1
|
Rand EA, Quinones-Olvera N, Jean KDC, Hernandez-Perez C, Owen SV, Baym M. Phage DisCo: targeted discovery of bacteriophages by co-culture. mSystems 2025; 10:e0164424. [PMID: 40434069 DOI: 10.1128/msystems.01644-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
Phages interact with many components of bacterial physiology from the surface to the cytoplasm. Although there are methods to determine the receptors and intracellular systems a specified phage interacts with retroactively, finding a phage that interacts with a chosen piece of bacterial physiology a priori is very challenging. Variation in phage plaque morphology does not to reliably distinguish distinct phages, and therefore many potentially redundant phages may need to be isolated, purified, and individually characterized to find phages of interest. Here, we present a method in which multiple bacterial strains are co-cultured on the same screening plate to add an extra dimension to plaque morphology data. In this method, phage discovery by co-culture (Phage DisCo), strains are isogenic except for fluorescent tags and one perturbation expected to impact phage infection. Differential plaquing on the strains is easily detectable by fluorescent signal and implies that the perturbation made to the surviving strain in a plaque prevents phage infection. We validate the Phage DisCo method by showing that characterized phages have the expected plaque morphology on Phage DisCo plates and demonstrate the power of Phage DisCo for multiple targeted discovery applications, from receptors to phage defense systems.IMPORTANCEIn this work, we describe a targeted phage discovery method that allows immediate isolation of phages with specific traits. Currently, to find a phage with specific properties, huge libraries of phages must be collected and screened retroactively. This assay, Phage Discovery by Co-culture (Phage DisCo), works by co-culture of host strains that are identical except for one perturbation that may interfere with phage infection and a unique fluorescent marker. These strains are co-cultured with an environmental sample of interest in traditional plaque assay format, making phage characteristics easily identifiable by fluorescent signal after imaging of the screening plate. We validate that Phage DisCo can identify phages with specific properties, even when these phages are rare in samples. This approach allows rapid exploration of the diversity within phage samples with vastly streamlined processes, and we anticipate it will be widely adopted within the phage discovery field.
Collapse
Affiliation(s)
- Eleanor A Rand
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
| | - Natalia Quinones-Olvera
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
| | - Kesther D C Jean
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
- Roxbury Community College, Boston, Massachusetts, USA
| | - Carmen Hernandez-Perez
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
- Summer Honors Undergraduate Research Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Siân V Owen
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Michael Baym
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
| |
Collapse
|
2
|
Han S, Li S, Li L, Li S. Genetic characterization of four bacteriophages of Salmonella enterica derived from different geographic regions in China via genomic comparison. Res Vet Sci 2025; 189:105608. [PMID: 40199046 DOI: 10.1016/j.rvsc.2025.105608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/27/2024] [Accepted: 03/07/2025] [Indexed: 04/10/2025]
Abstract
Based on the AT content > GC content in four Salmonella enterica lytic bacteriophage genomes, information entropy analysis revealed that overall nucleotide usage bias is shaped in the gene population. This genetic feature directly contributes to synonymous codons tending toward the A/T end rather than the C/G end. Furthermore, the interplay between the nucleotide composition constraint from the bacteriophage itself and the natural selection caused by outside environments forces our bacteriophages into similar evolutionary trends in terms of overall codon usage patterns. We identified the nucleotide composition constraint which plays an important role in shaping synonymous codon usage patterns including the keto skew at the first codon position, the pyrimidine skew at the second position and the AT skew at the third position. Although the four bacteriophages were isolated from different geographical regions in China, they display similar evolutionary trends in terms of genomic organization and synonymous codon usage, which are strongly influenced by the nucleotide composition constraint of the bacteriophage. The findings of the present study reveal important details of the evolutionary and host-pathogen interactions of Salmonella enterica, which will benefit the efficient utilization of phages for therapeutic and other applications.
Collapse
Affiliation(s)
- Shengyi Han
- Qinghai University, Xining 810016, China; College of Animal Science and Veterinary Science, Xining 810016, China
| | - Shuping Li
- Qinghai University, Xining 810016, China; College of Animal Science and Veterinary Science, Xining 810016, China
| | - Lingxia Li
- Qinghai University, Xining 810016, China; College of Animal Science and Veterinary Science, Xining 810016, China; College of Agriculture and Animal Husbandry, Xining 810016, China.
| | - Shengqing Li
- Qinghai University, Xining 810016, China; College of Animal Science and Veterinary Science, Xining 810016, China.
| |
Collapse
|
3
|
Zhu Z, Li N, Sun Q, Long X, Wang T, Qiu HJ. Host-similar fragments in the African swine fever virus genome: distribution, functions, and evolution. Vet Res 2025; 56:108. [PMID: 40426242 PMCID: PMC12107907 DOI: 10.1186/s13567-025-01539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/14/2025] [Indexed: 05/29/2025] Open
Abstract
African swine fever virus (ASFV) predominantly infects Argasidae and suids, resulting in high morbidity and mortality in pigs. Despite the crucial role that viral sequences resembling those of the host play in the virus's survival, there are limited comprehensive studies on the genomic similarities between ASFV and its hosts. Consequently, this study employs homology analysis to construct a similarity network between ASFV and its hosts (Argasidae and suids), investigating the distribution, function, evolution, and origins of these similar sequences in ASFV. Our findings indicate that the host-similar fragments are mainly distributed between positions 70000 and 180000 of the ASFV genome, primarily within non-coding regions. Notably, these non-coding fragments are often associated with promoter functions. Furthermore, the analysis of suid proteins that share similarities with ASFV proteins reveals that they predominantly exhibit RNA polymerase activity and are involved in metabolic processes. Evolutionary analysis indicates that pan-similar sequences of ASFV exist in an open state, highlighting the diversity of these analogous sequences. Additionally, a positive correlation was identified between the occurrence of recombination breakpoints and similar sequences, indicating that homologous recombination may serve as a crucial mechanism driving the formation of these analogous sequences.
Collapse
Affiliation(s)
- Zhaozhong Zhu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Na Li
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Qin Sun
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xizi Long
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
4
|
Dotto-Maurel A, Arzul I, Morga B, Chevignon G. Herpesviruses: overview of systematics, genomic complexity and life cycle. Virol J 2025; 22:155. [PMID: 40399963 PMCID: PMC12096621 DOI: 10.1186/s12985-025-02779-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 05/07/2025] [Indexed: 05/23/2025] Open
Abstract
Herpesviruses are double-stranded DNA viruses with distinct morphological features and are among the largest and most complex viruses. According to the International Committee on Taxonomy of Viruses (ICTV), in 2022, there were 133 herpesviruses classified into three families: Orthoherpesviridae, infecting mammals and birds; Malacoherpesviridae infecting marine molluscs; and Alloherpesviridae infecting fish and amphibians. Herpesviruses have a complex genomic architecture, characterised by unique regions flanked by repeated and inverted sequences. Unique regions can undergo rearrangements leading to the formation of genomic isomers, which could have important implications for the life cycle of the virus. Herpesviruses life cycle consists of two main phases: the lytic phase, during which viral genes are expressed and translated into viral proteins that regulate DNA replication, capsid formation and the production of new particles; and the persistence phase, in which the virus persists in the host without being eliminated by the immune system. This review offers an updated and comprehensive overview of the Herpesvirales order, detailing their morphological characteristics, providing an in-depth taxonomic classification, examining their genomic architecture and isomers, and describing their life cycle.
Collapse
Affiliation(s)
- Aurélie Dotto-Maurel
- Ifremer, ASIM Adaptation et Santé des Invertébrés Marins, La Tremblade, F-17390, France.
| | - Isabelle Arzul
- Ifremer, ASIM Adaptation et Santé des Invertébrés Marins, La Tremblade, F-17390, France
| | - Benjamin Morga
- Ifremer, ASIM Adaptation et Santé des Invertébrés Marins, La Tremblade, F-17390, France
| | - Germain Chevignon
- Ifremer, ASIM Adaptation et Santé des Invertébrés Marins, La Tremblade, F-17390, France.
| |
Collapse
|
5
|
Brenes LR, Laub MT. E. coli prophages encode an arsenal of defense systems to protect against temperate phages. Cell Host Microbe 2025:S1931-3128(25)00154-4. [PMID: 40409266 DOI: 10.1016/j.chom.2025.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/21/2025] [Accepted: 04/30/2025] [Indexed: 05/25/2025]
Abstract
In recent years, dozens of anti-phage defense systems have been identified. However, efforts to find these systems have focused predominantly on lytic phages, leaving defense against temperate phages poorly understood. Here, we isolated 33 temperate phages from a diverse collection of E. coli to create a library of single lysogens, which were tested for defense against the same set of temperate phages. We found that the majority of lysogens offer protection against at least one additional phage from the collection, often displaying broad defense against various phages. Defense efficacy varies based on growth media and host background, suggesting that some systems are context dependent. Using an iterative deletion-based strategy, we identify 17 systems responsible for the prophage-encoded defense, including 5 toxin-antitoxin modules. Collectively, our work uncovers a diverse array of phage-phage interactions and indicates that temperate phages encode a previously unrecognized arsenal of anti-phage defense systems.
Collapse
Affiliation(s)
- Lucas R Brenes
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
6
|
Xu C, Guo X, Li L. Metagenomic Comparison of Gut Microbes of Lemur catta in Captive and Semi-Free-Range Environments. Animals (Basel) 2025; 15:1442. [PMID: 40427319 PMCID: PMC12108194 DOI: 10.3390/ani15101442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/13/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
In order to protect endangered species, many zoos adopt diverse rearing models to achieve optimal conservation outcomes. This study employed metagenomic approaches to assess differences in the fecal microbiome of captive and semi-free-ranging ring-tailed lemurs (Lemur catta). The results show that captivity significantly altered the microbial community structure. The inter-individual variability in the microbial community within the captive-bred (CB) group was lower than that in the semi-free-ranging (FR) group, yet these individuals harbored a higher abundance of potential pathogens (Treponema_D). In contrast, microbial genera associated with fiber degradation and short-chain fatty acid production in the FR group were significantly elevated (Faecalibacterium, Roseburia, and Megamonas) as compared to the CB group. Environmental variations between the two rearing systems led to distinct profiles in microbial functions and carbohydrate-active enzyme gene composition. Notably, the FR group of lemurs exhibited an increased abundance of enzyme genes associated with the degradation of complex polysaccharides (cellulose, hemicellulose, and pectin), suggesting that their diet, rich in natural plant fibers, enhances the capacity of their gut microbiota to extract essential energy and nutrients. Conversely, the CB group displayed a more homogeneous microbial community with a higher prevalence of potential pathogens, implying that a captive lifestyle may negatively impact gastrointestinal health. These findings offer valuable insights into the influence of rearing conditions on gut microbial ecology and its potential implications for the health management of ring-tailed lemurs.
Collapse
Affiliation(s)
- Chunzhong Xu
- Shanghai Wild Animal Park, Shanghai 201399, China;
| | - Xinzi Guo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
7
|
Pardeshi LA, van Duivenbode I, Pel MJC, Jonkheer EM, Kupczok A, de Ridder D, Smit S, van der Lee TAJ. Pangenomics to understand prophage dynamics in the Pectobacterium genus and the radiating lineages of Pectobacterium brasiliense. Microb Genom 2025; 11. [PMID: 40331911 DOI: 10.1099/mgen.0.001392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025] Open
Abstract
Bacterial pathogens of the genus Pectobacterium are responsible for soft-rot and blackleg diseases in a wide range of crops and have a global impact on food production. The emergence of new lineages and their competitive succession is frequently observed in Pectobacterium species, in particular in Pectobacterium brasiliense. With a focus on one such recently emerged P. brasiliense lineage in the Netherlands that causes blackleg in potatoes, we studied genome evolution in this genus using a reference-free graph-based pangenome approach. We clustered 1,977,865 proteins from 454 Pectobacterium spp. genomes into 30,156 homology groups. The Pectobacterium genus pangenome is open, and its growth is mainly contributed by the accessory genome. Bacteriophage genes were enriched in the accessory genome and contributed 16% of the pangenome. Blackleg-causing P. brasiliense isolates had increased genome size with high levels of prophage integration. To study the diversity and dynamics of these prophages across the pangenome, we developed an approach to trace prophages across genomes using pangenome homology group signatures. We identified lineage-specific as well as generalist bacteriophages infecting Pectobacterium species. Our results capture the ongoing dynamics of mobile genetic elements, even in the clonal lineages. The observed lineage-specific prophage dynamics provide mechanistic insights into Pectobacterium pangenome growth and contribution to the radiating lineages of P. brasiliense.
