk of type 2 diabetes after adjustment for confounders. Rs1387153 variants in MTNR1B was found to be associated with an increased risk of type 2 diabetes, which was not found between MTNR1A gene rs2119882 locus, CLOCK gene rs1801260 locus and the risk of type 2 diabetes. The association between rotating night shift work and risk of type 2 diabetes appeared to be modified by MTNR1B gene rs1387153 locus (RERI = 0.98, (95% CI, 0.40-1.55); AP = 0.60, (95% CI, 0.07-1.12)). The interaction between MTNR1A gene rs2119882 locus and CLOCK gene rs1801260 locus was associated with the risk of type 2 diabetes (RERI = 1.07, (95% CI, 0.23-1.91); AP = 0.77, (95% CI, 0.36-1.17)). The complex interaction of the MTNR1A-MTNR1B-CLOCK-rotating night shift work model based on the GMDR methods may increase the risk of type 2 diabetes (P = 0.011). CONCLUSIONS Rotating night shift work and rs1387153 variants in MTNR1B were associated with an increased risk of type 2 diabetes among steelworkers. The complex interaction of MTNR1A-MTNR1B-CLOCK-rotating night shift work may increase the risk of type 2 diabetes.
Collapse
Affiliation(s)
- Qinglin Li
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, Hebei, Tangshan, People's Republic of China
| | - Shengkui Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, Hebei, Tangshan, People's Republic of China
| | - Han Wang
- Tianjin Baodi District Center for Disease Control, Tianjin, People's Republic of China
| | - Zhende Wang
- Department of Public Health Crisis Management, School of Public Health, Shandong Province, Weifang Medical University, Weifang, People's Republic of China
| | - Xiaohong Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, Hebei, Tangshan, People's Republic of China
| | - Yongbin Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, Henan Province, Xinxiang, People's Republic of China.
| | - Juxiang Yuan
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, Hebei, Tangshan, People's Republic of China.
| |
Collapse
|
27
|
Shen L, Wang Z, Zang J, Liu H, Lu Y, He X, Wu C, Su J, Zhu Z. The Association between Dietary Iron Intake, SNP of the MTNR1B rs10830963, and Glucose Metabolism in Chinese Population. Nutrients 2023; 15:nu15081986. [PMID: 37111205 PMCID: PMC10142655 DOI: 10.3390/nu15081986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Type 2 diabetes is associated with both dietary iron intake and single-nucleotide polymorphism (SNP) of intronic rs10830963 in melatonin receptor 1B (MTNR1B); however, it is unclear whether they interact. The aim of this study was to examine the associations between dietary iron intake, SNP of rs10830963, and glucose metabolism. Data were obtained from the Shanghai Diet and Health Survey (SDHS) during 2012-2018. Standardized questionnaires were carried out through face-to-face interviews. A 3-day 24 h dietary recall was used to evaluate dietary iron intake. Anthropometric and laboratory measurements were applied. Logistic regression and general line models were used to evaluate the association between dietary iron intake, SNP of the MTNR1B rs10830963, and glucose metabolism. In total, 2951 participants were included in this study. After adjusting for age, sex, region, years of education, physical activity level, intentional physical exercise, smoking status, alcohol use, and total energy, among G allele carriers, dietary iron intake was associated with a risk of elevated fasting glucose, higher fasting glucose, and higher HbA1c, while no significant results were observed among G allele non-carriers. The G allele of intronic rs10830963 in MTNR1B potentially exacerbated unfavorable glucose metabolism with the increasing dietary iron intake, and it was possibly a risk for glucose metabolism homeostasis in the Chinese population.
Collapse
Affiliation(s)
- Liping Shen
- Division of Health Risk Factors Monitoring and Control, Shanghai Municipal Center for Disease Control and Prevention, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Zhengyuan Wang
- Division of Health Risk Factors Monitoring and Control, Shanghai Municipal Center for Disease Control and Prevention, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Jiajie Zang
- Division of Health Risk Factors Monitoring and Control, Shanghai Municipal Center for Disease Control and Prevention, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Hong Liu
- Division of Health Risk Factors Monitoring and Control, Shanghai Municipal Center for Disease Control and Prevention, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Ye Lu
- Division of Non-Communicable Diseases Prevention and Control, Shanghai Municipal Center for Disease Control and Prevention, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Xin He
- Division of Non-Communicable Diseases Prevention and Control, Shanghai Municipal Center for Disease Control and Prevention, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Chunfeng Wu
- Department of Profession Management, Shanghai Municipal Center for Disease Control and Prevention, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Jin Su
- Division of Health Risk Factors Monitoring and Control, Shanghai Municipal Center for Disease Control and Prevention, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Zhenni Zhu
- Division of Health Risk Factors Monitoring and Control, Shanghai Municipal Center for Disease Control and Prevention, 1380 West Zhongshan Road, Shanghai 200336, China
| |
Collapse
|
28
|
Bell A, Hewins B, Bishop C, Fortin A, Wang J, Creamer JL, Collen J, Werner JK. Traumatic Brain Injury, Sleep, and Melatonin-Intrinsic Changes with Therapeutic Potential. Clocks Sleep 2023; 5:177-203. [PMID: 37092428 PMCID: PMC10123665 DOI: 10.3390/clockssleep5020016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the most prevalent causes of morbidity in the United States and is associated with numerous chronic sequelae long after the point of injury. One of the most common long-term complaints in patients with TBI is sleep dysfunction. It is reported that alterations in melatonin follow TBI and may be linked with various sleep and circadian disorders directly (via cellular signaling) or indirectly (via free radicals and inflammatory signaling). Work over the past two decades has contributed to our understanding of the role of melatonin as a sleep regulator and neuroprotective anti-inflammatory agent. Although there is increasing interest in the treatment of insomnia following TBI, a lack of standardization and rigor in melatonin research has left behind a trail of non-generalizable data and ambiguous treatment recommendations. This narrative review describes the underlying biochemical properties of melatonin as they are relevant to TBI. We also discuss potential benefits and a path forward regarding the therapeutic management of TBI with melatonin treatment, including its role as a neuroprotectant, a somnogen, and a modulator of the circadian rhythm.
