1
|
Wang N, Luo Z, Jin M, Sheng W, Wang HT, Long X, Wu Y, Hu P, Xu H, Zhang X. Exploration of age-related mitochondrial dysfunction and the anti-aging effects of resveratrol in zebrafish retina. Aging (Albany NY) 2019; 11:3117-3137. [PMID: 31105084 PMCID: PMC6555466 DOI: 10.18632/aging.101966] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023]
Abstract
It is currently believed that aging is closely linked with mitochondrial dysfunction, and that resveratrol exhibits anti-aging and neuroprotective effects by improving mitochondrial function, even though the mechanisms are not well defined. This study explored mitochondrial quality (mitochondrial DNA integrity and copy number), mitochondrial function (fusion/fission, mitophagy/autophagy), antioxidant system and activity of the Akt/mTOR and Ampk/Sirt1/Pgc1α pathways, and inflammation in aging zebrafish retinas to identify the probable mechanisms of resveratrol's anti-aging and neuroprotective effects. mtDNA integrity, mtDNA copy number, mitochondrial fusion regulators, mitophagy, and antioxidant-related genes were all decreased whereas Akt/mTOR activity and inflammation was increased upon aging in zebrafish retinas. Resveratrol was shown to not only increase mitochondrial quality and function, but also to suppress Akt/mTOR activity in zebrafish retinas. These results support the notion that mitochondrial dysfunction and increased Akt/mTOR activity are major players in age-related retinal neuropathy in zebrafish, and demonstrate a trend towards mitochondrial fragmentation in the aging retina. Importantly, resveratrol promoted mitochondrial function, up-regulating Ampk/Sirt1/Pgc1α, and down-regulated Akt/mTOR pathway activity in zebrafish retinas, suggesting that it may be able to prevent age-related oculopathy.
Collapse
|
research-article |
6 |
76 |
2
|
Luo Z, Sun Y, Qi B, Lin J, Chen Y, Xu Y, Chen J. Human bone marrow mesenchymal stem cell-derived extracellular vesicles inhibit shoulder stiffness via let-7a/Tgfbr1 axis. Bioact Mater 2022; 17:344-359. [PMID: 35386460 PMCID: PMC8965035 DOI: 10.1016/j.bioactmat.2022.01.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/30/2021] [Accepted: 01/09/2022] [Indexed: 02/07/2023] Open
Abstract
Shoulder stiffness (SS) is a common shoulder disease characterized by increasing pain and limited range of motion. SS is considered to be an inflammatory and fibrotic disorder pathologically. However, there is no consensus on the most effective conservative treatment for fibrosis. Given that human Bone Marrow Mesenchymal Stem Cell-derived extracellular vesicles (BMSC-EVs) displayed promising therapeutic effects for various tissues, we investigated the therapeutic effect of BMSC-EVs on fibrosis in a mice immobilization model and two cell models. By conducting a series of experiments, we found that BMSC-EVs can significantly inhibit the fibrogenic process both in vitro and in vivo. In detail, BMSC-EVs suppressed the aberrant proliferation, high collagen production capacity, and activation of fibrotic pathways in TGF-β-stimulated fibroblasts in vitro. Besides, in vivo, BMSC-EVs reduced cell infiltration, reduced fibrotic tissue in the shoulder capsule, and improved shoulder mobility. In addition, via exosomal small RNA sequencing and qPCR analysis, let-7a-5p was verified to be the highest expressed miRNA with predicted antifibrotic capability in BMSC-EVs. The antifibrotic capacity of BMSC-EVs was significantly impaired after the knockdown of let-7a-5p. Moreover, we discovered that the mRNA of TGFBR1 (the membrane receptor of transforming growth factor β) was the target of let-7a-5p. Together, these findings elucidated the antifibrotic role of BMSC-EVs in shoulder capsular fibrosis. This study clarifies a new approach using stem cell-derived EVs therapy as an alternative to cell therapy, which may clinically benefit patients with SS in the future.