Collapse
Affiliation(s)
- Lakhansing A Pardeshi
- Bioinformatics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, Netherlands
- Biointeractions and Plant Health, Wageningen Plant Research, Droevendaalsesteeg 1, 6708PB, Wageningen, Netherlands
| | - Inge van Duivenbode
- Dutch General Inspection Service for Agricultural Seeds and Seed Potatoes (NAK), Randweg 14, 8304 AS Emmeloord, Netherlands
| | - Michiel J C Pel
- Netherlands Institute for Vectors, Invasive Plants and Plant Health (NIVIP), National Plant Protection Organization (NPPO), Netherlands Food and Consumer Product Safety Authority (NVWA), Geertjesweg 15, 6706 EA Wageningen, Netherlands
| | - Eef M Jonkheer
- Bioinformatics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, Netherlands
| | - Anne Kupczok
- Bioinformatics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, Netherlands
| | - Sandra Smit
- Bioinformatics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, Netherlands
| | - Theo A J van der Lee
- Biointeractions and Plant Health, Wageningen Plant Research, Droevendaalsesteeg 1, 6708PB, Wageningen, Netherlands
| |
Collapse
|
8
|
Blondet L, Mouanda Sounda A, Fritz M, Filloux D, Yvon M, Blanc S, Varsani A, Niama RF, Leroy EM, Roumagnac P. Sentinels tracking viruses in various ecosystems: Towards a One Health approach. PLoS Pathog 2025; 21:e1013141. [PMID: 40435337 PMCID: PMC12118972 DOI: 10.1371/journal.ppat.1013141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2025] Open
Affiliation(s)
- Léo Blondet
- CIRAD, UMR PHIM, Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Amour Mouanda Sounda
- Université Marien Ngouabi, Brazzaville, Republic of the Congo
- UMR TransVIHMI, Université de Montpellier, IRD, Inserm, Montpellier, France
- Laboratoire National de Santé Publique, Brazzaville, Republic of the Congo
| | - Matthieu Fritz
- UMR TransVIHMI, Université de Montpellier, IRD, Inserm, Montpellier, France
| | - Denis Filloux
- CIRAD, UMR PHIM, Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Michel Yvon
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Stéphane Blanc
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Roch Fabien Niama
- Université Marien Ngouabi, Brazzaville, Republic of the Congo
- Laboratoire National de Santé Publique, Brazzaville, Republic of the Congo
| | - Eric M. Leroy
- UMR TransVIHMI, Université de Montpellier, IRD, Inserm, Montpellier, France
| | - Philippe Roumagnac
- CIRAD, UMR PHIM, Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| |
Collapse
|
9
|
Inglis LK, Grigson SR, Roach MJ, Edwards RA. Prophages as a source of antimicrobial resistance genes in the human microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644263. [PMID: 40166311 PMCID: PMC11957107 DOI: 10.1101/2025.03.19.644263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Prophages-viruses that integrate into bacterial genomes-are ubiquitous in the microbial realm. Prophages contribute significantly to horizontal gene transfer, including the potential spread of antimicrobial resistance (AMR) genes, because they can collect host genes. Understanding their role in the human microbiome is essential for fully understanding AMR dynamics and possible clinical implications. We analysed almost 15,000 bacterial genomes for prophages and AMR genes. The bacteria were isolated from diverse human body sites and geographical regions, and their genomes were retrieved from GenBank. AMR genes were detected in 6.6% of bacterial genomes, with a higher prevalence in people with symptomatic diseases. We found a wide variety of AMR genes combating multiple drug classes. We discovered AMR genes previously associated with plasmids, such as blaOXA-23 in Acinetobacter baumannii prophages or genes found in prophages in species they had not been previously described in, such as mefA-msrD in Gardnerella prophages, suggesting prophage-mediated gene transfer of AMR genes. Prophages encoding AMR genes were found at varying frequencies across body sites and geographical regions, with Asia showing the highest diversity of AMR genes.
Collapse
Affiliation(s)
- Laura K Inglis
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| | - Susanna R Grigson
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| | - Michael J Roach
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Robert A Edwards
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| |
Collapse
|
10
|
de Aquino ILM, Azevedo BL, Arias NEC, Dos Reis Rodrigues MF, Abrahão JS. The final cut: how giant viruses of protists are released from their hosts' cells. Arch Virol 2025; 170:77. [PMID: 40080207 DOI: 10.1007/s00705-025-06261-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/08/2025] [Indexed: 03/15/2025]
Abstract
Viruses are the most abundant biological entities on Earth, with an estimated 1031 viruses in the biosphere. These particles serve as the crucial link between viral replication cycles in different host cells, employing a variety of release mechanisms, such as cell lysis, exocytosis, and budding. Among the diverse viral groups, giant viruses have garnered significant scientific interest due to their complex particles and genomes. Giant viruses may infect amoebae and other unicellular protists, exhibiting remarkable variation in size, shape, and symmetry. They belong to the realm Varidnaviria, kingdom Bamfordvirae, and phylum Nucleocytoviricota. This review examines the diverse viral release strategies employed by giant viruses, highlighting the mechanisms they use to exit host cells. These include the induction of cell lysis, vesicle formation, and exocytosis, which vary not only between different species but also within individual viral groups. The diversity of release mechanisms reflects the complex evolutionary adaptations of giant viruses, providing information about their biology and life cycles.
Collapse
Affiliation(s)
- Isabella Luiza Martins de Aquino
- Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruna Luiza Azevedo
- Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nidia Esther Colquehuanca Arias
- Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Matheus Felipe Dos Reis Rodrigues
- Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jônatas Santos Abrahão
- Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
11
|
Howard-Varona C, Solonenko NE, Burris M, Urvoy M, Sanderson CM, Bolduc B, Sullivan MB. Infection and Genomic Properties of Single- and Double-Stranded DNA Cellulophaga Phages. Viruses 2025; 17:365. [PMID: 40143293 PMCID: PMC11946311 DOI: 10.3390/v17030365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Bacterial viruses (phages) are abundant and ecologically impactful, but laboratory-based experimental model systems vastly under-represent known phage diversity, particularly for ssDNA phages. Here, we characterize the genomes and infection properties of two unrelated marine flavophages-ssDNA generalist phage phi18:4 (6.5 Kbp) and dsDNA specialist phage phi18:1 (39.2 Kbp)-when infecting the same Cellulophaga baltica strain #18 (Cba18), of the class Flavobacteriia. Phage phi18:4 belongs to a new family of ssDNA phages, has an internal lipid membrane, and its genome encodes primarily structural proteins, as well as a DNA replication protein common to ssDNA phages and a unique lysis protein. Phage phi18:1 is a siphovirus that encodes several virulence genes, despite not having a known temperate lifestyle, a CAZy enzyme likely for regulatory purposes, and four DNA methyltransferases dispersed throughout the genome that suggest both host modulation and phage DNA protection against host restriction. Physiologically, ssDNA phage phi18:4 has a shorter latent period and smaller burst size than dsDNA phage phi18:1, and both phages efficiently infect this host. These results help augment the diversity of characterized environmental phage-host model systems by studying infections of genomically diverse phages (ssDNA vs. dsDNA) on the same host.
Collapse
Affiliation(s)
- Cristina Howard-Varona
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH 43210, USA; (C.H.-V.); (N.E.S.); (M.B.); (M.U.); (C.M.S.); (B.B.)
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Natalie E. Solonenko
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH 43210, USA; (C.H.-V.); (N.E.S.); (M.B.); (M.U.); (C.M.S.); (B.B.)
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Marie Burris
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH 43210, USA; (C.H.-V.); (N.E.S.); (M.B.); (M.U.); (C.M.S.); (B.B.)
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Marion Urvoy
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH 43210, USA; (C.H.-V.); (N.E.S.); (M.B.); (M.U.); (C.M.S.); (B.B.)
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Courtney M. Sanderson
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH 43210, USA; (C.H.-V.); (N.E.S.); (M.B.); (M.U.); (C.M.S.); (B.B.)
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Bejamin Bolduc
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH 43210, USA; (C.H.-V.); (N.E.S.); (M.B.); (M.U.); (C.M.S.); (B.B.)
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Matthew B. Sullivan
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH 43210, USA; (C.H.-V.); (N.E.S.); (M.B.); (M.U.); (C.M.S.); (B.B.)
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, 2070 Neil Ave, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, 484 W 12th Ave, Columbus, OH 43210, USA
| |
Collapse
|
12
|
Chaichana N, Rattanaburee R, Surachat K, Sermwittayawong D, Sermwittayawong N. Isolation, characterization and genomic analysis of bacteriophages for biocontrol of vibriosis caused by Vibrio alginolyticus. Virus Res 2025; 353:199529. [PMID: 39914594 PMCID: PMC11870190 DOI: 10.1016/j.virusres.2025.199529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/06/2025] [Accepted: 01/20/2025] [Indexed: 02/14/2025]
Abstract
Vibrio alginolyticus is a significant opportunistic pathogen in marine environments, affecting both marine organisms and humans. The rise of antibiotic-resistant strains has prompted the exploration of bacteriophages as alternative biological control agents. In this study, 414 lytic bacteriophages specific to V. alginolyticus were isolated from various seafood and environmental samples. Phages P122, P125, and P160 demonstrated the broadest host range, effectively lysing 79.01 % of fish pathogenic V. alginolyticus strains and 44.69 % of environmental strains. However, no activity was observed against clinical V. alginolyticus strains or other tested species, including V. harveyi, Escherichia coli, Staphylococcus aureus, and Aeromonas hydrophila. One-step growth curve analysis revealed latent periods of 40 to 60 min and burst sizes ranging from 140 to 367 PFU/infected cells. Transmission electron microscopy (TEM) classified these phages within the class of Caudoviricetes with an icosahedral head and a long non-contractile tail. Moreover, whole-genome sequencing (WGS) identified genome sizes of approximately 76 kb, with 272-280 open reading frames (ORFs), no tRNA and pathogenic-associated genes. Comparative genomic analysis showed over 97 % similarity with other Vibrio phages. Phylogenetic analysis based on the terminase subunit also confirmed phages P122, P125, and P160 belonging to the class of Caudoviricetes. The phages were non-toxic to Galleria mellonella larvae and showed promise in reducing mortality rates when used as a cocktail treatment. The study highlights the potential of these phages as effective biocontrol agents in aquaculture, offering a promising alternative to antibiotics for managing Vibrio infections.
Collapse
Affiliation(s)
- Nattarika Chaichana
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Rutinan Rattanaburee
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Decha Sermwittayawong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Natthawan Sermwittayawong
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand.
| |
Collapse
|
13
|
Moreira TIR, Carvalho JVRP, Filho CAC, Souza JW, de Azevedo BL, Abrahão JS, Rodrigues RAL. Investigations into the Diversity and Distribution of tRNA and Phylogenetics of Translation Factors in Amoebozoa-Infecting Nucleocytoviricota. Viruses 2025; 17:328. [PMID: 40143257 PMCID: PMC11946776 DOI: 10.3390/v17030328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/12/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Translation is a sine qua non process for life as we know it. Translation factors (TFs) and tRNAs are rare among viruses but are commonly found in giant viruses of the class Megaviricetes. In this study, we explored the diversity and distribution of tRNAs in giant viruses that were isolated and replicated in amoebae (phylum Amoebozoa), and investigated the evolutionary history of TFs to gain insights into their origins in these viruses. We analyzed the genomes of 77 isolated giant viruses, 52 of which contained at least 1 tRNA. In most of these viruses, tRNA sequences are dispersed throughout the genome, except in Tupanviruses and Yasmineviruses, where most tRNAs are clustered in specific genomic islands. The tRNAs in giant viruses often contain introns, with 73.1% of the genomes exhibiting at least one intronic region in these genes. Codon usage bias (CUB) analysis of various giant viruses revealed at least two distinct patterns of codon preferences among closely related viruses. We did not observe a clear correlation between the presence of tRNAs and CUB in giant viruses. Due to the limited size of these genes, we could not confidently investigate their phylogenetic relationships. However, phylogenetic analysis of TFs found in giant viruses often position these viruses as sister groups or embedded between different eukaryotic taxa with high statistical support. Overall, our findings reinforce the complexity of key components of the translation apparatus in different members of Nucleocytoviricota isolated from different regions of Earth.
Collapse
Affiliation(s)
- Thaís I. R. Moreira
- Virus Laboratory, Department of Microbiology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (T.I.R.M.); (J.V.R.P.C.); (C.A.C.F.); (J.W.S.); (B.L.d.A.); (J.S.A.)