Collapse
Affiliation(s)
- Allen Bell
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Bryson Hewins
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | - Courtney Bishop
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | - Amanda Fortin
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | - Jonathan Wang
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | | | - Jacob Collen
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | - J. Kent Werner
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| |
Collapse
|
29
|
Lowe WL. Genetics and Epigenetics: Implications for the Life Course of Gestational Diabetes. Int J Mol Sci 2023; 24:6047. [PMID: 37047019 PMCID: PMC10094577 DOI: 10.3390/ijms24076047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Gestational diabetes (GDM) is one of the most common complications of pregnancy, affecting as many as one in six pregnancies. It is associated with both short- and long-term adverse outcomes for the mother and fetus and has important implications for the life course of affected women. Advances in genetics and epigenetics have not only provided new insight into the pathophysiology of GDM but have also provided new approaches to identify women at high risk for progression to postpartum cardiometabolic disease. GDM and type 2 diabetes share similarities in their pathophysiology, suggesting that they also share similarities in their genetic architecture. Candidate gene and genome-wide association studies have identified susceptibility genes that are shared between GDM and type 2 diabetes. Despite these similarities, a much greater effect size for MTNR1B in GDM compared to type 2 diabetes and association of HKDC1, which encodes a hexokinase, with GDM but not type 2 diabetes suggest some differences in the genetic architecture of GDM. Genetic risk scores have shown some efficacy in identifying women with a history of GDM who will progress to type 2 diabetes. The association of epigenetic changes, including DNA methylation and circulating microRNAs, with GDM has also been examined. Targeted and epigenome-wide approaches have been used to identify DNA methylation in circulating blood cells collected during early, mid-, and late pregnancy that is associated with GDM. DNA methylation in early pregnancy had some ability to identify women who progressed to GDM, while DNA methylation in blood collected at 26-30 weeks gestation improved upon the ability of clinical factors alone to identify women at risk for progression to abnormal glucose tolerance post-partum. Finally, circulating microRNAs and long non-coding RNAs that are present in early or mid-pregnancy and associated with GDM have been identified. MicroRNAs have also proven efficacious in predicting both the development of GDM as well as its long-term cardiometabolic complications. Studies performed to date have demonstrated the potential for genetic and epigenetic technologies to impact clinical care, although much remains to be done.
Collapse
Affiliation(s)
- William L Lowe
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Rubloff 12, 420 E. Superior Street, Chicago, IL 60611, USA
| |
Collapse
|
30
|
Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Beaton AZ, Boehme AK, Buxton AE, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Fugar S, Generoso G, Heard DG, Hiremath S, Ho JE, Kalani R, Kazi DS, Ko D, Levine DA, Liu J, Ma J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Virani SS, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation 2023; 147:e93-e621. [PMID: 36695182 DOI: 10.1161/cir.0000000000001123] [Citation(s) in RCA: 2299] [Impact Index Per Article: 1149.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2023 Statistical Update is the product of a full year's worth of effort in 2022 by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. The American Heart Association strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional COVID-19 (coronavirus disease 2019) publications, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
31
|
Dhankhar S, Chauhan S, Mehta DK, Nitika, Saini K, Saini M, Das R, Gupta S, Gautam V. Novel targets for potential therapeutic use in Diabetes mellitus. Diabetol Metab Syndr 2023; 15:17. [PMID: 36782201 PMCID: PMC9926720 DOI: 10.1186/s13098-023-00983-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 01/11/2023] [Indexed: 02/15/2023] Open
Abstract
Future targets are a promising prospect to overcome the limitation of conventional and current approaches by providing secure and effective treatment without compromising patient compliance. Diabetes mellitus is a fast-growing problem that has been raised worldwide, from 4% to 6.4% (around 285 million people) in past 30 years. This number may increase to 430 million people in the coming years if there is no better treatment or cure is available. Ageing, obesity and sedentary lifestyle are the key reasons for the worsening of this disease. It always had been a vital challenge, to explore new treatment which could safely and effectively manage diabetes mellitus without compromising patient compliance. Researchers are regularly trying to find out the permanent treatment of this chronic and life threatening disease. In this journey, there are various treatments available in market to manage diabetes mellitus such as insulin, GLP-1 agonist, biguanides, sulphonyl ureas, glinides, thiazolidinediones targeting the receptors which are discovered decade before. PPAR, GIP, FFA1, melatonin are the recent targets that already in the focus for developing new therapies in the treatment of diabetes. Inspite of numerous preclinical studies very few clinical data available due to which this process is in its initial phase. The review also focuses on the receptors like GPCR 119, GPER, Vaspin, Metrnl, Fetuin-A that have role in insulin regulation and have potential to become future targets in treatment for diabetes that may be effective and safer as compared to the conventional and current treatment approaches.
Collapse
Affiliation(s)
- Sanchit Dhankhar
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Samrat Chauhan
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Dinesh Kumar Mehta
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
| | - Nitika
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
- Ganpati Institute of Pharmacy, Bilaspur, Yamunanagar, 135102, Haryana, India
| | - Kamal Saini
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
| | - Monika Saini
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
| | - Rina Das
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
| | - Sumeet Gupta
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India.
| | - Vinod Gautam
- Department of Pharmaceutical Sciences, IES Institute of Pharmacy, IES University, Bhopal, India
| |
Collapse
|
32
|
Chrono-Nutrition: Circadian Rhythm and Personalized Nutrition. Int J Mol Sci 2023; 24:ijms24032571. [PMID: 36768893 PMCID: PMC9916946 DOI: 10.3390/ijms24032571] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The human circadian system has a period of approximately 24 h and studies on the consequences of "chornodisruption" have greatly expanded. Lifestyle and environmental factors of modern societies (i.e., artificial lighting, jetlag, shift work, and around-the-clock access to energy-dense food) can induce disruptions of the circadian system and thereby adversely affect individual health. Growing evidence demonstrates a complex reciprocal relationship between metabolism and the circadian system, in which perturbations in one system affect the other one. From a nutritional genomics perspective, genetic variants in clock genes can both influence metabolic health and modify the individual response to diet. Moreover, an interplay between the circadian rhythm, gut microbiome, and epigenome has been demonstrated, with the diet in turn able to modulate this complex link suggesting a remarkable plasticity of the underlying mechanisms. In this view, the study of the impact of the timing of eating by matching elements from nutritional research with chrono-biology, that is, chrono-nutrition, could have significant implications for personalized nutrition in terms of reducing the prevalence and burden of chronic diseases. This review provides an overview of the current evidence on the interactions between the circadian system and nutrition, highlighting how this link could in turn influence the epigenome and microbiome. In addition, possible nutritional strategies to manage circadian-aligned feeding are suggested.
Collapse
|
33
|
Role of Melatonin in Daily Variations of Plasma Insulin Level and Pancreatic Clock Gene Expression in Chick Exposed to Monochromatic Light. Int J Mol Sci 2023; 24:ijms24032368. [PMID: 36768693 PMCID: PMC9916459 DOI: 10.3390/ijms24032368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
To clarify the effect of monochromatic light on circadian rhythms of plasma insulin level and pancreatic clock gene expression and its mechanism, 216 newly hatched chicks were divided into three groups (intact, sham operation and pinealectomy) and were raised under white (WL), red (RL), green (GL) or blue (BL) light for 21 days. Their plasma and pancreas were sampled at six four-hour intervals. For circadian rhythm analysis, measurements of plasma melatonin, insulin, and clock gene expression (cClock, cBmal1, cBmal2, cCry1, cCry2, cPer2, and cPer3) were made. Plasma melatonin, insulin, and the pancreatic clock gene all expressed rhythmically in the presence of monochromatic light. Red light reduced the mesor and amplitude of plasma melatonin in comparison to green light. The mesor and amplitude of the pancreatic clock gene in chickens exposed to red light were dramatically reduced, which is consistent with the drop in plasma melatonin levels. Red light, on the other hand, clearly raised the level of plasma insulin via raising the expression of cVamp2, but not cInsulin. After the pineal gland was removed, the circadian expressions of plasma melatonin and pancreatic clock gene were significantly reduced, but the plasma insulin level and the pancreatic cVamp2 expression were obviously increased, resulting in the disappearance of differences in insulin level and cVamp2 expression in the monochromatic light groups. Therefore, we hypothesize that melatonin may be crucial in the effect of monochromatic light on the circadian rhythm of plasma insulin level by influencing the expression of clock gene in chicken pancreas.