Collapse
|
research-article |
3 |
47 |
3
|
Luo Z, Lin J, Sun Y, Wang C, Chen J. Bone Marrow Stromal Cell-Derived Exosomes Promote Muscle Healing Following Contusion Through Macrophage Polarization. Stem Cells Dev 2021; 30:135-148. [PMID: 33323007 DOI: 10.1089/scd.2020.0167] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle contusion is among the most common injuries in traumatology and clinics of sports medicine. The injured muscle is vulnerable to re-injury owing to fibrosis formation. Given that the bone marrow stromal cell-derived exosomes (BMSC-Exos) displayed promising therapeutic effect for various tissues, we used BMSC-Exos to treat skeletal muscle contusion and investigated its effects on muscle healing. In this study, the in vivo model of skeletal muscle contusion was established by subjecting the tibialis anterior of young male mice to hit injury, and the in vitro inflammation model was established by lipopolysaccharide treatment on macrophages. Macrophage depletion model was built by intraperitoneal injection with clodronate-containing liposomes. Exosomes were isolated and purified from the supernatant of BMSCs using gradient centrifugation. Nanoparticle tracking analysis, transmission electron microscope, and western blot were used to identify the exosomes. HE stain, Masson stain, immunofluorescence, and biomechanical testing were carried out on the muscle tissue. In addition, enzyme-linked immunosorbent assay (ELISA) assays, real-time qPCR, flow cytometry, and PKH67 fluorescence trace were conducted in vitro. Intramuscular injection of BMSC-Exos to mice after muscle contusion alleviated inflammation level, reduced fibrosis size, promoted muscle regeneration, and improved biomechanical property. After macrophages depletion, the effects of BMSC-Exos were inhibited. In vitro, PKH-67 fluorescence was internalized into macrophages. BMSC-Exos promoted M2 macrophages polarization both in vivo and in vitro. At the same time, BMSC-Exos reduced the production of inflammatory cytokines under the inflammatory microenvironment and upregulated anti-inflammatory factors expression. In conclusion, BMSC-Exos attenuated muscle contusion injury and promoted muscle healing in mice by modifying the polarization status of macrophages and suppressing the inflammatory reaction.
Collapse
|
|
4 |
41 |
4
|
Liu W, Li Z, Luo Z, Liao W, Liu Z, Liu J. Machine learning for the prediction of bone metastasis in patients with newly diagnosed thyroid cancer. Cancer Med 2021; 10:2802-2811. [PMID: 33709570 PMCID: PMC8026946 DOI: 10.1002/cam4.3776] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022] [Imported: 10/13/2024] Open
Abstract
OBJECTIVES This study aimed to establish a machine learning prediction model that can be used to predict bone metastasis (BM) in patients with newly diagnosed thyroid cancer (TC). METHODS Demographic and clinicopathologic variables of TC patients in the Surveillance, Epidemiology, and End Results database from 2010 to 2016 were retrospectively analyzed. On this basis, we developed a random forest (RF) algorithm model based on machine-learning. The area under receiver operating characteristic curve (AUC), accuracy score, recall rate, and specificity are used to evaluate and compare the prediction performance of the RF model and the other model. RESULTS A total of 17,138 patients were included in the study, with 166 (0.97%) developed bone metastases. Grade, T stage, histology, race, sex, age, and N stage were the important prediction features of BM. The RF model has better predictive performance than the other model (AUC: 0.917, accuracy: 0.904, recall rate: 0.833, and specificity: 0.905). CONCLUSIONS The RF model constructed in this study could accurately predict bone metastases in TC patients, which may provide clinicians with more personalized clinical decision-making recommendations. Machine learning technology has the potential to improve the development of BM prediction models in TC patients.
Collapse
|
research-article |
4 |
39 |
5
|
Luo Z, Qi B, Sun Y, Chen Y, Lin J, Qin H, Wang N, Shi R, Shang X, Chen S, Chen J. Engineering Bioactive M2 Macrophage-Polarized, Anti-inflammatory, miRNA-Based Liposomes for Functional Muscle Repair: From Exosomal Mechanisms to Biomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201957. [PMID: 35802903 DOI: 10.1002/smll.202201957] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/03/2022] [Indexed: 02/05/2023]
Abstract
Severe inflammation and myogenic differentiation disorder are the major obstacles to skeletal muscle healing after injury. MicroRNAs (miRNAs) play an important role as regulatory molecules during the process of muscle healing, but the detailed mechanism of miRNA-mediated intercellular communication between myoblasts and macrophages remains unclear. Here, it is reported that myoblasts secrete miRNAs-enriched exosomes in the inflammatory environment, through which miR-224 is transferred into macrophages to inhibit M2 polarization. Further data demonstrate that WNT-9a may be a direct target of miR-224 for macrophage polarization. In turn, the secretome of M1 macrophages impairs myogenic differentiation and promotes proliferation. Single-cell integration analysis suggests that the elevation of exosome-derived miR-224 is caused by the activation of the key factor E2F1 in myoblasts and demonstrates the RB/E2F1/miR-224/WNT-9a axis. In vivo results show that treatment with antagomir-224 or liposomes containing miR-224 inhibitors suppresses fibrosis and improves muscle recovery. These findings indicate the importance of the crosstalk between myoblasts and macrophages via miRNA-containing exosomes in the regulation of macrophage polarization and myogenic differentiation/proliferation during muscle healing. This study provides a strategy for treating muscle injury through designing an M2 polarization-enabling anti-inflammatory and miRNA-based bioactive material.