- Retroviruses Laboratory, Department of Preventive Veterinary Medicine, School of Veterinary Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - João Victor R. P. Carvalho
- Virus Laboratory, Department of Microbiology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (T.I.R.M.); (J.V.R.P.C.); (C.A.C.F.); (J.W.S.); (B.L.d.A.); (J.S.A.)
| | - Clécio A. C. Filho
- Virus Laboratory, Department of Microbiology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (T.I.R.M.); (J.V.R.P.C.); (C.A.C.F.); (J.W.S.); (B.L.d.A.); (J.S.A.)
| | - Júlia W. Souza
- Virus Laboratory, Department of Microbiology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (T.I.R.M.); (J.V.R.P.C.); (C.A.C.F.); (J.W.S.); (B.L.d.A.); (J.S.A.)
| | - Bruna L. de Azevedo
- Virus Laboratory, Department of Microbiology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (T.I.R.M.); (J.V.R.P.C.); (C.A.C.F.); (J.W.S.); (B.L.d.A.); (J.S.A.)
| | - Jônatas S. Abrahão
- Virus Laboratory, Department of Microbiology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (T.I.R.M.); (J.V.R.P.C.); (C.A.C.F.); (J.W.S.); (B.L.d.A.); (J.S.A.)
| | - Rodrigo A. L. Rodrigues
- Virus Laboratory, Department of Microbiology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (T.I.R.M.); (J.V.R.P.C.); (C.A.C.F.); (J.W.S.); (B.L.d.A.); (J.S.A.)
| |
Collapse
|
14
|
Jdeed G, Kravchuk B, Tikunova NV. Factors Affecting Phage-Bacteria Coevolution Dynamics. Viruses 2025; 17:235. [PMID: 40006990 PMCID: PMC11860743 DOI: 10.3390/v17020235] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Bacteriophages (phages) have coevolved with their bacterial hosts for billions of years. With the rise of antibiotic resistance, the significance of using phages in therapy is increasing. Investigating the dynamics of phage evolution can provide valuable insights for pre-adapting phages to more challenging clones of their hosts that may arise during treatment. Two primary models describe interactions in phage-bacteria systems: arms race dynamics and fluctuating selection dynamics. Numerous factors influence which dynamics dominate the interactions between a phage and its host. These dynamics, in turn, affect the coexistence of phages and bacteria, ultimately determining which organism will adapt more effectively to the other, and whether a stable state will be reached. In this review, we summarize key findings from research on phage-bacteria coevolution, focusing on the different concepts that can describe these interactions, the factors that may contribute to the prevalence of one model over others, and the effects of various dynamics on both phages and bacteria.
Collapse
Affiliation(s)
- Ghadeer Jdeed
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Prospect Lavrentieva 8, Novosibirsk 630090, Russia;
| | | | - Nina V. Tikunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Prospect Lavrentieva 8, Novosibirsk 630090, Russia;
| |
Collapse
|
15
|
Blakemore RJ. Biodiversity restated: > 99.9% of global species in Soil Biota. Zookeys 2025; 1224:283-316. [PMID: 39935608 PMCID: PMC11811713 DOI: 10.3897/zookeys.1224.131153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/03/2025] [Indexed: 02/13/2025] Open
Abstract
More than a decade of research led to the conclusion in 2022 that the Soil Biome is home to ~ 2.1 × 1024 taxa and thus supports > 99.9% of global species biodiversity, mostly Bacteria or other microbes, based upon topographic field data. A subsequent 2023 report tabulated a central value of just 1.04 × 1010 taxa claiming soils had 59 ± 15%, i.e., 44-74% (or truly 10-50%?) of the global total, while incidentally confirming upper values of ~ 90% for soil Bacteria. Incompatibility of these two studies is reviewed, supporting prior biodiversity data with the vast majority of species inhabiting soils, despite excluding viruses (now with ~ 5 × 1031 virions and 1026 species most, ~ 80%, in soils). The status of Oligochaeta (earthworms) and other taxa marked "?" in the 2023 paper are clarified. Although biota totals are increased considerably, inordinate threats of topsoil erosion and poisoning yet pertain with finality of extinction. Species affected include Keystone taxa, especially earthworms and microbes, essential for a healthy Soil foundation to sustain the Tree-of-Life inhabiting the Earth.
Collapse
Affiliation(s)
- Robert J. Blakemore
- VermEcology, 101 Suidomichi, Nogeyama, Yokohama-shi, Kanagawa-ken 231-0064, JapanVermEcologyKanagawa-kenJapan
- ENSSER, Marienstr. 19/20, 10117 Berlin, GermanyENSSERBerlinGermany
- IUCN Species Survival Commission, Rue Mauverney 28, 1196 Gland, SwitzerlandIUCN Species Survival CommissionGlandSwaziland
| |
Collapse
|
16
|
Blazanin M, Moore J, Olsen S, Travisano M. Fight Not Flight: Parasites Drive the Bacterial Evolution of Resistance, Not Escape. Am Nat 2025; 205:125-136. [PMID: 39913937 DOI: 10.1086/733414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
AbstractIn the face of ubiquitous threats from parasites, hosts can evolve strategies to resist infection or to altogether avoid parasitism, for instance by avoiding behavior that could expose them to parasites or by dispersing away from local parasite threats. At the microbial scale, bacteria frequently encounter viral parasites, bacteriophages. While bacteria are known to utilize a number of strategies to resist infection by phages and can have the capacity to avoid moving toward phage-infected cells, it is unknown whether bacteria can evolve dispersal to escape from phages. To answer this question, we combined experimental evolution and mathematical modeling. Experimental evolution of the bacterium Pseudomonas fluorescens in environments with differing spatial distributions of the phage Phi2 revealed that the host bacteria evolved resistance depending on parasite distribution but did not evolve dispersal to escape parasite infection. Simulations using parameterized mathematical models of bacterial growth and swimming motility showed that this is a general finding: while increased dispersal is adaptive in the absence of parasites, in the presence of parasites that fitness benefit disappears and resistance becomes adaptive, regardless of the spatial distribution of parasites. Together, these experiments suggest that parasites should rarely, if ever, drive the evolution of bacterial escape via dispersal.
Collapse
|
17
|
Weinheimer AR, Ha AD, Aylward FO. Towards a unifying phylogenomic framework for tailed phages. PLoS Genet 2025; 21:e1011595. [PMID: 39908317 PMCID: PMC11835377 DOI: 10.1371/journal.pgen.1011595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/18/2025] [Accepted: 01/28/2025] [Indexed: 02/07/2025] Open
Abstract
Classifying viruses systematically has remained a key challenge of virology due to the absence of universal genes and vast genetic diversity of viruses. In particular, the most dominant and diverse group of viruses, the tailed double-stranded DNA viruses of prokaryotes belonging to the class Caudoviricetes, lack sufficient similarity in the genetic machinery that unifies them to reconstruct an inclusive, stable phylogeny of these genes. While previous approaches to organize tailed phage diversity have managed to distinguish various taxonomic levels, these methods are limited in scalability, reproducibility, and the inclusion of modes of evolution, like gene gains and losses, remain key challenges. Here, we present a novel, comprehensive, and reproducible framework for examining evolutionary relationships of tailed phages. In this framework, we compare phage genomes based on the presence and absence of a fixed set of gene families which are used as binary trait data that is input into maximum likelihood models. Our resulting phylogeny stably recovers known taxonomic families of tailed phages, with and without the inclusion of metagenome-derived phages. We also quantify the mosaicism of replication and structural genes among known families, and our results suggest that these exchanges likely underpin the emergence of new families. Additionally, we apply this framework to large phages (>100 kilobases) to map emergences of traits associated with genome expansion. Taken together, this evolutionary framework for charting and organizing tailed phage diversity improves the systemization of phage taxonomy, which can unify phage studies and advance our understanding of their evolution.
Collapse
Affiliation(s)
- Alaina R. Weinheimer
- Department of Biological Sciences, Virginia Tech; Blacksburg, Virginia, United States of America
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, United States of America
| | - Anh D. Ha
- Department of Biological Sciences, Virginia Tech; Blacksburg, Virginia, United States of America
| | - Frank O. Aylward
- Department of Biological Sciences, Virginia Tech; Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease, Virginia Tech; Blacksburg, Virginia, United States of America
| |
Collapse
|
18
|
Fogg PCM. Gene transfer agents: The ambiguous role of selfless viruses in genetic exchange and bacterial evolution. Mol Microbiol 2025; 123:124-131. [PMID: 38511257 PMCID: PMC11841831 DOI: 10.1111/mmi.15251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Gene transfer agents (GTAs) are genetic elements derived from ancestral bacteriophages that have become domesticated by the host. GTAs are present in diverse prokaryotic organisms, where they can facilitate horizontal gene transfer under certain conditions. Unlike typical bacteriophages, GTAs do not exhibit any preference for the replication or transfer of the genes encoding them; instead, they exhibit a remarkable capacity to package chromosomal, and sometimes extrachromosomal, DNA into virus-like capsids and disseminate it to neighboring cells. Because GTAs resemble defective prophages, identification of novel GTAs is not trivial. The detection of candidates relies on the genetic similarity to known GTAs, which has been fruitful in α-proteobacterial lineages but challenging in more distant bacteria. Here we consider several fundamental questions: What is the true prevalence of GTAs in prokaryote genomes? Given there are high costs for GTA production, what advantage do GTAs provide to the bacterial host to justify their maintenance? How is the bacterial chromosome recognized and processed for inclusion in GTA particles? This article highlights the challenges in comprehensively understanding GTAs' prevalence, function and DNA packaging method. Going forward, broad study of atypical GTAs and use of ecologically relevant conditions are required to uncover their true impact on bacterial chromosome evolution.
Collapse
|
19
|
Harding K, Malone L, Kyte NP, Jackson S, Smith L, Fineran P. Genome-wide identification of bacterial genes contributing to nucleus-forming jumbo phage infection. Nucleic Acids Res 2025; 53:gkae1194. [PMID: 39694477 PMCID: PMC11797060 DOI: 10.1093/nar/gkae1194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/25/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
The Chimalliviridae family of bacteriophages (phages) form a proteinaceous nucleus-like structure during infection of their bacterial hosts. This phage 'nucleus' compartmentalises phage DNA replication and transcription, and shields the phage genome from DNA-targeting defence systems such as CRISPR-Cas and restriction-modification. Their insensitivity to DNA-targeting defences makes nucleus-forming jumbo phages attractive for phage therapy. However, little is known about the bacterial gene requirements during the infectious cycle of nucleus-forming phages or how phage resistance may emerge. To address this, we used the Serratia nucleus-forming jumbo phage PCH45 and exploited a combination of high-throughput transposon mutagenesis and deep sequencing (Tn-seq), and CRISPR interference (CRISPRi). We identified over 90 host genes involved in nucleus-forming phage infection, the majority of which were either involved in the biosynthesis of the primary receptor, flagella, or influenced swimming motility. In addition, the bacterial outer membrane lipopolysaccharide contributed to PCH45 adsorption. Other unrelated Serratia-flagellotropic phages used similar host genes as the nucleus-forming phage, indicating that phage resistance can lead to cross-resistance against diverse phages. Our findings demonstrate that resistance to nucleus-forming jumbo phages can readily emerge via bacterial surface receptor mutation and this should be a major factor when designing strategies for their use in phage therapy.
Collapse
Affiliation(s)
- Kate R Harding
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Lucia M Malone
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Natalie A P Kyte
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Leah M Smith
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
20
|
Rodríguez-Recio FR, Garza-Cervantes JA, Balderas-Cisneros FDJ, Morones-Ramírez JR. Genomic Insights into and Lytic Potential of Native Bacteriophages M8-2 and M8-3 Against Clinically Relevant Multidrug-Resistant Pseudomonas aeruginosa. Antibiotics (Basel) 2025; 14:110. [PMID: 40001355 PMCID: PMC11851605 DOI: 10.3390/antibiotics14020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/03/2025] [Accepted: 01/13/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Antibiotic resistance in pathogenic bacteria poses a critical global health threat, with multidrug-resistant (MDR) strains increasingly undermining conventional treatments. Among these, Pseudomonas aeruginosa is a high-priority pathogen due to its resistance to carbapenems and frequent presence in hospital settings, contributing to severe healthcare-associated infections. This study aimed to isolate and characterize novel bacteriophages from environmental wastewater samples that could specifically target MDR P. aeruginosa. Methods: Two bacteriophages, M8-2 and M8-3, were isolated from wastewater in Monterrey, Mexico. A genomic analysis classified M8-2 and M8-3 within the Caudoviridae family, and next-generation sequencing (NGS) was used to confirm the absence of undesirable antibiotic resistance or virulence genes. Optimization of viral amplification was performed to achieve high titers, with structural proteins characterized by SDS-PAGE. Results: Phages M8-2 and M8-3 exhibited specific lytic activity against MDR strains of P. aeruginosa, offering a targeted approach to combat antibiotic-resistant infections. High genetic similarity (>95%) to known Gram-negative bacterial phages was observed. Optimized viral amplification yielded titers of 4.2 × 107 and 1.03 × 109 PFUs/mL for M8-2 and M8-3, respectively. The specificity of these phages minimized disruption to the host microbiome, and their significant efficacy in suppressing bacterial growth positions bacteriophages as promising candidates for localized and personalized phage therapy, especially in chronic and hospital-acquired infection settings. Conclusions: These findings highlight the therapeutic potential of M8-2 and M8-3 in addressing antibiotic-resistant P. aeruginosa infections. Their safety profile, high target specificity, and robust lytic activity underscore the feasibility of incorporating phage-based strategies into current antimicrobial protocols. This study contributes to the broader goal of developing sustainable and effective phage therapies for diverse clinical and environmental contexts.