Collapse
|
34
|
Patel R, Parmar N, Palit SP, Rathwa N, Begum R. A novel combination of sitagliptin and melatonin ameliorates T2D manifestations: studies on experimental diabetic models. J Endocrinol Invest 2023:10.1007/s40618-023-02014-6. [PMID: 36692817 DOI: 10.1007/s40618-023-02014-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Type 2 diabetes (T2D) is an endocrine disorder characterized by hyperglycemia, insulin resistance, dysregulated glucose and lipid metabolism, reduced pancreatic β-cell function and mass, and a reduced incretin effect. Circadian rhythm disruption is associated with increased T2D risk. We have investigated the therapeutic potential of a combination of melatonin (M) and sitagliptin (S), a dipeptidyl peptidase IV (DPP-IV) inhibitor, in the amelioration of T2D manifestations in high-fat diet (HFD) induced T2D mouse model and also on β-cell proliferation under gluco-lipotoxicity stress in vitro. METHODS For in vivo study, mice were fed with HFD for 25 weeks to induce T2D and were treated with monotherapies and S + M for four weeks. For the in vitro study, primary mouse islets were exposed to normal glucose and high glucose + palmitate to induce gluco-lipotoxic stress. RESULTS Our results suggest that monotherapies and S + M improve metabolic parameters and glyco-lipid metabolism in the liver and adipose tissue, respectively, and improve mitochondrial function in the skeletal muscle. Moreover, it increases peripheral insulin sensitivity. Our in vitro and in vivo studies suggest that β-cell mass was preserved in all the drug-treated groups. CONCLUSION The combination treatment is superior to monotherapies in the management of T2D.
Collapse
Affiliation(s)
- R Patel
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - N Parmar
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - S P Palit
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - N Rathwa
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - R Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
35
|
Kim JY, Jelinek J, Lee YH, Kim DH, Kang K, Ryu SH, Moon HR, Cho K, Rha SH, Cha JK, Issa JPJ, Kim J. Hypomethylation in MTNR1B: a novel epigenetic marker for atherosclerosis profiling using stenosis radiophenotype and blood inflammatory cells. Clin Epigenetics 2023; 15:11. [PMID: 36658621 PMCID: PMC9854223 DOI: 10.1186/s13148-023-01423-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Changes in gene-specific promoter methylation may result from aging and environmental influences. Atherosclerosis is associated with aging and environmental effects. Thus, promoter methylation profiling may be used as an epigenetic tool to evaluate the impact of aging and the environment on atherosclerosis development. However, gene-specific methylation changes are currently inadequate epigenetic markers for predicting atherosclerosis and cardiovascular disease pathogenesis. RESULTS We profiled and validated changes in gene-specific promoter methylation associated with atherosclerosis using stenosis radiophenotypes of cranial vessels and blood inflammatory cells rather than direct sampling of atherosclerotic plaques. First, we profiled gene-specific promoter methylation changes using digital restriction enzyme analysis of methylation (DREAM) sequencing in peripheral blood mononuclear cells from eight samples each of cranial vessels with and without severe-stenosis radiophenotypes. Using DREAM sequencing profiling, 11 tags were detected in the promoter regions of the ACVR1C, ADCK5, EFNA2, ENOSF1, GLS2, KNDC1, MTNR1B, PACSIN3, PAX8-AS1, TLDC1, and ZNF7 genes. Using methylation evaluation, we found that EFNA2, ENOSF1, GLS2, KNDC1, MTNR1B, PAX8-AS1, and TLDC1 showed > 5% promoter methylation in non-plaque intima, atherosclerotic vascular tissues, and buffy coats. Using logistic regression analysis, we identified hypomethylation of MTNR1B as an independent variable for the stenosis radiophenotype prediction model by combining it with traditional atherosclerosis risk factors including age, hypertension history, and increases in creatinine, lipoprotein (a), and homocysteine. We performed fivefold cross-validation of the prediction model using 384 patients with ischemic stroke (50 [13%] no-stenosis and 334 [87%] > 1 stenosis radiophenotype). For the cross-validation, the training dataset included 70% of the dataset. The prediction model showed an accuracy of 0.887, specificity to predict stenosis radiophenotype of 0.940, sensitivity to predict no-stenosis radiophenotype of 0.533, and area under receiver operating characteristic curve of 0.877 to predict stenosis radiophenotype from the test dataset including 30% of the dataset. CONCLUSIONS We identified and validated MTNR1B hypomethylation as an epigenetic marker to predict cranial vessel atherosclerosis using stenosis radiophenotypes and blood inflammatory cells rather than direct atherosclerotic plaque sampling.