Collapse
|
|
3 |
39 |
6
|
Sun Y, Luo Z, Chen Y, Lin J, Zhang Y, Qi B, Chen J. si-Tgfbr1-loading liposomes inhibit shoulder capsule fibrosis via mimicking the protective function of exosomes from patients with adhesive capsulitis. Biomater Res 2022; 26:39. [PMID: 35986376 PMCID: PMC9389696 DOI: 10.1186/s40824-022-00286-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/09/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Adhesive capsulitis is a common shoulder disorder inducing joint capsule fibrosis and pain. When combined with rotator cuff tear (RCT), treatments can be more complex. Currently, targeted therapy is lacking. Since adhesive capsulitis is reported to be related to circulating materials, we analyzed the contents and biology of circulating exosomes from RCT patients with and without adhesive capsulitis, in an attempt to developing a targeting treatment. METHODS Samples from a consecutive cohort of patients with RCT for surgery were collected. Circulating exosomal miRNAs sequencing were used to detect differentially expressed miRNAs in patients with and without adhesive capsulitis. For experiments in vitro, Brdu staining, CCK-8 assay, wound healing test, collagen contraction test, real-time quantitative polymerase chain reaction, and western blot were conducted. Histological and immunofluorescent staining, and biomechanical analysis were applied in a mouse model of shoulder stiffness. The characteristics of liposomes loaded with siRNA were measured via dynamic light scattering or electron microscopy. RESULTS Circulating exosomal miRNAs sequencing showed that, compared to exosomes from patients without adhesive capsulitis, miR-142 was significantly up-regulated in exosomes from adhesive capsulitis (Exo-S). Both Exo-S and miR-142 could inhibit fibrogenesis, and the anti-fibrotic effect of Exo-S relied on miR-142. The target of miR-142 was proven to be transforming growth factor β receptor 1 (Tgfbr1). Then, liposomes were developed and loaded with si-Tgfbr1. The si-Tgfbr1-loading liposomes exhibited promising therapeutic effect against shoulder stiffness in mouse model with no evidence toxicity. CONCLUSION This study showed that, in RCT patients with adhesive capsulitis, circulating exosomes are protective and have anti-fibrotic potential. This effect is related to the contained miR-142, which targets Tgfbr1. By mimicking this biological function, liposomes loaded with si-Tgfbr1 can mitigate shoulder stiffness pre-clinically.