Collapse
Affiliation(s)
- Francisco Ricardo Rodríguez-Recio
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza 66455, Mexico; (F.R.R.-R.); (J.A.G.-C.); (F.d.J.B.-C.)
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca 66628, Mexico
| | - Javier Alberto Garza-Cervantes
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza 66455, Mexico; (F.R.R.-R.); (J.A.G.-C.); (F.d.J.B.-C.)
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca 66628, Mexico
| | - Francisco de Jesús Balderas-Cisneros
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza 66455, Mexico; (F.R.R.-R.); (J.A.G.-C.); (F.d.J.B.-C.)
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca 66628, Mexico
| | - José Rubén Morones-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza 66455, Mexico; (F.R.R.-R.); (J.A.G.-C.); (F.d.J.B.-C.)
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca 66628, Mexico
| |
Collapse
|
21
|
Luo QC, Li YY, Ren YS, Yang XH, Zhu DH. Phage WO diversity and evolutionary forces associated with Wolbachia-infected crickets. Front Microbiol 2025; 15:1499315. [PMID: 39845033 PMCID: PMC11750818 DOI: 10.3389/fmicb.2024.1499315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Phage WO represents the sole bacteriophage identified to infect Wolbachia, exerting a range of impacts on the ecological dynamics and evolutionary trajectories of its host. Given the extensive prevalence of Wolbachia across various species, phage WO is likely among the most prolific phage lineages within arthropod populations. To examine the diversity and evolutionary dynamics of phage WO, we conducted a screening for the presence of phage WO in Wolbachia-infected cricket species from China. Methods The presence of phage WO was detected using a PCR-based methodology. To elucidate the evolutionary forces driving phage WO diversity, analyses of intragenic recombination were conducted employing established recombination techniques, and horizontal transmission was investigated through comparative phylogenetic analysis of the phages and their hosts. Results and discussion Out of 19 cricket species infected with Wolbachia, 18 species were found to harbor phage WO. Notably, 13 of these 18 cricket species hosted multiple phage types, with the number of types ranging from two to 10, while the remaining five species harbored a single phage type. Twelve horizontal transmission events of phage WO were identified, wherein common phage WO types were shared among different Wolbachia strains. Notably, each phage WO horizontal transfer event was associated with distinct Wolbachia supergroups, specifically supergroups A, B, and F. Previous studies have found that four Wolbachia strains infect two to five species of crickets. However, among these cricket species, in addition to the shared phage WO types, all harbored species-specific phage WO types. This suggests that Wolbachia in crickets may acquire phage WO types through horizontal viral transfer between eukaryotes, independent of Wolbachia involvement. Furthermore, nine putative recombination events were identified across seven cricket species harboring multiple phage types. These findings suggest that horizontal transmission and intragenic recombination have played a significant role in the evolution of the phage WO genome, effectively enhancing the diversity of phage WO associated with crickets.
Collapse
Affiliation(s)
- Qing-Chen Luo
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Yue-Yuan Li
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Ye-Song Ren
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Xiao-Hui Yang
- College of Life Science, Hunan Normal University, Changsha, China
| | - Dao-Hong Zhu
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
22
|
Segundo-Arizmendi N, Arellano-Maciel D, Rivera-Ramírez A, Piña-González AM, López-Leal G, Hernández-Baltazar E. Bacteriophages: A Challenge for Antimicrobial Therapy. Microorganisms 2025; 13:100. [PMID: 39858868 PMCID: PMC11767365 DOI: 10.3390/microorganisms13010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/22/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Phage therapy, which involves the use of bacteriophages (phages) to combat bacterial infections, is emerging as a promising approach to address the escalating threat posed by multidrug-resistant (MDR) bacteria. This brief review examines the historical background and recent advancements in phage research, focusing on their genomics, interactions with host bacteria, and progress in medical and biotechnological applications. Additionally, we expose key aspects of the mechanisms of action, and therapeutic uses of phage considerations in treating MDR bacterial infections are discussed, particularly in the context of infections related to virus-bacteria interactions.
Collapse
Affiliation(s)
- Nallelyt Segundo-Arizmendi
- Laboratorio de Microbiología y Parasitología, Facultad de Farmacia de la, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico;
| | - Dafne Arellano-Maciel
- Laboratorio de Biología Computacional y Virómica Integrativa, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (D.A.-M.); (A.M.P.-G.)
| | - Abraham Rivera-Ramírez
- Laboratorio de Estudios Ecogenómicos, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico;
| | - Adán Manuel Piña-González
- Laboratorio de Biología Computacional y Virómica Integrativa, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (D.A.-M.); (A.M.P.-G.)
| | - Gamaliel López-Leal
- Laboratorio de Biología Computacional y Virómica Integrativa, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (D.A.-M.); (A.M.P.-G.)
| | - Efren Hernández-Baltazar
- Laboratorio 1 de Tecnología Farmacéutica, Facultad de Farmacia de la, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| |
Collapse
|
23
|
Lu C, He L, Guo Y, Wang T, Ye Y, Lin Z. Synthesis of Headful Packaging Phages Through Yeast Transformation-Associated Recombination. Viruses 2024; 17:45. [PMID: 39861840 PMCID: PMC11769102 DOI: 10.3390/v17010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
De novo synthesis of phage genomes enables flexible genome modification and simplification. This study explores the synthetic genome assembly of Pseudomonas phage vB_PaeS_SCUT-S4 (S4), a 42,932 bp headful packaging phage, which encapsidates a terminally redundant, double-stranded DNA genome exceeding unit length. We demonstrate that using the yeast TAR approach, the S4 genome can be assembled and rebooted from a unit-length genome plus a minimal 60 bp terminal redundant sequence. Furthermore, we show that S4 can be synthesized from arbitrary starting nucleotides and modified with a red fluorescent protein as a reporter. Additionally, we successfully designed and assembled synthetic S4 phages with reduced genomes, knocking out up to 10 of the 24 hypothetical genes simultaneously, with a combined length of 2883 bp, representing 6.7% of the unit-length genome. This work highlights the potential for engineering simplified, customizable headful packaging phage genomes, providing a foundation for future studies of these phages for potential clinical applications.
Collapse
Affiliation(s)
- Cheng Lu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (C.L.); (L.H.); (Y.G.); (T.W.)
| | - Lan He
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (C.L.); (L.H.); (Y.G.); (T.W.)
| | - Yangyijun Guo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (C.L.); (L.H.); (Y.G.); (T.W.)
| | - Tingting Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (C.L.); (L.H.); (Y.G.); (T.W.)
| | - Yanrui Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (C.L.); (L.H.); (Y.G.); (T.W.)
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (C.L.); (L.H.); (Y.G.); (T.W.)
- School of Biomedicine, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
24
|
Dutra MFS, Silva PA, Chen J, Wulff NA. The complete genome sequence of " Candidatus Liberibacter asiaticus" strain 9PA and the characterization of field strains in the Brazilian citriculture. mSphere 2024; 9:e0037624. [PMID: 39526760 DOI: 10.1128/msphere.00376-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
"Candidatus Liberibacter asiaticus" (CLas) is associated with citrus huanglongbing, a severe disease with global importance that affects citrus production in Brazil. This study reports the first complete genome of a Brazilian strain of CLas. The genomic structure comparison of strain 9PA with those of 13 complete CLas genomes revealed 9,091 mismatches and 992 gaps/insertions, highlighting eight locally colinear blocks, among which six are in the prophage region. Phylogenetic analysis categorized 13 CLas genomes into two clusters with 9PA clustered with strains from China and the United States. Whole-genomic comparison identified diverse hypervariable genomic regions (HGRs). Three HGRs in the chromosomal region and three in the prophage region were selected and investigated by polymerase chain reaction. HGRs assessed from 68 samples, from medium- to high-huanglongbing incidence areas in Sao Paulo state, were grouped into haplotypes A to P. Haplotype A, which includes strain 9PA, is the second most prevalent, representing 19.1% of the samples. Haplotype B, the most common, accounts for 42.6%. Together with haplotype C, these make up 72% of the evaluated samples. The 9PA strain has prophage P-9PA-1, both integrated and circularized, and P-9PA-3, only found in a circularized form. Prophages show high identity with SC1 (83%) and P-JXGC-3 (98%). Co-occurrence of both type 1 and 3 prophages was observed in field samples. The approach employed provides insights into the Brazilian CLas population, providing markers for population studies and highlighting the prevalence of type 1 and 3 prophages in the population. IMPORTANCE CLas is a destructive pathogen responsible for causing the severe citrus disease known as huanglongbing. Our study presents the first fully sequenced Brazilian strain of CLas, designated as 9PA, and includes an analysis of two prophages occurring in this strain. The main objective of our research was to compare the genome features of this Brazilian strain with other fully sequenced genomes and to identify its hypervariable genetic regions. These regions were subsequently used to assess genomic variability within both the chromosomal and prophage regions in Brazilian isolates of CLas. Our findings offer valuable insights into the diversified adaptation of CLas.
Collapse
Affiliation(s)
- Michele F S Dutra
- Universidade Estadual Paulista (UNESP), Instituto de Química, Araraquara, Sao Paulo, Brazil
- Departamento de Pesquisa e Desenvolvimento, Fundo de Defesa da Citricultura-Fundecitrus, Araraquara, Sao Paulo, Brazil
| | - Priscila A Silva
- Universidade Estadual de Campinas, Genomics for Climate Change Research Center, Cidade Universitária Zeferino Vaz, Campinas, Sao Paulo, Brazil
| | - Jianchi Chen
- United States Department of Agriculture-Agricultural Research Service, San Joaquín Valley Agricultural Sciences Center, Parlier, California, USA
| | - Nelson A Wulff
- Universidade Estadual Paulista (UNESP), Instituto de Química, Araraquara, Sao Paulo, Brazil
- Departamento de Pesquisa e Desenvolvimento, Fundo de Defesa da Citricultura-Fundecitrus, Araraquara, Sao Paulo, Brazil
| |
Collapse
|
25
|
He T, Xie J, Jin L, Zhao J, Zhang X, Liu H, Li XD. Seasonal dynamics of the phage-bacterium linkage and associated antibiotic resistome in airborne PM 2.5 of urban areas. ENVIRONMENT INTERNATIONAL 2024; 194:109155. [PMID: 39647412 DOI: 10.1016/j.envint.2024.109155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/10/2024]
Abstract
Inhalable microorganisms in airborne fine particulate matter (PM2.5), including bacteria and phages, are major carriers of antibiotic resistance genes (ARGs) with strong ecological linkages and potential health implications for urban populations. A full-spectrum study on ARG carriers and phage-bacterium linkages will shed light on the environmental processes of antibiotic resistance from airborne dissemination to the human lung microbiome. Our metagenomic study reveals the seasonal dynamics of phage communities in PM2.5, their impacts on clinically important ARGs, and potential implications for the human respiratory microbiome in selected cities of China. Gene-sharing network comparisons show that air harbours a distinct phage community connected to human- and water-associated viromes, with 57 % of the predicted hosts being potential bacterial pathogens. The ARGs of common antibiotics, e.g., peptide and tetracycline, dominate both the antibiotic resistome associated with bacteria and phages in PM2.5. Over 60 % of the predicted hosts of vARG-carrying phages are potential bacterial pathogens, and about 67 % of these hosts have not been discovered as direct carriers of the same ARGs. The profiles of ARG-carrying phages are distinct among urban sites, but show a significant enrichment in abundance, diversity, temperate lifestyle, and matches of CRISPR (short for 'clustered regularly interspaced short palindromic repeats') to identified bacterial genomes in winter and spring. Moreover, phages putatively carry 52 % of the total mobile genetic element (MGE)-ARG pairs with a unique 'flu season' pattern in urban areas. This study highlights the role that phages play in the airborne dissemination of ARGs and their delivery of ARGs to specific opportunistic pathogens in human lungs, independent of other pathways of horizontal gene transfer. Natural and anthropogenic stressors, particularly wind speed, UV index, and level of ozone, potentially explained over 80 % of the seasonal dynamics of phage-bacterial pathogen linkages on antibiotic resistance. Therefore, understanding the phage-host linkages in airborne PM2.5, the full-spectrum of antibiotic resistomes, and the potential human pathogens involved, will be of benefit to protect human health in urban areas.