Collapse
Affiliation(s)
- Jee Yeon Kim
- grid.254230.20000 0001 0722 6377Department of Neurology and Neuroepigenetics Laboratory, College of Medicine and Hospital, Chungnam National University, 282 Moonhwaro, Joongku, Daejeon, 35015 South Korea
| | - Jaroslav Jelinek
- grid.282012.b0000 0004 0627 5048Coriell Institute for Medical Research, Camden, NJ USA
| | - Young Ho Lee
- grid.254230.20000 0001 0722 6377Department of Anatomy, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Dae Hyun Kim
- grid.412048.b0000 0004 0647 1081Department of Neurology, Dong-A University Hospital, Busan, South Korea
| | - Keunsoo Kang
- grid.411982.70000 0001 0705 4288Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, South Korea
| | - Su Hyun Ryu
- grid.254230.20000 0001 0722 6377Department of Neurology and Neuroepigenetics Laboratory, College of Medicine and Hospital, Chungnam National University, 282 Moonhwaro, Joongku, Daejeon, 35015 South Korea
| | - Hye Rin Moon
- grid.254230.20000 0001 0722 6377Department of Neurology and Neuroepigenetics Laboratory, College of Medicine and Hospital, Chungnam National University, 282 Moonhwaro, Joongku, Daejeon, 35015 South Korea
| | - Kwangjo Cho
- grid.412048.b0000 0004 0647 1081Department of Thoracic and Cardiovascular Surgery, Dong-A University Hospital, Busan, South Korea
| | - Seo Hee Rha
- grid.412048.b0000 0004 0647 1081Department of Pathology, Dong-A University Hospital, Busan, South Korea
| | - Jae Kwan Cha
- grid.254230.20000 0001 0722 6377Department of Anatomy, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jean-Pierre J. Issa
- grid.282012.b0000 0004 0627 5048Coriell Institute for Medical Research, Camden, NJ USA
| | - Jei Kim
- grid.254230.20000 0001 0722 6377Department of Neurology and Neuroepigenetics Laboratory, College of Medicine and Hospital, Chungnam National University, 282 Moonhwaro, Joongku, Daejeon, 35015 South Korea ,grid.411665.10000 0004 0647 2279Daejeon-Chungnam Regional Cerebrovascular Center, Chungnam National University Hospital, Daejeon, South Korea
| |
Collapse
|
36
|
Duan D, Kim LJ, Jun JC, Polotsky VY. Connecting insufficient sleep and insomnia with metabolic dysfunction. Ann N Y Acad Sci 2023; 1519:94-117. [PMID: 36373239 PMCID: PMC9839511 DOI: 10.1111/nyas.14926] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The global epidemic of obesity and type 2 diabetes parallels the rampant state of sleep deprivation in our society. Epidemiological studies consistently show an association between insufficient sleep and metabolic dysfunction. Mechanistically, sleep and circadian rhythm exert considerable influences on hormones involved in appetite regulation and energy metabolism. As such, data from experimental sleep deprivation in humans demonstrate that insufficient sleep induces a positive energy balance with resultant weight gain, due to increased energy intake that far exceeds the additional energy expenditure of nocturnal wakefulness, and adversely impacts glucose metabolism. Conversely, animal models have found that sleep loss-induced energy expenditure exceeds caloric intake resulting in net weight loss. However, animal models have significant limitations, which may diminish the clinical relevance of their metabolic findings. Clinically, insomnia disorder and insomnia symptoms are associated with adverse glucose outcomes, though it remains challenging to isolate the effects of insomnia on metabolic outcomes independent of comorbidities and insufficient sleep durations. Furthermore, both pharmacological and behavioral interventions for insomnia may have direct metabolic effects. The goal of this review is to establish an updated framework for the causal links between insufficient sleep and insomnia and risks for type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Daisy Duan
- Division of Endocrinology, Diabetes, and Metabolism; Department of Medicine; Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lenise J. Kim
- Division of Pulmonary and Critical Care; Department of Medicine; Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jonathan C. Jun
- Division of Pulmonary and Critical Care; Department of Medicine; Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Vsevolod Y. Polotsky
- Division of Pulmonary and Critical Care; Department of Medicine; Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
37
|
Lane JM, Qian J, Mignot E, Redline S, Scheer FAJL, Saxena R. Genetics of circadian rhythms and sleep in human health and disease. Nat Rev Genet 2023; 24:4-20. [PMID: 36028773 PMCID: PMC10947799 DOI: 10.1038/s41576-022-00519-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 12/13/2022]
Abstract
Circadian rhythms and sleep are fundamental biological processes integral to human health. Their disruption is associated with detrimental physiological consequences, including cognitive, metabolic, cardiovascular and immunological dysfunctions. Yet many of the molecular underpinnings of sleep regulation in health and disease have remained elusive. Given the moderate heritability of circadian and sleep traits, genetics offers an opportunity that complements insights from model organism studies to advance our fundamental molecular understanding of human circadian and sleep physiology and linked chronic disease biology. Here, we review recent discoveries of the genetics of circadian and sleep physiology and disorders with a focus on those that reveal causal contributions to complex diseases.
Collapse
Affiliation(s)
- Jacqueline M Lane
- Center for Genomic Medicine and Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Jingyi Qian
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Emmanuel Mignot
- Center for Narcolepsy, Stanford University, Palo Alto, California, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Frank A J L Scheer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
| | - Richa Saxena
- Center for Genomic Medicine and Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
38
|
Obstructive Sleep Apnea, Circadian Clock Disruption, and Metabolic Consequences. Metabolites 2022; 13:metabo13010060. [PMID: 36676985 PMCID: PMC9863434 DOI: 10.3390/metabo13010060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a chronic disorder characterized by recurrent episodes of apnea and hypopnea during sleep. It is associated with various cardiovascular and metabolic complications, including type 2 diabetes mellitus (T2DM) and obesity. Many pathways can be responsible for T2DM development in OSA patients, e.g., those related to HIF-1 and SIRT1 expression. Moreover, epigenetic mechanisms, such as miRNA181a or miRNA199, are postulated to play a pivotal role in this link. It has been proven that OSA increases the occurrence of circadian clock disruption, which is also a risk factor for metabolic disease development. Circadian clock disruption impairs the metabolism of glucose, lipids, and the secretion of bile acids. Therefore, OSA-induced circadian clock disruption may be a potential, complex, underlying pathway involved in developing and exacerbating metabolic diseases among OSA patients. The current paper summarizes the available information pertaining to the relationship between OSA and circadian clock disruption in the context of potential mechanisms leading to metabolic disorders.
Collapse
|
39
|
Lamri A, De Paoli M, De Souza R, Werstuck G, Anand S, Pigeyre M. Insight into genetic, biological, and environmental determinants of sexual-dimorphism in type 2 diabetes and glucose-related traits. Front Cardiovasc Med 2022; 9:964743. [PMID: 36505380 PMCID: PMC9729955 DOI: 10.3389/fcvm.2022.964743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
There is growing evidence that sex and gender differences play an important role in risk and pathophysiology of type 2 diabetes (T2D). Men develop T2D earlier than women, even though there is more obesity in young women than men. This difference in T2D prevalence is attenuated after the menopause. However, not all women are equally protected against T2D before the menopause, and gestational diabetes represents an important risk factor for future T2D. Biological mechanisms underlying sex and gender differences on T2D physiopathology are not yet fully understood. Sex hormones affect behavior and biological changes, and can have implications on lifestyle; thus, both sex-specific environmental and biological risk factors interact within a complex network to explain the differences in T2D risk and physiopathology in men and women. In addition, lifetime hormone fluctuations and body changes due to reproductive factors are generally more dramatic in women than men (ovarian cycle, pregnancy, and menopause). Progress in genetic studies and rodent models have significantly advanced our understanding of the biological pathways involved in the physiopathology of T2D. However, evidence of the sex-specific effects on genetic factors involved in T2D is still limited, and this gap of knowledge is even more important when investigating sex-specific differences during the life course. In this narrative review, we will focus on the current state of knowledge on the sex-specific effects of genetic factors associated with T2D over a lifetime, as well as the biological effects of these different hormonal stages on T2D risk. We will also discuss how biological insights from rodent models complement the genetic insights into the sex-dimorphism effects on T2D. Finally, we will suggest future directions to cover the knowledge gaps.