Collapse
|
research-article |
3 |
30 |
7
|
Qin H, Luo Z, Sun Y, He Z, Qi B, Chen Y, Wang J, Li C, Lin W, Han Z, Zhu Y. Low-intensity pulsed ultrasound promotes skeletal muscle regeneration via modulating the inflammatory immune microenvironment. Int J Biol Sci 2023; 19:1123-1145. [PMID: 36923940 PMCID: PMC10008697 DOI: 10.7150/ijbs.79685] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/15/2023] [Indexed: 03/14/2023] [Imported: 10/13/2024] Open
Abstract
Background: Low-intensity pulsed ultrasound (LIPUS, a form of mechanical stimulation) can promote skeletal muscle functional repair, but a lack of mechanistic understanding of its relationship and tissue regeneration limits progress in this field. We investigated the hypothesis that specific energy levels of LIPUS mediates skeletal muscle regeneration by modulating the inflammatory microenvironment. Methods: To address these gaps, LIPUS irritation was applied in vivo for 5 min at two different intensities (30mW/cm2 and 60mW/cm2) in next 7 consecutive days, and the treatment begun at 24h after air drop-induced contusion injury. In vitro experiments, LIPUS irritation was applied at three different intensities (30mW/cm2, 45mW/cm2, and 60mW/cm2) for 2 times 24h after introduction of LPS in RAW264.7. Then, we comprehensively assessed the functional and histological parameters of skeletal muscle injury in mice and the phenotype shifting in macrophages through molecular biological methods and immunofluorescence analysis both in vivo and in vitro. Results: We reported that LIPUS therapy at intensity of 60mW/cm2 exhibited the most significant differences in functional recovery of contusion-injured muscle in mice. The comprehensive functional tests and histological analysis in vivo indirectly and directly proved the effectiveness of LIPUS for muscle recovery. Through biological methods and immunofluorescence analysis both in vivo and in vitro, we found that this improvement was attributable in part to the clearance of M1 macrophages populations and the increase in M2 subtypes with the change of macrophage-mediated factors. Depletion of macrophages in vivo eliminated the therapeutic effects of LIPUS, indicating that improvement in muscle function was the result of M2-shifted macrophage polarization. Moreover, the M2-inducing effects of LIPUS were proved partially through the WNT pathway by upregulating FZD5 expression and enhancing β-catenin nuclear translocation in macrophages both in vitro and in vivo. The inhibition and augment of WNT pathway in vitro further verified our results. Conclusion: LIPUS at intensity of 60mW/cm2 could significantly promoted skeletal muscle regeneration through shifting macrophage phenotype from M1 to M2. The ability of LIPUS to direct macrophage polarization may be a beneficial target in the clinical treatment of many injuries and inflammatory diseases.
Collapse
|
research-article |
2 |
29 |
8
|
Chen Y, Sun Y, Xu Y, Lin WW, Luo Z, Han Z, Liu S, Qi B, Sun C, Go K, Kang XR, Chen J. Single-Cell Integration Analysis of Heterotopic Ossification and Fibrocartilage Developmental Lineage: Endoplasmic Reticulum Stress Effector Xbp1 Transcriptionally Regulates the Notch Signaling Pathway to Mediate Fibrocartilage Differentiation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7663366. [PMID: 34737845 PMCID: PMC8563124 DOI: 10.1155/2021/7663366] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Regeneration of fibrochondrocytes is essential for the healing of the tendon-bone interface (TBI), which is similar to the formation of neurogenic heterotopic ossification (HO). Through single-cell integrative analysis, this study explored the homogeneity of HO cells and fibrochondrocytes. METHODS This study integrated six datasets, namely, GSE94683, GSE144306, GSE168153, GSE138515, GSE102929, and GSE110993. The differentiation trajectory and key transcription factors (TFs) for HO occurrence were systematically analyzed by integrating single-cell RNA (scRNA) sequencing, bulk RNA sequencing, and assay of transposase accessible chromatin seq. The differential expression and enrichment pathways of TFs in heterotopically ossified tissues were identified. RESULTS HO that mimicked pathological cells was classified into HO1 and HO2 cell subsets. Results of the pseudo-temporal sequence analysis suggested that HO2 is a differentiated precursor cell of HO1. The analysis of integrated scRNA data revealed that ectopically ossified cells have similar transcriptional characteristics to cells in the fibrocartilaginous zone of tendons. The modified SCENIC method was used to identify specific transcriptional regulators associated with ectopic ossification. Xbp1 was defined as a common key transcriptional regulator of ectopically ossified tissues and the fibrocartilaginous zone of tendons. Subsequently, the CellPhoneDB database was completed for the cellular ligand-receptor analysis. With further pathway screening, this study is the first to propose that Xbp1 may upregulate the Notch signaling pathway through Jag1 transcription. Twenty-four microRNAs were screened and were found to be potentially associated with upregulation of XBP1 expression after acute ischemic stroke. CONCLUSION A systematic analysis of the differentiation landscape and cellular homogeneity facilitated a molecular understanding of the phenotypic similarities between cells in the fibrocartilaginous region of tendon and HO cells. Furthermore, by identifying Xbp1 as a hub regulator and by conducting a ligand-receptor analysis, we propose a potential Xbp1/Jag1/Notch signaling pathway.