Collapse
Affiliation(s)
- Tangtian He
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Jiawen Xie
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China.
| | - Jue Zhao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Xiaohua Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Hang Liu
- The University Research Facility in Chemical and Environmental Analysis, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Xiang Dong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
26
|
Dhungana G, Nepal R, Houtak G, Bouras G, Vreugde S, Malla R. Preclinical characterization and in silico safety assessment of three virulent bacteriophages targeting carbapenem-resistant uropathogenic Escherichia coli. Int Microbiol 2024; 27:1747-1763. [PMID: 38517580 PMCID: PMC11611945 DOI: 10.1007/s10123-024-00508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/22/2024] [Accepted: 03/10/2024] [Indexed: 03/24/2024]
Abstract
Phage therapy has recently been revitalized in the West with many successful applications against multi-drug-resistant bacterial infections. However, the lack of geographically diverse bacteriophage (phage) genomes has constrained our understanding of phage diversity and its genetics underpinning host specificity, lytic capability, and phage-bacteria co-evolution. This study aims to locally isolate virulent phages against uropathogenic Escherichia coli (E. coli) and study its phenotypic and genomic features. Three obligately virulent Escherichia phages (øEc_Makalu_001, øEc_Makalu_002, and øEc_Makalu_003) that could infect uropathogenic E. coli were isolated and characterized. All three phages belonged to Krischvirus genus. One-step growth curve showed that the latent period of the phages ranged from 15 to 20 min, the outbreak period ~ 50 min, and the burst size ranged between 74 and 127 PFU/bacterium. Moreover, the phages could tolerate a pH range of 6 to 9 and a temperature range of 25-37 °C for up to 180 min without significant loss of phage viability. All phages showed a broad host spectrum and could lyse up to 30% of the 35 tested E. coli isolates. Genomes of all phages were approximately ~ 163 kb with a gene density of 1.73 gene/kbp and an average gene length of ~ 951 bp. The coding density in all phages was approximately 95%. Putative lysin, holin, endolysin, and spanin genes were found in the genomes of all three phages. All phages were strictly virulent with functional lysis modules and lacked any known virulence or toxin genes and antimicrobial resistance genes. Pre-clinical experimental and genomic analysis suggest these phages may be suitable candidates for therapeutic applications.
Collapse
Affiliation(s)
- Gunaraj Dhungana
- Central Department of Biotechnology, Institute of Science and Technology, Tribhuvan University, Kirtipur, Nepal.
- Government of Nepal, Nepal Health Research Council, Kathmandu, Nepal.
| | - Roshan Nepal
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia.
- The Department of Surgery-Otolaryngology Head and Neck Surgery, The Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, South Australia, Australia.
| | - Ghais Houtak
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- The Department of Surgery-Otolaryngology Head and Neck Surgery, The Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- The Department of Surgery-Otolaryngology Head and Neck Surgery, The Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Sarah Vreugde
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- The Department of Surgery-Otolaryngology Head and Neck Surgery, The Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Rajani Malla
- Central Department of Biotechnology, Institute of Science and Technology, Tribhuvan University, Kirtipur, Nepal
| |
Collapse
|
27
|
Nadal-Molero F, Rosselli R, Garcia-Juan S, Campos-Lopez A, Martin-Cuadrado AB. Unveiling host-parasite relationships through conserved MITEs in prokaryote and viral genomes. Nucleic Acids Res 2024; 52:13094-13109. [PMID: 39470691 PMCID: PMC11602168 DOI: 10.1093/nar/gkae906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/27/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024] Open
Abstract
Transposable elements (TEs) play a pivotal role in the evolution of genomes across all life domains. 'Miniature Inverted-repeat Transposable-Elements' (MITEs) are non-autonomous TEs mainly located in intergenic regions, relying on external transposases for mobilization. The extent of MITEs' mobilome was explored across nearly 1700 prokaryotic genera, 183 232 genomes, revealing a broad distribution. MITEs were identified in 56.5% of genomes, totaling over 1.4 million cMITEs (cellular MITEs). Cluster analysis revealed that 97.4% of cMITEs were specific within genera boundaries, with up to 23% being species-specific. Subsequently, this genus-specificity was evaluated as a method to link microbial host to their viruses. A total of 51 655 cMITEs had counterparts in viral sequences, termed vMITEs (viral MITEs), resulting in the identification of 2500 viral sequences with them. Among these, 1501 sequences were positively assigned to a previously known host (41.8% were isolated viruses and 12.3% were assigned through CRISPR data), while 379 new host-virus associations were predicted. Deeper analysis in Neisseria and Bacteroidota groups allowed the association of 242 and 530 new viral sequences, respectively. MITEs are proposed as a novel approach to establishing valid virus-host relationships.
Collapse
Affiliation(s)
- Francisco Nadal-Molero
- Department of Physiology, Genetics and Microbiology, University of Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Riccardo Rosselli
- Department of Physiology, Genetics and Microbiology, University of Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Silvia Garcia-Juan
- Department of Physiology, Genetics and Microbiology, University of Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Alicia Campos-Lopez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Ana-Belen Martin-Cuadrado
- Department of Physiology, Genetics and Microbiology, University of Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| |
Collapse
|
28
|
Peters TL, Schow J, Spencer E, Van Leuven JT, Wichman H, Miller C. Directed evolution of bacteriophages: thwarted by prolific prophage. Appl Environ Microbiol 2024; 90:e0088424. [PMID: 39475284 DOI: 10.1128/aem.00884-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/27/2024] [Indexed: 11/06/2024] Open
Abstract
Various directed evolution methods exist that seek to procure bacteriophages with expanded host ranges, typically targeting phage-resistant or non-permissive bacterial hosts. The general premise of these methods involves propagating phage(s) on multiple bacterial hosts, pooling the lysate, and repeating this process until phage(s) can form plaques on the target host(s). In theory, this produces a lysate containing input phages and their evolved phage progeny. However, in practice, this lysate can also include prophages originating from bacterial hosts. Here, we describe our experience implementing one directed evolution method, the Appelmans protocol, to study phage evolution in the Pseudomonas aeruginosa phage-host system, where we observed rapid host-range expansion of the phage cocktail. Further experimentation and sequencing revealed that the observed host-range expansion was due to a Casadabanvirus prophage originating from a lysogenic host that was only included in the first three rounds of the experiment. This prophage could infect five of eight bacterial hosts initially used, allowing it to persist and proliferate until the termination of the experiment. This prophage was represented in half of the sequenced phage samples isolated from the Appelmans experiment, but despite being subjected to directed evolution conditions, it does not appear to have evolved. This work highlights the impact of prophages in directed evolution experiments and the importance of genetically verifying output phages, particularly for those attempting to procure phages intended for phage therapy applications. This study also notes the usefulness of intraspecies antagonism assays between bacterial host strains to establish a baseline for inhibitory activity and determine the presence of prophage.IMPORTANCEDirected evolution is a common strategy for evolving phages to expand the host range, often targeting pathogenic strains of bacteria. In this study, we investigated phage host-range expansion using directed evolution in the Pseudomonas aeruginosa system. We show that prophages are active players in directed evolution and can contribute to observation of host-range expansion. Since prophages are prevalent in bacterial hosts, particularly pathogenic strains of bacteria, and all directed evolution approaches involve iteratively propagating phage on one or more bacterial hosts, the presence of prophage in phage preparations is a factor that needs to be considered in experimental design and interpretation of results. These results highlight the importance of screening for prophages either genetically or through intraspecies antagonism assays during selection of bacterial strains and will contribute to improving the experimental design of future directed evolution studies.
Collapse
Affiliation(s)
- Tracey Lee Peters
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, USA
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Jacob Schow
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Emma Spencer
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - James T Van Leuven
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, USA
| | - Holly Wichman
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, USA
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Craig Miller
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
29
|
Taner F, Baddal B, Theodoridis L, Petrovski S. Biofilm Production in Intensive Care Units: Challenges and Implications. Pathogens 2024; 13:954. [PMID: 39599508 PMCID: PMC11597785 DOI: 10.3390/pathogens13110954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
The prevalence of infections amongst intensive care unit (ICU) patients is inevitably high, and the ICU is considered the epicenter for the spread of multidrug-resistant bacteria. Multiple studies have focused on the microbial diversity largely inhabiting ICUs that continues to flourish despite treatment with various antibiotics, investigating the factors that influence the spread of these pathogens, with the aim of implementing sufficient monitoring and infection control methods. Despite joint efforts from healthcare providers and policymakers, ICUs remain a hub for healthcare-associated infections. While persistence is a unique strategy used by these pathogens, multiple other factors can lead to persistent infections and antimicrobial tolerance in the ICU. Despite the recognition of the detrimental effects biofilm-producing pathogens have on ICU patients, overcoming biofilm formation in ICUs continues to be a challenge. This review focuses on various facets of ICUs that may contribute to and/or enhance biofilm production. A comprehensive survey of the literature reveals the apparent need for additional molecular studies to assist in understanding the relationship between biofilm regulation and the adaptive behavior of pathogens in the ICU environment. A better understanding of the interplay between biofilm production and antibiotic resistance within the environmental cues exhibited particularly by the ICU may also reveal ways to limit biofilm production and indivertibly control the spread of antibiotic-resistant pathogens in ICUs.
Collapse
Affiliation(s)
- Ferdiye Taner
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, 99138 Nicosia, Cyprus;
- DESAM Research Institute, Near East University, 99138 Nicosia, Cyprus
| | - Buket Baddal
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, 99138 Nicosia, Cyprus;
- DESAM Research Institute, Near East University, 99138 Nicosia, Cyprus
| | - Liana Theodoridis
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC 3086, Australia; (L.T.); (S.P.)
| | - Steve Petrovski
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC 3086, Australia; (L.T.); (S.P.)
| |
Collapse
|
30
|
Chaudhary V, Kajla P, Lather D, Chaudhary N, Dangi P, Singh P, Pandiselvam R. Bacteriophages: a potential game changer in food processing industry. Crit Rev Biotechnol 2024; 44:1325-1349. [PMID: 38228500 DOI: 10.1080/07388551.2023.2299768] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/16/2023] [Accepted: 10/03/2023] [Indexed: 01/18/2024]
Abstract
In the food industry, despite the widespread use of interventions such as preservatives and thermal and non-thermal processing technologies to improve food safety, incidences of foodborne disease continue to happen worldwide, prompting the search for alternative strategies. Bacteriophages, commonly known as phages, have emerged as a promising alternative for controlling pathogenic bacteria in food. This review emphasizes the potential applications of phages in biological sciences, food processing, and preservation, with a particular focus on their role as biocontrol agents for improving food quality and preservation. By shedding light on recent developments and future possibilities, this review highlights the significance of phages in the food industry. Additionally, it addresses crucial aspects such as regulatory status and safety concerns surrounding the use of bacteriophages. The inclusion of up-to-date literature further underscores the relevance of phage-based strategies in reducing foodborne pathogenic bacteria's presence in both food and the production environment. As we look ahead, new phage products are likely to be targeted against emerging foodborne pathogens. This will further advance the efficacy of approaches that are based on phages in maintaining the safety and security of food.
Collapse
Affiliation(s)
- Vandana Chaudhary
- Department of Dairy Technology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Priyanka Kajla
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Deepika Lather
- Department of Veterinary Pathology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Nisha Chaudhary
- Department of Food Science and Technology, College of Agriculture, Agriculture University, Jodhpur, Rajasthan, India
| | - Priya Dangi
- Department of Food and Nutrition and Food Technology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Punit Singh
- Department of Mechanical Engineering, Institute of Engineering and Technology, GLA University Mathura, Mathura, Uttar Pradesh, India
| | - Ravi Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR -Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| |
Collapse
|
31
|
Lund MC, Hopkins A, Dayaram A, Galatowitsch ML, Stainton D, Harding JS, Lefeuvre P, Zhu Q, Kraberger S, Varsani A. Diverse microviruses circulating in invertebrates within a lake ecosystem. J Gen Virol 2024; 105. [PMID: 39565345 DOI: 10.1099/jgv.0.002049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Microviruses are single-stranded DNA bacteriophages and members of the highly diverse viral family Microviridae. Microviruses have a seemingly ubiquitous presence across animal gut microbiomes and other global environmental ecosystems. Most of the studies on microvirus diversity so far have been associated with vertebrate gut viromes. In this study, we investigate the less explored invertebrate microviruses in a freshwater ecosystem. We analysed microviruses from invertebrates in the Chironomidae, Gastropoda, Odonata, Sphaeriidae, Unionidae clades, as well as from water and benthic sediment sampled from a lake ecosystem in New Zealand. Using gene-sharing networks and an expanded framework of informal and proposed microvirus subfamilies, the 463 distinct microvirus genomes identified in this study were grouped as follows: 382 genomes in the Gokushovirinae subfamily and 47 in the Pichovirinae subfamily clade, 18 belonging to Group D, 3 belonging to the proposed Alpavirinae subfamily clade, 1 belonging to the proposed Occultatumvirinae/Tainavirinae subfamilies clade and 12 belonging to an undefined viral cluster VC 1. Inverse associations of microviruses were noted between environmental benthic sediment samples and the Odonata group, while 'defended' invertebrates in the Gastropoda, Sphaeriidae and Unionidae groups showed correlative associations in the principal coordinate analysis of unique microvirus genomes (each genome sharing <98% genome-wide pairwise identity with each other) across sample types. This study expands the known diversity of microviruses and highlights the diversity of these relatively poorly classified bacteriophages.