Collapse
Affiliation(s)
- Amel Lamri
- Department of Medicine, McMaster University, Hamilton, ON, Canada,Population Health Research Institute (PHRI), Hamilton, ON, Canada
| | - Monica De Paoli
- Department of Medicine, McMaster University, Hamilton, ON, Canada,Thrombosis and Atherosclerosis Research Institute (TaARI), Hamilton, ON, Canada
| | - Russell De Souza
- Population Health Research Institute (PHRI), Hamilton, ON, Canada,Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Geoff Werstuck
- Department of Medicine, McMaster University, Hamilton, ON, Canada,Thrombosis and Atherosclerosis Research Institute (TaARI), Hamilton, ON, Canada
| | - Sonia Anand
- Department of Medicine, McMaster University, Hamilton, ON, Canada,Population Health Research Institute (PHRI), Hamilton, ON, Canada,Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Marie Pigeyre
- Department of Medicine, McMaster University, Hamilton, ON, Canada,Population Health Research Institute (PHRI), Hamilton, ON, Canada,*Correspondence: Marie Pigeyre
| |
Collapse
|
40
|
Lednovich KR, Gough S, Brenner M, Qadri T, Layden BT. G
Protein‐Coupled Receptors in Metabolic Disease. GPCRS AS THERAPEUTIC TARGETS 2022:521-552. [DOI: 10.1002/9781119564782.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
41
|
Li YY, Wang H, Zhang YY. Melatonin receptor 1B gene rs10830963 C/G polymorphism associated with type 2 diabetes mellitus: An updated meta-analysis of 13,752 participants. Heliyon 2022; 8:e11786. [DOI: 10.1016/j.heliyon.2022.e11786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/13/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
|
42
|
Huang X, Qiu Y, Gao Y, Zhou R, Hu Q, He Z, Lv Y, Wang X, Chen W, Deng Y, An Z, Zhang H, Mo Z, Lin R. Gut microbiota mediate melatonin signalling in association with type 2 diabetes. Diabetologia 2022; 65:1627-1641. [PMID: 35768541 DOI: 10.1007/s00125-022-05747-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
AIMS/HYPOTHESIS It has been shown that melatonin plays a general beneficial role in type 2 diabetes in rodents but its role in humans is controversial. In the present study, we investigated the association between serum melatonin and type 2 diabetes risk in a southern Chinese population in a case-control study. We also examined the role of gut microbiota in this relationship. METHODS Individuals with type 2 diabetes (cases) and healthy individuals (controls) (n=2034) were recruited from a cross-sectional study and were matched for age and sex in a case-control study. The levels of serum melatonin were measured and the association between serum melatonin and type 2 diabetes risk was examined using a multivariable logistic regression model. We further conducted a rigorously matched case-control study (n=120) in which gut microbial 16S rRNA was sequenced and metabolites were profiled using an untargeted LC-MS/MS approach. RESULTS Higher levels of serum melatonin were significantly associated with a lower risk of type 2 diabetes (OR 0.82 [95% CI 0.74, 0.92]) and with lower levels of fasting glucose after adjustment for covariates (β -0.25 [95% CI -0.38, -0.12]). Gut microbiota exhibited alteration in the individuals with type 2 diabetes, in whom lower levels of serum melatonin, lower α- and β-diversity of gut microbiota (p<0.05), greater abundance of Bifidobacterium and lower abundance of Coprococcus (linear discriminant analysis [LDA] >2.0) were found. Seven genera were correlated with melatonin and type 2 diabetes-related traits; among them Bifidobacterium was positively correlated with serum lipopolysaccharide (LPS) and IL-10, whereas Coprococcus was negatively correlated with serum IL-1β, IL-6, IL-10, IL-17, TNF-α and LPS (Benjamini-Hochberg-adjusted p value [false discovery rate (FDR)] <0.05). Moreover, altered metabolites were detected in the participants with type 2 diabetes and there was a significant correlation between tryptophan (Trp) metabolites and the melatonin-correlated genera including Bifidobacterium and Coprococcus (FDR<0.05). Similarly, a significant correlation was found between Trp metabolites and inflammation factors, such as IL-1β, IL-6, IL-10, IL-17, TNF-α and LPS (FDR<0.05). Further, we showed that Trp metabolites may serve as a biomarker to predict type 2 diabetes status (AUC=0.804). CONCLUSIONS/INTERPRETATION A higher level of serum melatonin was associated with a lower risk of type 2 diabetes. Gut microbiota-mediated melatonin signalling was involved in this association; especially, Bifidobacterium- and Coprococcus-mediated Trp metabolites may be involved in the process. These findings uncover the importance of melatonin and melatonin-related bacteria and metabolites as potential therapeutic targets for type 2 diabetes.
Collapse
Affiliation(s)
- Xueran Huang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yang Qiu
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yongfen Gao
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, China
| | - Rong Zhou
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Qiantu Hu
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Zouyan He
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yingnan Lv
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Xi Wang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, China
| | - Wanrong Chen
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yuqing Deng
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, China
| | - Zhuangzhuang An
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, China
| | - Haiying Zhang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China.
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China.
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China.
| | - Rui Lin
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, China.
| |
Collapse
|
43
|
Moledina M, Charteris DG, Chandra A. The Genetic Architecture of Non-Syndromic Rhegmatogenous Retinal Detachment. Genes (Basel) 2022; 13:genes13091675. [PMID: 36140841 PMCID: PMC9498391 DOI: 10.3390/genes13091675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Rhegmatogenous retinal detachment (RRD) is the most common form of retinal detachment (RD), affecting 1 in 10,000 patients per year. The condition has significant ocular morbidity, with a sizeable proportion of patients obtaining poor visual outcomes. Despite this, the genetics underpinning Idiopathic Retinal Detachment (IRD) remain poorly understood; this is likely due to small sample sizes in relevant studies. The majority of research pertains to the well-characterised Mende lian syndromes, such as Sticklers and Wagners, associated with RRD. Nevertheless, in recent years, there has been an increasing body of literature identifying the common genetic mutations and mechanisms associated with IRD. Several recent Genomic Wide Association Studies (GWAS) studies have identified a number of genetic loci related to the development of IRD. Our review aims to provide an up-to-date summary of the significant genetic mechanisms and associations of Idiopathic RRD.
Collapse
Affiliation(s)
- Malik Moledina
- Department of Ophthalmology, Southend University Hospital, Mid & South Essex NHS Foundation Trust, Southend-on-Sea SS0 0RY, UK
| | - David G. Charteris
- Institute of Ophthalmology, University College, London EC1V 9EL, UK
- Vitreoretinal Unit, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | - Aman Chandra
- Department of Ophthalmology, Southend University Hospital, Mid & South Essex NHS Foundation Trust, Southend-on-Sea SS0 0RY, UK
- School of Medicine, Anglia Ruskin University, Chelmsford CM1 1SQ, UK
- Correspondence: ; Tel.: +44-7914-817445
| |
Collapse
|
44
|
Chan K, Wong FS, Pearson JA. Circadian rhythms and pancreas physiology: A review. Front Endocrinol (Lausanne) 2022; 13:920261. [PMID: 36034454 PMCID: PMC9399605 DOI: 10.3389/fendo.2022.920261] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022] Open
Abstract
Type 2 diabetes mellitus, obesity and metabolic syndrome are becoming more prevalent worldwide and will present an increasingly challenging burden on healthcare systems. These interlinked metabolic abnormalities predispose affected individuals to a plethora of complications and comorbidities. Furthermore, diabetes is estimated by the World Health Organization to have caused 1.5 million deaths in 2019, with this figure projected to rise in coming years. This highlights the need for further research into the management of metabolic diseases and their complications. Studies on circadian rhythms, referring to physiological and behavioral changes which repeat approximately every 24 hours, may provide important insight into managing metabolic disease. Epidemiological studies show that populations who are at risk of circadian disruption such as night shift workers and regular long-haul flyers are also at an elevated risk of metabolic abnormalities such as insulin resistance and obesity. Aberrant expression of circadian genes appears to contribute to the dysregulation of metabolic functions such as insulin secretion, glucose homeostasis and energy expenditure. The potential clinical implications of these findings have been highlighted in animal studies and pilot studies in humans giving rise to the development of circadian interventions strategies including chronotherapy (time-specific therapy), time-restricted feeding, and circadian molecule stabilizers/analogues. Research into these areas will provide insights into the future of circadian medicine in metabolic diseases. In this review, we discuss the physiology of metabolism and the role of circadian timing in regulating these metabolic functions. Also, we review the clinical aspects of circadian physiology and the impact that ongoing and future research may have on the management of metabolic disease.