Collapse
|
research-article |
4 |
28 |
9
|
Luo Z, He Z, Qin H, Chen Y, Qi B, Lin J, Sun Y, Sun J, Su X, Long Z, Chen S. Exercise-induced IL-15 acted as a positive prognostic implication and tumor-suppressed role in pan-cancer. Front Pharmacol 2022; 13:1053137. [PMID: 36467072 PMCID: PMC9712805 DOI: 10.3389/fphar.2022.1053137] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/07/2022] [Indexed: 09/12/2023] [Imported: 10/13/2024] Open
Abstract
Objective: Exercise can produce a large number of cytokines that may benefit cancer patients, including Interleukin 15 (IL-15). IL-15 is a cytokine that has multiple functions in regulating the adaptive and innate immune systems and tumorigenesis of lung and breast cancers. However, the roles of IL-15 in other types of cancer remain unknown. In this article, we try to systematically analyze if IL-15 is a potential molecular biomarker for predicting patient prognosis in pan-cancer and its connection with anti-cancer effects of exercise. Methods: The expression of IL-15 was detected by The Cancer Genome Atlas (TCGA) database, Human protein Atlas (HPA), and Genotype Tissue-Expression (GTEX) database. Analysis of IL-15 genomic alterations and protein expression in human organic tissues was analyzed by the cBioPortal database and HPA. The correlations between IL-15 expression and survival outcomes, clinical features, immune-associated cell infiltration, and ferroptosis/cuproptosis were analyzed using the TCGA, ESTIMATE algorithm, and TIMER databases. Gene Set Enrichment Analysis (GSEA) was performed to evaluate the biological functions of IL-15 in pan-cancer. Results: The differential analysis suggested that the level of IL-15 mRNA expression was significantly downregulated in 12 tumor types compared with normal tissues, which is similar to the protein expression in most cancer types. The high expression of IL-15 could predict the positive survival outcome of patients with LUAD (lung adenocarcinoma), COAD (colon adenocarcinoma), COADREAD (colon and rectum adenocarcinoma), ESCA (esophageal carcinoma), SKCM (skin cutaneous melanoma), UCS (uterine carcinosarcoma), and READ (rectum adenocarcinoma). Moreover, amplification was found to be the most frequent mutation type of IL-15 genomic. Furthermore, the expression of IL-15 was correlated to the infiltration levels of various immune-associated cells in pan-cancer assessed by the ESTIMATE algorithm and TIMER database. In addition, IL-15 is positively correlated with ferroptosis/cuproptosis-related genes (ACSL4 and LIPT1) in pan-cancer. Levels of IL-15 were reported to be elevated in humans for 10-120 min following an acute exercise. Therefore, we hypothesized that the better prognosis of pan-cancer patients with regular exercise may be achieved by regulating level of IL-15. Conclusion: Our results demonstrated that IL-15 is a potential molecular biomarker for predicting patient prognosis, immunoreaction, and ferroptosis/cuproptosis in pan-cancer and partly explained the anti-cancer effects of exercise.
Collapse
|
research-article |
3 |
26 |
10
|
Feng X, Peng Z, Yuan L, Jin M, Hu H, Peng X, Wang Y, Zhang C, Luo Z, Liao H. Research progress of exosomes in pathogenesis, diagnosis, and treatment of ocular diseases. Front Bioeng Biotechnol 2023; 11:1100310. [PMID: 36761297 PMCID: PMC9902372 DOI: 10.3389/fbioe.2023.1100310] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] [Imported: 10/13/2024] Open
Abstract
Exosomes are natural extracellular vesicles with a diameter of 30-150 nm, which exist in biological fluids and contain biomolecules related to the parent cell, such as proteins, nucleic acids, lipids, etc. It has a wide range of biological functions, and participates in the regulation of important physiological and pathological activities of the body. It can be used as a biomarker for early diagnosis of ocular diseases, a potential therapeutic target, a targeted drug carrier, and has a high potential for clinical application. In this paper, we summarized the genesis mechanism, biological functions, research and application progress of exosomes, focused on the engineering strategy of exosomes, and summarized the advantages and disadvantages of common engineering exosome preparation methods. Systematically combed the role of exosomes in corneal diseases, glaucoma, and retinal diseases, to provide a reference for further understanding of the role of exosomes in the pathogenesis, diagnosis, and treatment of ocular diseases. Finally, we further summarized the opportunities and challenges of exosomes for precision medicine. The extension of exosome research to the field of ophthalmology will help advance current diagnostic and therapeutic methods. Tiny exosomes have huge potential.