Collapse
Affiliation(s)
- Michael C Lund
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Andrew Hopkins
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Anisha Dayaram
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | - Daisy Stainton
- School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| | - Jon S Harding
- School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| | - Pierre Lefeuvre
- CIRAD, UMR PVBMT, College of Agriculture, Can Tho University, Can Tho, Vietnam
| | - Qiyun Zhu
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Simona Kraberger
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Arvind Varsani
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative, Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| |
Collapse
|
32
|
Costa P, Pereira C, Romalde JL, Almeida A. A game of resistance: War between bacteria and phages and how phage cocktails can be the solution. Virology 2024; 599:110209. [PMID: 39186863 DOI: 10.1016/j.virol.2024.110209] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
While phages hold promise as an antibiotic alternative, they encounter significant challenges in combating bacterial infections, primarily due to the emergence of phage-resistant bacteria. Bacterial defence mechanisms like superinfection exclusion, CRISPR, and restriction-modification systems can hinder phage effectiveness. Innovative strategies, such as combining different phages into cocktails, have been explored to address these challenges. This review delves into these defence mechanisms and their impact at each stage of the infection cycle, their challenges, and the strategies phages have developed to counteract them. Additionally, we examine the role of phage cocktails in the evolving landscape of antibacterial treatments and discuss recent studies that highlight the effectiveness of diverse phage cocktails in targeting essential bacterial receptors and combating resistant strains.
Collapse
Affiliation(s)
- Pedro Costa
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Carla Pereira
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Jesús L Romalde
- Department of Microbiology and Parasitology, CRETUS & CIBUS - Faculty of Biology, University of Santiago de Compostela, CP 15782 Santiago de Compostela, Spain.
| | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
33
|
Evseev P, Gutnik D, Evpak A, Kasimova A, Miroshnikov K. Origin, Evolution and Diversity of φ29-like Phages-Review and Bioinformatic Analysis. Int J Mol Sci 2024; 25:10838. [PMID: 39409167 PMCID: PMC11476376 DOI: 10.3390/ijms251910838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Phage φ29 and related bacteriophages are currently the smallest known tailed viruses infecting various representatives of both Gram-positive and Gram-negative bacteria. They are characterised by genomic content features and distinctive properties that are unique among known tailed phages; their characteristics include protein primer-driven replication and a packaging process characteristic of this group. Searches conducted using public genomic databases revealed in excess of 2000 entries, including bacteriophages, phage plasmids and sequences identified as being archaeal that share the characteristic features of phage φ29. An analysis of predicted proteins, however, indicated that the metagenomic sequences attributed as archaeal appear to be misclassified and belong to bacteriophages. An analysis of the translated polypeptides of major capsid proteins (MCPs) of φ29-related phages indicated the dissimilarity of MCP sequences to those of almost all other known Caudoviricetes groups and a possible distant relationship to MCPs of T7-like (Autographiviridae) phages. Sequence searches conducted using HMM revealed the relatedness between the main structural proteins of φ29-like phages and an unusual lactococcal phage, KSY1 (Chopinvirus KSY1), whose genome contains two genes of RNA polymerase that are similar to the RNA polymerases of phages of the Autographiviridae and Schitoviridae (N4-like) families. An analysis of the tail tube proteins of φ29-like phages indicated their dissimilarity of the lower collar protein to tail proteins of all other viral groups, but revealed its possible distant relatedness with proteins of toxin translocation complexes. The combination of the unique features and distinctive origin of φ29-related phages suggests the categorisation of this vast group in a new order or as a new taxon of a higher rank.
Collapse
Affiliation(s)
- Peter Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, 117997 Moscow, Russia
- Laboratory of Molecular Microbiology, Pirogov Russian National Research Medical University, Ostrovityanova Street 1, 117997 Moscow, Russia
| | - Daria Gutnik
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorsakaya Street, 3, 664033 Irkutsk, Russia
| | - Alena Evpak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, 117997 Moscow, Russia
| | - Anastasia Kasimova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt, 47, 119991 Moscow, Russia
| | - Konstantin Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, 117997 Moscow, Russia
| |
Collapse
|
34
|
Feiss M, Sippy JA. DNA Packaging Specificity in the λ-Like Phages: Gifsy-1. Mol Microbiol 2024; 122:491-503. [PMID: 39233649 DOI: 10.1111/mmi.15306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
DNA viruses recognize viral DNA and package it into virions. Specific recognition is needed to distinguish viral DNA from host cell DNA. The λ-like Escherichia coli phages are interesting and good models to examine genome packaging by large DNA viruses. Gifsy-1 is a λ-like Salmonella phage. Gifsy-1's DNA packaging specificity was compared with those of closely related phages λ, 21, and N15. In vivo packaging studies showed that a Gifsy-1-specific phage packaged λ DNA at ca. 50% efficiency and λ packages Gifsy-1-specific DNA at ~30% efficiency. The results indicate that Gifsy-1 and λ share the same DNA packaging specificity. N15 is also shown to package Gifsy-1 DNA. Phage 21 fails to package λ, N15, and Gifsy-1-specific DNAs; the efficiencies are 0.01%, 0.01%, and 1%, respectively. A known incompatibility between the 21 helix-turn-helix motif and cosBλ is proposed to account for the inability of 21 to package Gifsy-1 DNA. A model is proposed to explain the 100-fold difference in packaging efficiency between λ and Gifsy-1-specific DNAs by phage 21. Database sequences of enteric prophages indicate that phages with Gifsy-1's DNA packaging determinants are confined to Salmonella species. Similarly, prophages with λ DNA packaging specificity are rarely found in Salmonella. It is proposed that λ and Gifsy-1 have diverged from a common ancestor phage, and that the differences may reflect adaptation of their packaging systems to host cell differences.
Collapse
Affiliation(s)
- Michael Feiss
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jean Arens Sippy
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
35
|
Heller DM, Sivanathan V, Asai DJ, Hatfull GF. SEA-PHAGES and SEA-GENES: Advancing Virology and Science Education. Annu Rev Virol 2024; 11:1-20. [PMID: 38684129 DOI: 10.1146/annurev-virology-113023-110757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Research opportunities for undergraduate students are strongly advantageous, but implementation at a large scale presents numerous challenges. The enormous diversity of the bacteriophage population and a supportive programmatic structure provide opportunities to engage early-career undergraduates in phage discovery, genomics, and genetics. The Science Education Alliance (SEA) is an inclusive Research-Education Community (iREC) providing centralized programmatic support for students and faculty without prior experience in virology at institutions from community colleges to research-active universities to participate in two course-based projects, SEA-PHAGES (SEA Phage Hunters Advancing Genomic and Evolutionary Science) and SEA-GENES (SEA Gene-function Exploration by a Network of Emerging Scientists). Since 2008, the SEA has supported more than 50,000 undergraduate researchers who have isolated more than 23,000 bacteriophages of which more than 4,500 are fully sequenced and annotated. Students have functionally characterized hundreds of phage genes, and the phage collection has fueled the therapeutic use of phages for treatment of Mycobacterium infections. Participation in the SEA promotes student persistence in science education, and its inclusivity promotes a more equitable scientific community.
Collapse
Affiliation(s)
- Danielle M Heller
- Center for the Advancement of Science Leadership and Culture, Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Viknesh Sivanathan
- Center for the Advancement of Science Leadership and Culture, Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - David J Asai
- Center for the Advancement of Science Leadership and Culture, Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| |
Collapse
|
36
|
Pyle JD, Lund SR, O'Toole KH, Saleh L. Virus-encoded glycosyltransferases hypermodify DNA with diverse glycans. Cell Rep 2024; 43:114631. [PMID: 39154342 DOI: 10.1016/j.celrep.2024.114631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Enzymatic modification of DNA nucleobases can coordinate gene expression, nuclease protection, or mutagenesis. We recently discovered a clade of phage-specific cytosine methyltransferase (MT) and 5-methylpyrimidine dioxygenase (5mYOX) enzymes that produce 5-hydroxymethylcytosine (5hmC) as a precursor for enzymatic hypermodifications on viral genomes. Here, we identify phage MT- and 5mYOX-associated glycosyltransferases (GTs) that catalyze linkage of diverse sugars to 5hmC nucleobase substrates. Metavirome mining revealed thousands of biosynthetic gene clusters containing enzymes with predicted roles in cytosine sugar hypermodification. We developed a platform for high-throughput screening of GT-containing pathways, relying on the Escherichia coli metabolome as a substrate pool. We successfully reconstituted several pathways and isolated diverse sugar modifications appended to cytosine, including mono-, di-, or tri-saccharides comprised of hexoses, N-acetylhexosamines, or heptose. These findings expand our knowledge of hypermodifications on nucleic acids and the origins of corresponding sugar-installing enzymes.
Collapse
Affiliation(s)
- Jesse D Pyle
- Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Sean R Lund
- Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Katherine H O'Toole
- Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Lana Saleh
- Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA.
| |
Collapse
|
37
|
Belay WY, Getachew M, Tegegne BA, Teffera ZH, Dagne A, Zeleke TK, Abebe RB, Gedif AA, Fenta A, Yirdaw G, Tilahun A, Aschale Y. Mechanism of antibacterial resistance, strategies and next-generation antimicrobials to contain antimicrobial resistance: a review. Front Pharmacol 2024; 15:1444781. [PMID: 39221153 PMCID: PMC11362070 DOI: 10.3389/fphar.2024.1444781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Antibacterial drug resistance poses a significant challenge to modern healthcare systems, threatening our ability to effectively treat bacterial infections. This review aims to provide a comprehensive overview of the types and mechanisms of antibacterial drug resistance. To achieve this aim, a thorough literature search was conducted to identify key studies and reviews on antibacterial resistance mechanisms, strategies and next-generation antimicrobials to contain antimicrobial resistance. In this review, types of resistance and major mechanisms of antibacterial resistance with examples including target site modifications, decreased influx, increased efflux pumps, and enzymatic inactivation of antibacterials has been discussed. Moreover, biofilm formation, and horizontal gene transfer methods has also been included. Furthermore, measures (interventions) taken to control antimicrobial resistance and next-generation antimicrobials have been discussed in detail. Overall, this review provides valuable insights into the diverse mechanisms employed by bacteria to resist the effects of antibacterial drugs, with the aim of informing future research and guiding antimicrobial stewardship efforts.
Collapse
Affiliation(s)
- Wubetu Yihunie Belay
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Melese Getachew
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu Teffera
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Dagne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Tirsit Ketsela Zeleke
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Rahel Belete Abebe
- Department of clinical pharmacy, College of medicine and health sciences, University of Gondar, Gondar, Ethiopia
| | - Abebaw Abie Gedif
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Fenta
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Getasew Yirdaw
- Department of environmental health science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Adane Tilahun
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yibeltal Aschale
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
38
|
Gauthier CH, Hatfull GF. A Bioinformatic Ecosystem for Bacteriophage Genomics: PhaMMSeqs, Phamerator, pdm_utils, PhagesDB, DEPhT, and PhamClust. Viruses 2024; 16:1278. [PMID: 39205252 PMCID: PMC11359507 DOI: 10.3390/v16081278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
The last thirty years have seen a meteoric rise in the number of sequenced bacteriophage genomes, spurred on by both the rise and success of groups working to isolate and characterize phages, and the rapid and significant technological improvements and reduced costs associated with sequencing their genomes. Over the course of these decades, the tools used to glean evolutionary insights from these sequences have grown more complex and sophisticated, and we describe here the suite of computational and bioinformatic tools used extensively by the integrated research-education communities such as SEA-PHAGES and PHIRE, which are jointly responsible for 25% of all complete phage genomes in the RefSeq database. These tools are used to integrate and analyze phage genome data from different sources, for identification and precise extraction of prophages from bacterial genomes, computing "phamilies" of related genes, and displaying the complex nucleotide and amino acid level mosaicism of these genomes. While over 50,000 SEA-PHAGES students have primarily benefitted from these tools, they are freely available for the phage community at large.