Collapse
Affiliation(s)
- Karl Chan
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - F. Susan Wong
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - James Alexander Pearson
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
45
|
Lauritzen ES, Kampmann U, Pedersen MGB, Christensen L, Jessen N, Møller N, Støy J. Three months of melatonin treatment reduces insulin sensitivity in patients with type 2 diabetes-A randomized placebo-controlled crossover trial. J Pineal Res 2022; 73:e12809. [PMID: 35619221 PMCID: PMC9540532 DOI: 10.1111/jpi.12809] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/07/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022]
Abstract
The use of the sleep-promoting hormone melatonin is rapidly increasing as an assumed safe sleep aid. During the last decade, accumulating observations suggest that melatonin affects glucose homeostasis, but the precise role remains to be defined. We investigated the metabolic effects of long-term melatonin treatment in patients with type 2 diabetes including determinations of insulin sensitivity and glucose-stimulated insulin secretion. We used a double-blinded, randomized, placebo-controlled, crossover design. Seventeen male participants with type 2 diabetes completed (1) 3 months of daily melatonin treatment (10 mg) 1 h before bedtime (M) and (2) 3 months of placebo treatment 1 h before bedtime (P). At the end of each treatment period, insulin secretion was assessed by an intravenous glucose tolerance test (0.3 g/kg) (IVGTT) and insulin sensitivity was assessed by a hyperinsulinemic-euglycemic clamp (insulin infusion rate 1.5 mU/kg/min) (primary endpoints). Insulin sensitivity decreased after melatonin (3.6 [2.9-4.4] vs. 4.1 [3.2-5.2] mg/(kg × min), p = .016). During the IVGTT, the second-phase insulin response was increased after melatonin (p = .03). In conclusion, melatonin treatment of male patients with type 2 diabetes for 3 months decreased insulin sensitivity by 12%. Clinical use of melatonin treatment in dosages of 10 mg should be reserved for conditions where the benefits will outweigh the potential negative impact on insulin sensitivity.
Collapse
Affiliation(s)
- Esben S. Lauritzen
- Steno Diabetes Center AarhusAarhus University HospitalAarhusDenmark
- Medical/Steno Research Laboratory, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Ulla Kampmann
- Steno Diabetes Center AarhusAarhus University HospitalAarhusDenmark
| | - Mette G. B. Pedersen
- Steno Diabetes Center AarhusAarhus University HospitalAarhusDenmark
- Medical/Steno Research Laboratory, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | | | - Niels Jessen
- Steno Diabetes Center AarhusAarhus University HospitalAarhusDenmark
- Department of Clinical PharmacologyAarhus University HospitalAarhusDenmark
- Department of BiomedicineAarhus UniversityAarhusDenmark
| | - Niels Møller
- Steno Diabetes Center AarhusAarhus University HospitalAarhusDenmark
- Medical/Steno Research Laboratory, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Julie Støy
- Steno Diabetes Center AarhusAarhus University HospitalAarhusDenmark
| |
Collapse
|
46
|
She L, Li W, Guo Y, Zhou J, Liu J, Zheng W, Dai A, Chen X, Wang P, He H, Zhang P, Zeng J, Xiang B, Li S, Wang L, Dai Q, Yang M. Association of glucokinase gene and glucokinase regulatory protein gene polymorphisms with gestational diabetes mellitus: A case-control study. Gene X 2022; 824:146378. [PMID: 35276241 DOI: 10.1016/j.gene.2022.146378] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/10/2022] [Accepted: 02/24/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate the association of glucokinase (GCK) gene, glucokinase regulatory protein (GCKR) gene polymorphisms with the susceptibility to GDM in Chinese population. RESEARCH DESIGN AND METHODS This case-control study included 835 GDM patients and 870 non-diabetic pregnant women who had their prenatal examinations at 24-28 gestational weeks at the Maternal and Child Health Hospital of Hubei Province from January 15, 2018 to March 31, 2019. The nurses were trained to collect clinical information and blood samples. The candidate single nucleotide polymorphism (SNPs, GCK rs1799884, rs4607517, rs10278336, rs2268574, rs730497 and GCKR rs780094, rs1260326) were genotyped on Sequenom Massarray platform. Statistical analysis including independent sample t test, chi-square test, logistic regression and one-way ANOVA were performed to evaluate the differences in allele and genotype distributions and their correlations with the odds of GDM. RESULTS There were statistically significant differences in age, pre-gestational BMI, education level and family history of diabetes between case and control group (P < 0.05). After adjusting for these confounders, GCK rs1799884 was still significantly associated with GDM (P < 0.05), but there were no significant associations between rs4607517, rs10278336 and rs2268574, rs780094 and rs1260326 polymorphisms and GDM odds (P > 0.05). In addition, the pregnant women with rs4607517 TT genotype had the significantly higher fasting blood glucose level than CC genotype (P < 0.05). CONCLUSION GCK rs1799884 mutation is associated with higher GDM odds in Chinese population. Further larger studies are needed to explore the association between GCK and GCKR polymorphisms and GDM susceptibility.
Collapse
Affiliation(s)
- Lu She
- School of Medicine, Wuhan University of Science and Technology, No.947, Heping Road, Wuhan, China
| | - Wei Li
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Wuhan, China
| | - Yan Guo
- Wuhan Centers for Disease Control and Prevention, No.288 Machang Road, Wuhan, China
| | - Jia Zhou
- Maternal and Child Health Hospital of Chongqing Yubei, No. 71 ShuanghuZhi Road, Chongqing, China
| | - Jianqiong Liu
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Wuhan, China
| | - Wenpei Zheng
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Wuhan, China
| | - Anna Dai
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, China
| | - Xiaohong Chen
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Wuhan, China
| | - Ping Wang
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Wuhan, China
| | - Hua He
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Wuhan, China
| | - Pei Zhang
- School of Medicine, Wuhan University of Science and Technology, No.947, Heping Road, Wuhan, China
| | - Jing Zeng
- School of Medicine, Wuhan University of Science and Technology, No.947, Heping Road, Wuhan, China
| | - Bing Xiang
- School of Medicine, Wuhan University of Science and Technology, No.947, Heping Road, Wuhan, China
| | - Shiyu Li
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Wuhan, China
| | - Liang Wang
- Wuhan Centers for Disease Control and Prevention, No.288 Machang Road, Wuhan, China
| | - Qiong Dai
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Wuhan, China.