Collapse
Affiliation(s)
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| |
Collapse
|
39
|
Soro O, Kigen C, Nyerere A, Gachoya M, Georges M, Odoyo E, Musila L. Characterization and Anti-Biofilm Activity of Lytic Enterococcus Phage vB_Efs8_KEN04 against Clinical Isolates of Multidrug-Resistant Enterococcus faecalis in Kenya. Viruses 2024; 16:1275. [PMID: 39205249 PMCID: PMC11360260 DOI: 10.3390/v16081275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Enterococcus faecalis (E. faecalis) is a growing cause of nosocomial and antibiotic-resistant infections. Treating drug-resistant E. faecalis requires novel approaches. The use of bacteriophages (phages) against multidrug-resistant (MDR) bacteria has recently garnered global attention. Biofilms play a vital role in E. faecalis pathogenesis as they enhance antibiotic resistance. Phages eliminate biofilms by producing lytic enzymes, including depolymerases. In this study, Enterococcus phage vB_Efs8_KEN04, isolated from a sewage treatment plant in Nairobi, Kenya, was tested against clinical strains of MDR E. faecalis. This phage had a broad host range against 100% (26/26) of MDR E. faecalis clinical isolates and cross-species activity against Enterococcus faecium. It was able to withstand acidic and alkaline conditions, from pH 3 to 11, as well as temperatures between -80 °C and 37 °C. It could inhibit and disrupt the biofilms of MDR E. faecalis. Its linear double-stranded DNA genome of 142,402 bp contains 238 coding sequences with a G + C content and coding gene density of 36.01% and 91.46%, respectively. Genomic analyses showed that phage vB_Efs8_KEN04 belongs to the genus Kochikohdavirus in the family Herelleviridae. It lacked antimicrobial resistance, virulence, and lysogeny genes, and its stability, broad host range, and cross-species lysis indicate strong potential for the treatment of Enterococcus infections.
Collapse
Affiliation(s)
- Oumarou Soro
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology, and Innovation, Nairobi P.O. Box 62000-00200, Kenya;
| | - Collins Kigen
- Department of Emerging Infectious Diseases, Walter Reed Army Institute of Research-Africa, Nairobi P.O. Box 606-00621, Kenya; (C.K.); (M.G.); (M.G.); (E.O.)
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| | - Andrew Nyerere
- Department of Medical Microbiology, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya;
| | - Moses Gachoya
- Department of Emerging Infectious Diseases, Walter Reed Army Institute of Research-Africa, Nairobi P.O. Box 606-00621, Kenya; (C.K.); (M.G.); (M.G.); (E.O.)
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| | - Martin Georges
- Department of Emerging Infectious Diseases, Walter Reed Army Institute of Research-Africa, Nairobi P.O. Box 606-00621, Kenya; (C.K.); (M.G.); (M.G.); (E.O.)
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| | - Erick Odoyo
- Department of Emerging Infectious Diseases, Walter Reed Army Institute of Research-Africa, Nairobi P.O. Box 606-00621, Kenya; (C.K.); (M.G.); (M.G.); (E.O.)
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| | - Lillian Musila
- Department of Emerging Infectious Diseases, Walter Reed Army Institute of Research-Africa, Nairobi P.O. Box 606-00621, Kenya; (C.K.); (M.G.); (M.G.); (E.O.)
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| |
Collapse
|
40
|
An Q, Wang Y, Tian Z, Han J, Li J, Liao F, Yu F, Zhao H, Wen Y, Zhang H, Deng Z. Molecular and structural basis of an ATPase-nuclease dual-enzyme anti-phage defense complex. Cell Res 2024; 34:545-555. [PMID: 38834762 PMCID: PMC11291478 DOI: 10.1038/s41422-024-00981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024] Open
Abstract
Coupling distinct enzymatic effectors emerges as an efficient strategy for defense against phage infection in bacterial immune responses, such as the widely studied nuclease and cyclase activities in the type III CRISPR-Cas system. However, concerted enzymatic activities in other bacterial defense systems are poorly understood. Here, we biochemically and structurally characterize a two-component defense system DUF4297-HerA, demonstrating that DUF4297-HerA confers resistance against phage infection by cooperatively cleaving dsDNA and hydrolyzing ATP. DUF4297 alone forms a dimer, and HerA alone exists as a nonplanar split spiral hexamer, both of which exhibit extremely low enzymatic activity. Interestingly, DUF4297 and HerA assemble into an approximately 1 MDa supramolecular complex, where two layers of DUF4297 (6 DUF4297 molecules per layer) linked via inter-layer dimerization of neighboring DUF4297 molecules are stacked on top of the HerA hexamer. Importantly, the complex assembly promotes dimerization of DUF4297 molecules in the upper layer and enables a transition of HerA from a nonplanar hexamer to a planar hexamer, thus activating their respective enzymatic activities to abrogate phage infection. Together, our findings not only characterize a novel dual-enzyme anti-phage defense system, but also reveal a unique activation mechanism by cooperative complex assembly in bacterial immunity.
Collapse
Affiliation(s)
- Qiyin An
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenhua Tian
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Han
- Department of Human Anatomy, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jinyue Li
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Fumeng Liao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Feiyang Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Haiyan Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yancheng Wen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian, China
| | - Heng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zengqin Deng
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China.
| |
Collapse
|
41
|
Trgovec-Greif L, Hellinger HJ, Mainguy J, Pfundner A, Frishman D, Kiening M, Webster NS, Laffy PW, Feichtinger M, Rattei T. VOGDB-Database of Virus Orthologous Groups. Viruses 2024; 16:1191. [PMID: 39205165 PMCID: PMC11360334 DOI: 10.3390/v16081191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Computational models of homologous protein groups are essential in sequence bioinformatics. Due to the diversity and rapid evolution of viruses, the grouping of protein sequences from virus genomes is particularly challenging. The low sequence similarities of homologous genes in viruses require specific approaches for sequence- and structure-based clustering. Furthermore, the annotation of virus genomes in public databases is not as consistent and up to date as for many cellular genomes. To tackle these problems, we have developed VOGDB, which is a database of virus orthologous groups. VOGDB is a multi-layer database that progressively groups viral genes into groups connected by increasingly remote similarity. The first layer is based on pair-wise sequence similarities, the second layer is based on the sequence profile alignments, and the third layer uses predicted protein structures to find the most remote similarity. VOGDB groups allow for more sensitive homology searches of novel genes and increase the chance of predicting annotations or inferring phylogeny. VOGD B uses all virus genomes from RefSeq and partially reannotates them. VOGDB is updated with every RefSeq release. The unique feature of VOGDB is the inclusion of both prokaryotic and eukaryotic viruses in the same clustering process, which makes it possible to explore old evolutionary relationships of the two groups. VOGDB is freely available at vogdb.org under the CC BY 4.0 license.
Collapse
Affiliation(s)
- Lovro Trgovec-Greif
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
- Doctoral School of Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Hans-Jörg Hellinger
- Doctoral School of Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
- Armaments and Defence Technology Agency, Austria
| | | | - Alexander Pfundner
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
- Doctoral School of Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Dmitrij Frishman
- Department of Bioinformatics, School of Life Sciences, Technical University Munich, 85350 Freising, Germany
| | - Michael Kiening
- Department of Bioinformatics, School of Life Sciences, Technical University Munich, 85350 Freising, Germany
| | - Nicole Suzanne Webster
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville 4810, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7000, Australia
- Australian Centre for Ecogenomics, University of Queensland, Brisbane 4072, Australia
| | - Patrick William Laffy
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville 4810, Australia
| | - Michael Feichtinger
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Thomas Rattei
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
42
|
Lohrmann C, Holm C, Datta SS. Influence of bacterial swimming and hydrodynamics on attachment of phages. SOFT MATTER 2024; 20:4795-4805. [PMID: 38847805 DOI: 10.1039/d4sm00060a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Bacteriophages ("phages") are viruses that infect bacteria. Since they do not actively self-propel, phages rely on thermal diffusion to find target cells-but can also be advected by fluid flows, such as those generated by motile bacteria themselves in bulk fluids. How does the flow field generated by a swimming bacterium influence how it encounters phages? Here, we address this question using coupled molecular dynamics and lattice Boltzmann simulations of flagellated bacteria swimming through a bulk fluid containing uniformly-dispersed phages. We find that while swimming increases the rate at which phages attach to both the cell body and flagellar propeller, hydrodynamic interactions strongly suppress this increase at the cell body, but conversely enhance this increase at the flagellar bundle. Our results highlight the pivotal influence of hydrodynamics on the interactions between bacteria and phages, as well as other diffusible species, in microbial environments.
Collapse
Affiliation(s)
- Christoph Lohrmann
- Institute for Computational Physics, University of Stuttgart, 70569 Stuttgart, Germany.
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, 70569 Stuttgart, Germany.
| | - Sujit S Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA.
| |
Collapse
|
43
|
Ridgway R, Lu H, Blower TR, Evans NJ, Ainsworth S. Genomic and taxonomic evaluation of 38 Treponema prophage sequences. BMC Genomics 2024; 25:549. [PMID: 38824509 PMCID: PMC11144348 DOI: 10.1186/s12864-024-10461-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/28/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Despite Spirochetales being a ubiquitous and medically important order of bacteria infecting both humans and animals, there is extremely limited information regarding their bacteriophages. Of the genus Treponema, there is just a single reported characterised prophage. RESULTS We applied a bioinformatic approach on 24 previously published Treponema genomes to identify and characterise putative treponemal prophages. Thirteen of the genomes did not contain any detectable prophage regions. The remaining eleven contained 38 prophage sequences, with between one and eight putative prophages in each bacterial genome. The prophage regions ranged from 12.4 to 75.1 kb, with between 27 and 171 protein coding sequences. Phylogenetic analysis revealed that 24 of the prophages formed three distinct sequence clusters, identifying putative myoviral and siphoviral morphology. ViPTree analysis demonstrated that the identified sequences were novel when compared to known double stranded DNA bacteriophage genomes. CONCLUSIONS In this study, we have started to address the knowledge gap on treponeme bacteriophages by characterising 38 prophage sequences in 24 treponeme genomes. Using bioinformatic approaches, we have been able to identify and compare the prophage-like elements with respect to other bacteriophages, their gene content, and their potential to be a functional and inducible bacteriophage, which in turn can help focus our attention on specific prophages to investigate further.
Collapse
Affiliation(s)
- Rachel Ridgway
- Department of Infection Biology and Microbiomes, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Cheshire, CH64 7TE, UK.
| | - Hanshuo Lu
- Department of Infection Biology and Microbiomes, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7BE, UK
| | - Tim R Blower
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Nicholas James Evans
- Department of Infection Biology and Microbiomes, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Cheshire, CH64 7TE, UK
| | - Stuart Ainsworth
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool Science Park IC2, 146 Brownlow Hill, Liverpool, L3 5RF, UK
| |
Collapse
|
44
|
Kobakhidze S, Koulouris S, Kakabadze N, Kotetishvili M. Genetic recombination-mediated evolutionary interactions between phages of potential industrial importance and prophages of their hosts within or across the domains of Escherichia, Listeria, Salmonella, Campylobacter, and Staphylococcus. BMC Microbiol 2024; 24:155. [PMID: 38704526 PMCID: PMC11069274 DOI: 10.1186/s12866-024-03312-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND The in-depth understanding of the role of lateral genetic transfer (LGT) in phage-prophage interactions is essential to rationalizing phage applications for human and animal therapy, as well as for food and environmental safety. This in silico study aimed to detect LGT between phages of potential industrial importance and their hosts. METHODS A large array of genetic recombination detection algorithms, implemented in SplitsTree and RDP4, was applied to detect LGT between various Escherichia, Listeria, Salmonella, Campylobacter, Staphylococcus, Pseudomonas, and Vibrio phages and their hosts. PHASTER and RAST were employed respectively to identify prophages across the host genome and to annotate LGT-affected genes with unknown functions. PhageAI was used to gain deeper insights into the life cycle history of recombined phages. RESULTS The split decomposition inferences (bootstrap values: 91.3-100; fit: 91.433-100), coupled with the Phi (0.0-2.836E-12) and RDP4 (P being well below 0.05) statistics, provided strong evidence for LGT between certain Escherichia, Listeria, Salmonella, and Campylobacter virulent phages and prophages of their hosts. The LGT events entailed mainly the phage genes encoding for hypothetical proteins, while some of these genetic loci appeared to have been affected even by intergeneric recombination in specific E. coli and S. enterica virulent phages when interacting with their host prophages. Moreover, it is shown that certain L. monocytogenes virulent phages could serve at least as the donors of the gene loci, involved in encoding for the basal promoter specificity factor, for L. monocytogenes. In contrast, the large genetic clusters were determined to have been simultaneously exchanged by many S. aureus prophages and some Staphylococcus temperate phages proposed earlier as potential therapeutic candidates (in their native or modified state). The above genetic clusters were found to encompass multiple genes encoding for various proteins, such as e.g., phage tail proteins, the capsid and scaffold proteins, holins, and transcriptional terminator proteins. CONCLUSIONS It is suggested that phage-prophage interactions, mediated by LGT (including intergeneric recombination), can have a far-reaching impact on the co-evolutionary trajectories of industrial phages and their hosts especially when excessively present across microbially rich environments.
Collapse
Affiliation(s)
- Saba Kobakhidze
- Hygiene and Medical Ecology, G. Natadze Scientific-Research Institute of Sanitary, 78 D. Uznadze St. 0102, Tbilisi, Georgia
- Faculty of Medicine, Iv. Javakhishvili Tbilisi State University, 1 Ilia Chavchavadze Ave. 0179, Tbilisi, Georgia
| | - Stylianos Koulouris
- Directorate General for Health and Food Safety (DG-SANTE), European Commission, 1049, Bruxelles/Brussel, Belgium
| | - Nata Kakabadze
- Hygiene and Medical Ecology, G. Natadze Scientific-Research Institute of Sanitary, 78 D. Uznadze St. 0102, Tbilisi, Georgia
| | - Mamuka Kotetishvili
- Hygiene and Medical Ecology, G. Natadze Scientific-Research Institute of Sanitary, 78 D. Uznadze St. 0102, Tbilisi, Georgia.
- Scientific Research Institute, School of Science and Technology, the University of Georgia, 77a M. Kostava St., 0171, Tbilisi, Georgia.
| |
Collapse
|
45
|
Xie K, Lin B, Sun X, Zhu P, Liu C, Liu G, Cao X, Pan J, Qiu S, Yuan X, Liang M, Jiang J, Yuan L. Identification and classification of the genomes of novel microviruses in poultry slaughterhouse. Front Microbiol 2024; 15:1393153. [PMID: 38756731 PMCID: PMC11096546 DOI: 10.3389/fmicb.2024.1393153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Microviridae is a family of phages with circular ssDNA genomes and they are widely found in various environments and organisms. In this study, virome techniques were employed to explore potential members of Microviridae in a poultry slaughterhouse, leading to the identification of 98 novel and complete microvirus genomes. Using a similarity clustering network classification approach, these viruses were found to belong to at least 6 new subfamilies within Microviridae and 3 higher-level taxonomic units. Genome size, GC content and genome structure of these new taxa showed evident regularities, validating the rationality of our classification method. Our method can divide microviruses into about 45 additional detailed clusters, which may serve as a new standard for classifying Microviridae members. Furthermore, by addressing the scarcity of host information for microviruses, the current study significantly broadened their host range and discovered over 20 possible new hosts, including important pathogenic bacteria such as Helicobacter pylori and Vibrio cholerae, as well as different taxa demonstrated different host specificities. The findings of this study effectively expand the diversity of the Microviridae family, providing new insights for their classification and identification. Additionally, it offers a novel perspective for monitoring and controlling pathogenic microorganisms in poultry slaughterhouse environments.
Collapse
Affiliation(s)
- Keming Xie
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Benfu Lin
- Huadu District Animal Health Supervision Institution, Guangzhou, Guangdong, China
| | - Xinyu Sun
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Peng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Chang Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Guangfeng Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Xudong Cao
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Jingqi Pan
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Suiping Qiu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xiaoqi Yuan
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Mengshi Liang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jingzhe Jiang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Lihong Yuan
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
46
|
Wang Y, Ge F, Liu J, Hu W, Liu G, Deng Z, He X. The binding affinity-dependent inhibition of cell growth and viability by DNA sulfur-binding domains. Mol Microbiol 2024; 121:971-983. [PMID: 38480679 DOI: 10.1111/mmi.15249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 05/16/2024]
Abstract
Increasing evidence suggests that DNA phosphorothioate (PT) modification serves several purposes in the bacterial host, and some restriction enzymes specifically target PT-DNA. PT-dependent restriction enzymes (PDREs) bind PT-DNA through their DNA sulfur binding domain (SBD) with dissociation constants (KD) of 5 nM~1 μM. Here, we report that SprMcrA, a PDRE, failed to dissociate from PT-DNA after cleavage due to high binding affinity, resulting in low DNA cleavage efficiency. Expression of SBDs in Escherichia coli cells with PT modification induced a drastic loss of cell viability at 25°C when both DNA strands of a PT site were bound, with one SBD on each DNA strand. However, at this temperature, SBD binding to only one PT DNA strand elicited a severe growth lag rather than lethality. This cell growth inhibition phenotype was alleviated by raising the growth temperature. An in vitro assay mimicking DNA replication and RNA transcription demonstrated that the bound SBD hindered the synthesis of new DNA and RNA when using PT-DNA as the template. Our findings suggest that DNA modification-targeting proteins might regulate cellular processes involved in DNA metabolism in addition to being components of restriction-modification systems and epigenetic readers.
Collapse
Affiliation(s)
- Yuli Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Fulin Ge
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jinling Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wenyue Hu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
47
|
Gucwa K, Wons E, Wisniewska A, Jakalski M, Dubiak Z, Kozlowski LP, Mruk I. Lethal perturbation of an Escherichia coli regulatory network is triggered by a restriction-modification system's regulator and can be mitigated by excision of the cryptic prophage Rac. Nucleic Acids Res 2024; 52:2942-2960. [PMID: 38153127 PMCID: PMC11014345 DOI: 10.1093/nar/gkad1234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023] Open
Abstract
Bacterial gene regulatory networks orchestrate responses to environmental challenges. Horizontal gene transfer can bring in genes with regulatory potential, such as new transcription factors (TFs), and this can disrupt existing networks. Serious regulatory perturbations may even result in cell death. Here, we show the impact on Escherichia coli of importing a promiscuous TF that has adventitious transcriptional effects within the cryptic Rac prophage. A cascade of regulatory network perturbations occurred on a global level. The TF, a C regulatory protein, normally controls a Type II restriction-modification system, but in E. coli K-12 interferes with expression of the RacR repressor gene, resulting in de-repression of the normally-silent Rac ydaT gene. YdaT is a prophage-encoded TF with pleiotropic effects on E. coli physiology. In turn, YdaT alters expression of a variety of bacterial regulons normally controlled by the RcsA TF, resulting in deficient lipopolysaccharide biosynthesis and cell division. At the same time, insufficient RacR repressor results in Rac DNA excision, halting Rac gene expression due to loss of the replication-defective Rac prophage. Overall, Rac induction appears to counteract the lethal toxicity of YdaT. We show here that E. coli rewires its regulatory network, so as to minimize the adverse regulatory effects of the imported C TF. This complex set of interactions may reflect the ability of bacteria to protect themselves by having robust mechanisms to maintain their regulatory networks, and/or suggest that regulatory C proteins from mobile operons are under selection to manipulate their host's regulatory networks for their own benefit.
Collapse
Affiliation(s)
- Katarzyna Gucwa
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Ewa Wons
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Aleksandra Wisniewska
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Marcin Jakalski
- 3P-Medicine Laboratory, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Zuzanna Dubiak
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Lukasz Pawel Kozlowski
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| | - Iwona Mruk
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| |
Collapse
|
48
|
Podlacha M, Gaffke L, Grabowski Ł, Mantej J, Grabski M, Pierzchalska M, Pierzynowska K, Węgrzyn G, Węgrzyn A. Bacteriophage DNA induces an interrupted immune response during phage therapy in a chicken model. Nat Commun 2024; 15:2274. [PMID: 38480702 PMCID: PMC10937645 DOI: 10.1038/s41467-024-46555-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Abstract
One of the hopes for overcoming the antibiotic resistance crisis is the use of bacteriophages to combat bacterial infections, the so-called phage therapy. This therapeutic approach is generally believed to be safe for humans and animals as phages should infect only prokaryotic cells. Nevertheless, recent studies suggested that bacteriophages might be recognized by eukaryotic cells, inducing specific cellular responses. Here we show that in chickens infected with Salmonella enterica and treated with a phage cocktail, bacteriophages are initially recognized by animal cells as viruses, however, the cGAS-STING pathway (one of two major pathways of the innate antiviral response) is blocked at the stage of the IRF3 transcription factor phosphorylation. This inhibition is due to the inability of RNA polymerase III to recognize phage DNA and to produce dsRNA molecules which are necessary to stimulate a large protein complex indispensable for IRF3 phosphorylation, indicating the mechanism of the antiviral response impairment.
Collapse
Affiliation(s)
- Magdalena Podlacha
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Łukasz Grabowski
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Jagoda Mantej
- Univentum Labs, Bażyńskiego 4, 80-309, Gdansk, Poland
| | - Michał Grabski
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Małgorzata Pierzchalska
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, Balicka 122, 30-149, Cracow, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Alicja Węgrzyn
- Phage Therapy Center, University Center for Applied and Interdisciplinary Research, University of Gdansk, Kładki 24, 80-822, Gdansk, Poland.
| |
Collapse
|
49
|
Queiroz VF, Tatara JM, Botelho BB, Rodrigues RAL, Almeida GMDF, Abrahao JS. The consequences of viral infection on protists. Commun Biol 2024; 7:306. [PMID: 38462656 PMCID: PMC10925606 DOI: 10.1038/s42003-024-06001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/29/2024] [Indexed: 03/12/2024] Open
Abstract
Protists encompass a vast widely distributed group of organisms, surpassing the diversity observed in metazoans. Their diverse ecological niches and life forms are intriguing characteristics that render them valuable subjects for in-depth cell biology studies. Throughout history, viruses have played a pivotal role in elucidating complex cellular processes, particularly in the context of cellular responses to viral infections. In this comprehensive review, we provide an overview of the cellular alterations that are triggered in specific hosts following different viral infections and explore intricate biological interactions observed in experimental conditions using different host-pathogen groups.
Collapse
Affiliation(s)
- Victoria Fulgencio Queiroz
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Miranda Tatara
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Bruna Barbosa Botelho
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Araújo Lima Rodrigues
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel Magno de Freitas Almeida
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Jonatas Santos Abrahao
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
50
|
Tarakanov RI, Evseev PV, Vo HTN, Troshin KS, Gutnik DI, Ignatov AN, Toshchakov SV, Miroshnikov KA, Jafarov IH, Dzhalilov FSU. Xanthomonas Phage PBR31: Classifying the Unclassifiable. Viruses 2024; 16:406. [PMID: 38543771 PMCID: PMC10975493 DOI: 10.3390/v16030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 05/23/2024] Open
Abstract
The ability of bacteriophages to destroy bacteria has made them the subject of extensive research. Interest in bacteriophages has recently increased due to the spread of drug-resistant bacteria, although genomic research has not kept pace with the growth of genomic data. Genomic analysis and, especially, the taxonomic description of bacteriophages are often difficult due to the peculiarities of the evolution of bacteriophages, which often includes the horizontal transfer of genes and genomic modules. The latter is particularly pronounced for temperate bacteriophages, which are capable of integration into the bacterial chromosome. Xanthomonas phage PBR31 is a temperate bacteriophage, which has been neither described nor classified previously, that infects the plant pathogen Xanthomonas campestris pv. campestris. Genomic analysis, including phylogenetic studies, indicated the separation of phage PBR31 from known classified bacteriophages, as well as its distant relationship with other temperate bacteriophages, including the Lederbervirus group. Bioinformatic analysis of proteins revealed distinctive features of PBR31, including the presence of a protein similar to the small subunit of D-family DNA polymerase and advanced lysis machinery. Taxonomic analysis showed the possibility of assigning phage PBR31 to a new taxon, although the complete taxonomic description of Xanthomonas phage PBR31 and other related bacteriophages is complicated by the complex evolutionary history of the formation of its genome. The general biological features of the PBR31 phage were analysed for the first time. Due to its presumably temperate lifestyle, there is doubt as to whether the PBR31 phage is appropriate for phage control purposes. Bioinformatics analysis, however, revealed the presence of cell wall-degrading enzymes that can be utilised for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Rashit I. Tarakanov
- Department of Plant Protection, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (R.I.T.); (K.S.T.)
| | - Peter V. Evseev
- Department of Plant Protection, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (R.I.T.); (K.S.T.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
- Laboratory of Molecular Microbiology, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia
| | - Ha T. N. Vo
- Faculty of Agronomy, Nong Lam University, Quarter 6, Thu Duc District, Ho Chi Minh City 721400, Vietnam
| | - Konstantin S. Troshin
- Department of Plant Protection, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (R.I.T.); (K.S.T.)
| | - Daria I. Gutnik
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia;
| | - Aleksandr N. Ignatov
- Agrobiotechnology Department, Agrarian and Technological Institute, RUDN University, Miklukho-Maklaya Str. 6, 117198 Moscow, Russia;
| | - Stepan V. Toshchakov
- Center for Genome Research, National Research Center “Kurchatov Institute”, Kurchatov Sq., 1, 123098 Moscow, Russia
| | - Konstantin A. Miroshnikov
- Department of Plant Protection, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (R.I.T.); (K.S.T.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Ibrahim H. Jafarov
- Azerbaijan Scientific Research Institute for Plant Protection and Industrial Crops, AZ 4200 Ganja, Azerbaijan
| | - Fevzi S.-U. Dzhalilov
- Department of Plant Protection, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (R.I.T.); (K.S.T.)
| |
Collapse
|