| | - Mei Yang
- School of Medicine, Wuhan University of Science and Technology, No.947, Heping Road, Wuhan, China.
| |
Collapse
|
47
|
Monayo SM, Liu X. The Prospective Application of Melatonin in Treating Epigenetic Dysfunctional Diseases. Front Pharmacol 2022; 13:867500. [PMID: 35668933 PMCID: PMC9163742 DOI: 10.3389/fphar.2022.867500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/14/2022] [Indexed: 01/09/2023] Open
Abstract
In the past, different human disorders were described by scientists from the perspective of either environmental factors or just by genetically related mechanisms. The rise in epigenetic studies and its modifications, i.e., heritable alterations in gene expression without changes in DNA sequences, have now been confirmed in diseases. Modifications namely, DNA methylation, posttranslational histone modifications, and non-coding RNAs have led to a better understanding of the coaction between epigenetic alterations and human pathologies. Melatonin is a widely-produced indoleamine regulator molecule that influences numerous biological functions within many cell types. Concerning its broad spectrum of actions, melatonin should be investigated much more for its contribution to the upstream and downstream mechanistic regulation of epigenetic modifications in diseases. It is, therefore, necessary to fill the existing gaps concerning corresponding processes associated with melatonin with the physiological abnormalities brought by epigenetic modifications. This review outlines the findings on melatonin’s action on epigenetic regulation in human diseases including neurodegenerative diseases, diabetes, cancer, and cardiovascular diseases. It summarizes the ability of melatonin to act on molecules such as proteins and RNAs which affect the development and progression of diseases.
Collapse
|
48
|
Sánchez-Maldonado JM, Collado R, Cabrera-Serrano AJ, Ter Horst R, Gálvez-Montosa F, Robles-Fernández I, Arenas-Rodríguez V, Cano-Gutiérrez B, Bakker O, Bravo-Fernández MI, García-Verdejo FJ, López JAL, Olivares-Ruiz J, López-Nevot MÁ, Fernández-Puerta L, Cózar-Olmo JM, Li Y, Netea MG, Jurado M, Lorente JA, Sánchez-Rovira P, Álvarez-Cubero MJ, Sainz J. Type 2 Diabetes-Related Variants Influence the Risk of Developing Prostate Cancer: A Population-Based Case-Control Study and Meta-Analysis. Cancers (Basel) 2022; 14:cancers14102376. [PMID: 35625981 PMCID: PMC9139180 DOI: 10.3390/cancers14102376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023] Open
Abstract
In this study, we have evaluated whether 57 genome-wide association studies (GWAS)-identified common variants for type 2 diabetes (T2D) influence the risk of developing prostate cancer (PCa) in a population of 304 Caucasian PCa patients and 686 controls. The association of selected single nucleotide polymorphisms (SNPs) with the risk of PCa was validated through meta-analysis of our data with those from the UKBiobank and FinnGen cohorts, but also previously published genetic studies. We also evaluated whether T2D SNPs associated with PCa risk could influence host immune responses by analysing their correlation with absolute numbers of 91 blood-derived cell populations and circulating levels of 103 immunological proteins and 7 steroid hormones. We also investigated the correlation of the most interesting SNPs with cytokine levels after in vitro stimulation of whole blood, peripheral mononuclear cells (PBMCs), and monocyte-derived macrophages with LPS, PHA, Pam3Cys, and Staphylococcus Aureus. The meta-analysis of our data with those from six large cohorts confirmed that each copy of the FTOrs9939609A, HNF1Brs7501939T, HNF1Brs757210T, HNF1Brs4430796G, and JAZF1rs10486567A alleles significantly decreased risk of developing PCa (p = 3.70 × 10-5, p = 9.39 × 10-54, p = 5.04 × 10-54, p = 1.19 × 10-71, and p = 1.66 × 10-18, respectively). Although it was not statistically significant after correction for multiple testing, we also found that the NOTCH2rs10923931T and RBMS1rs7593730 SNPs associated with the risk of developing PCa (p = 8.49 × 10-4 and 0.004). Interestingly, we found that the protective effect attributed to the HFN1B locus could be mediated by the SULT1A1 protein (p = 0.00030), an arylsulfotransferase that catalyzes the sulfate conjugation of many hormones, neurotransmitters, drugs, and xenobiotic compounds. In addition to these results, eQTL analysis revealed that the HNF1Brs7501939, HNF1Brs757210, HNF1Brs4430796, NOTCH2rs10923931, and RBMS1rs7593730 SNPs influence the risk of PCa through the modulation of mRNA levels of their respective genes in whole blood and/or liver. These results confirm that functional TD2-related variants influence the risk of developing PCa, but also highlight the need of additional experiments to validate our functional results in a tumoral tissue context.
Collapse
Affiliation(s)
- José Manuel Sánchez-Maldonado
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (J.M.S.-M.); (A.J.C.-S.); (I.R.-F.); (V.A.-R.); (M.J.); (J.A.L.); (M.J.Á.-C.)
- Hematology Department, Virgen de las Nieves University Hospital, 18012 Granada, Spain;
- Instituto de Investigación Biosanataria IBs. Granada, 18012 Granada, Spain
| | - Ricardo Collado
- Medical Oncology Department, Hospital de San Pedro Alcántara, 10003 Cáceres, Spain; (R.C.); (M.I.B.-F.); (J.O.-R.)
| | - Antonio José Cabrera-Serrano
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (J.M.S.-M.); (A.J.C.-S.); (I.R.-F.); (V.A.-R.); (M.J.); (J.A.L.); (M.J.Á.-C.)
- Hematology Department, Virgen de las Nieves University Hospital, 18012 Granada, Spain;
- Instituto de Investigación Biosanataria IBs. Granada, 18012 Granada, Spain
| | - Rob Ter Horst
- Department of Internal Medicine and Radboud Centre for Infectious Diseases, Radboud University Nijmegen Medical Center, 6525 GA Nijmegen, The Netherlands; (R.T.H.); (Y.L.); (M.G.N.)
| | - Fernando Gálvez-Montosa
- Department of Medical Oncology, Complejo Hospitalario de Jaén, 23007 Jaén, Spain; (F.G.-M.); (F.J.G.-V.); (J.A.L.L.); (P.S.-R.)
| | - Inmaculada Robles-Fernández
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (J.M.S.-M.); (A.J.C.-S.); (I.R.-F.); (V.A.-R.); (M.J.); (J.A.L.); (M.J.Á.-C.)
| | - Verónica Arenas-Rodríguez
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (J.M.S.-M.); (A.J.C.-S.); (I.R.-F.); (V.A.-R.); (M.J.); (J.A.L.); (M.J.Á.-C.)
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, University of Granada, 18016 Granada, Spain;
| | - Blanca Cano-Gutiérrez
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, University of Granada, 18016 Granada, Spain;
| | - Olivier Bakker
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | | | - Francisco José García-Verdejo
- Department of Medical Oncology, Complejo Hospitalario de Jaén, 23007 Jaén, Spain; (F.G.-M.); (F.J.G.-V.); (J.A.L.L.); (P.S.-R.)
| | - José Antonio López López
- Department of Medical Oncology, Complejo Hospitalario de Jaén, 23007 Jaén, Spain; (F.G.-M.); (F.J.G.-V.); (J.A.L.L.); (P.S.-R.)
| | - Jesús Olivares-Ruiz
- Medical Oncology Department, Hospital de San Pedro Alcántara, 10003 Cáceres, Spain; (R.C.); (M.I.B.-F.); (J.O.-R.)
| | | | | | | | - Yang Li
- Department of Internal Medicine and Radboud Centre for Infectious Diseases, Radboud University Nijmegen Medical Center, 6525 GA Nijmegen, The Netherlands; (R.T.H.); (Y.L.); (M.G.N.)
- Centre for Individualised Infection Medicine (CiiM) & TWINCORE, Joint Ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Centre for Infectious Diseases, Radboud University Nijmegen Medical Center, 6525 GA Nijmegen, The Netherlands; (R.T.H.); (Y.L.); (M.G.N.)
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Manuel Jurado
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (J.M.S.-M.); (A.J.C.-S.); (I.R.-F.); (V.A.-R.); (M.J.); (J.A.L.); (M.J.Á.-C.)
- Hematology Department, Virgen de las Nieves University Hospital, 18012 Granada, Spain;
- Instituto de Investigación Biosanataria IBs. Granada, 18012 Granada, Spain
- Department of Medicine, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Jose Antonio Lorente
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (J.M.S.-M.); (A.J.C.-S.); (I.R.-F.); (V.A.-R.); (M.J.); (J.A.L.); (M.J.Á.-C.)
- Department of Legal Medicine, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Pedro Sánchez-Rovira
- Department of Medical Oncology, Complejo Hospitalario de Jaén, 23007 Jaén, Spain; (F.G.-M.); (F.J.G.-V.); (J.A.L.L.); (P.S.-R.)
| | - María Jesús Álvarez-Cubero
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (J.M.S.-M.); (A.J.C.-S.); (I.R.-F.); (V.A.-R.); (M.J.); (J.A.L.); (M.J.Á.-C.)
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, University of Granada, 18016 Granada, Spain;
| | - Juan Sainz
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (J.M.S.-M.); (A.J.C.-S.); (I.R.-F.); (V.A.-R.); (M.J.); (J.A.L.); (M.J.Á.-C.)
- Hematology Department, Virgen de las Nieves University Hospital, 18012 Granada, Spain;
- Instituto de Investigación Biosanataria IBs. Granada, 18012 Granada, Spain
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- Correspondence: ; Tel.: +34-95871-5500 (ext. 126); Fax: +34-9-5863-7071
| |
Collapse
|
49
|
Arjunan A, Sah DK, Jung YD, Song J. Hepatic Encephalopathy and Melatonin. Antioxidants (Basel) 2022; 11:837. [PMID: 35624703 PMCID: PMC9137547 DOI: 10.3390/antiox11050837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/06/2022] [Accepted: 04/24/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatic encephalopathy (HE) is a severe metabolic syndrome linked with acute/chronic hepatic disorders. HE is also a pernicious neuropsychiatric complication associated with cognitive decline, coma, and death. Limited therapies are available to treat HE, which is formidable to oversee in the clinic. Thus, determining a novel therapeutic approach is essential. The pathogenesis of HE has not been well established. According to various scientific reports, neuropathological symptoms arise due to excessive accumulation of ammonia, which is transported to the brain via the blood-brain barrier (BBB), triggering oxidative stress and inflammation, and disturbing neuronal-glial functions. The treatment of HE involves eliminating hyperammonemia by enhancing the ammonia scavenging mechanism in systemic blood circulation. Melatonin is the sole endogenous hormone linked with HE. Melatonin as a neurohormone is a potent antioxidant that is primarily synthesized and released by the brain's pineal gland. Several HE and liver cirrhosis clinical studies have demonstrated impaired synthesis, secretion of melatonin, and circadian patterns. Melatonin can cross the BBB and is involved in various neuroprotective actions on the HE brain. Hence, we aim to elucidate how HE impairs brain functions, and elucidate the precise molecular mechanism of melatonin that reverses the HE effects on the central nervous system.
Collapse
Affiliation(s)
- Archana Arjunan
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea;
| | - Dhiraj Kumar Sah
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Korea;
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Korea;
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea;
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 Seoyangro, Hwasun 58128, Korea
| |
Collapse
|
50
|
Pfeffer M, von Gall C, Wicht H, Korf HW. The Role of the Melatoninergic System in Circadian and Seasonal Rhythms—Insights From Different Mouse Strains. Front Physiol 2022; 13:883637. [PMID: 35492605 PMCID: PMC9039042 DOI: 10.3389/fphys.2022.883637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/22/2022] [Indexed: 01/01/2023] Open
Abstract
The melatoninergic system comprises the neurohormone melatonin and its molecular targets. The major source of melatonin is the pineal organ where melatonin is rhythmically produced during darkness. In mammals, melatonin biosynthesis is controlled by the central circadian rhythm generator in the suprachiasmatic nucleus (SCN) and photoreceptors in the retina. Melatonin elicits its function principally through two specific receptors called MT1 and MT2. MT1 is highly expressed in the SCN and the hypophysial pars tuberalis (PT), an important interface for control of seasonal functions. The expression of the MT2 is more widespread. The role of the melatoninergic system in the control of seasonal functions, such as reproduction, has been known for more than 4 decades, but investigations on its impact on the circadian system under normal (entrained) conditions started 2 decades later by comparing mouse strains with a fully functional melatoninergic system with mouse strains which either produce insufficient amounts of melatonin or lack the melatonin receptors MT1 and MT2. These studies revealed that an intact melatoninergic system is not required for the generation or maintenance of rhythmic behavior under physiological entrained conditions. As shown by jet lag experiments, the melatoninergic system facilitated faster re-entrainment of locomotor activity accompanied by a more rapid adaptation of the molecular clock work in the SCN. This action depended on MT2. Further studies indicated that the endogenous melatoninergic system stabilizes the locomotor activity under entrained conditions. Notably, these effects of the endogenous melatoninergic system are subtle, suggesting that other signals such as corticosterone or temperature contribute to the synchronization of locomotor activity. Outdoor experiments lasting for a whole year indicate a seasonal plasticity of the chronotype which depends on the melatoninergic system. The comparison between mice with an intact or a compromised melatoninergic system also points toward an impact of this system on sleep, memory and metabolism.
Collapse
Affiliation(s)
- Martina Pfeffer
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- *Correspondence: Martina Pfeffer,
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Helmut Wicht
- Dr. Senckenbergische Anatomie II, Fachbereich Medizin der Goethe-Universität, Frankfurt am Main, Germany
| | - Horst-Werner Korf
- Institute of Anatomy I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|