Collapse
|
Review |
2 |
25 |
11
|
Liu WC, Li MX, Qian WX, Luo ZW, Liao WJ, Liu ZL, Liu JM. Application of Machine Learning Techniques to Predict Bone Metastasis in Patients with Prostate Cancer. Cancer Manag Res 2021; 13:8723-8736. [PMID: 34849027 PMCID: PMC8627242 DOI: 10.2147/cmar.s330591] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/13/2021] [Indexed: 11/23/2022] [Imported: 10/13/2024] Open
Abstract
OBJECTIVE This study aimed to develop and validate a machine learning model for predicting bone metastases (BM) in prostate cancer (PCa) patients. METHODS Demographic and clinicopathologic variables of PCa patients in the Surveillance, Epidemiology and End Results (SEER) database from 2010 to 2017 were retrospectively analyzed. We used six different machine learning algorithms, including Decision tree (DT), Random forest (RF), Multilayer Perceptron (MLP), Logistic regression (LR), Naive Bayes classifiers (NBC), and eXtreme gradient boosting (XGB), to build prediction models. External validation using data from 644 PCa patients of the First Affiliated Hospital of Nanchang University from 2010 to 2016. The performance of the models was evaluated using the area under receiver operating characteristic curve (AUC), accuracy score, sensitivity (recall rate) and specificity. A web predictor was developed based on the best performance model. RESULTS A total of 207,137 PCa patients from SEER were included in this study. Of whom, 6725 (3.25%) developed BM. Gleason score, Prostate-specific antigen (PSA) value, T, N stage and age were found to be the risk factors of BM. The XGB model offered the best predictive performance among these 6 models (AUC: 0.962, accuracy: 0.884, sensitivity (recall rate): 0.906, and specificity: 0.879). An XGB model-based web predictor was developed to predict BM in PCa patients. CONCLUSION This study developed a machine learning model and a web predictor for predicting the risk of BM in PCa patients, which may help physicians make personalized clinical decisions and treatment strategy for patients.
Collapse
|
research-article |
4 |
22 |
12
|
Chen Y, Sun Y, Luo Z, Chen X, Wang Y, Qi B, Lin J, Lin WW, Sun C, Zhou Y, Huang J, Xu Y, Chen J, Chen S. Exercise Modifies the Transcriptional Regulatory Features of Monocytes in Alzheimer's Patients: A Multi-Omics Integration Analysis Based on Single Cell Technology. Front Aging Neurosci 2022; 14:881488. [PMID: 35592698 PMCID: PMC9110789 DOI: 10.3389/fnagi.2022.881488] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/11/2022] [Indexed: 02/05/2023] Open
Abstract
Monocytes have been reported to be important mediators of the protective effect of exercise against the development of Alzheimer's disease (AD). This study aims explored the mechanism by which monocytes achieve this. Using single cell transcriptome analysis, results showed that CD14 + and CD16 + monocytes interacted with other cells in the circulating blood. TNF, CCR1, APP, and AREG, the key ligand-receptor-related genes, were found to be differentially expressed between exercise-treated and AD patients. The SCENIC analysis was performed to identify individual clusters of the key transcription factors (TFs). Nine clusters (M1-M9) were obtained from the co-expression network. Among the identified TFs, MAFB, HES4, and FOSL1 were found to be differentially expressed in AD. Moreover, the M4 cluster to which MAFB, HES4, and FOSL1 belonged was defined as the signature cluster for AD phenotype. Differential analysis by bulkRNA-seq revealed that the expression of TNF, CCR1, and APP were all upregulated after exercise (p < 0.05). And ATF3, MAFB, HES4, and KLF4 that were identified in M4 clusters may be the TFs that regulate TNF, CCR1, and APP in exercise prescription. After that, APP, CCR1, TNF, ATF3, KLF4, HES4, and MAFB formed a regulatory network in the ERADMT gene set, and all of them were mechanistically linked. The ERADMT gene set has been found to be a potential risk marker for the development of AD and can be used as an indicator of compliance to exercise therapy in AD patients. Using single-cell integration analysis, a network of exercise-regulating TFs in monocytes was constructed for AD disease. The constructed network reveals the mechanism by which exercise regulated monocytes to confer therapeutic benefits against AD and its complications. However, this study, as a bioinformatic research, requires further experimental validation.
Collapse
|
research-article |
3 |
21 |
13
|
Chen Y, Luo Z, Sun Y, Li F, Han Z, Qi B, Lin J, Lin WW, Yao M, Kang X, Huang J, Sun C, Ying C, Guo C, Xu Y, Chen J, Chen S. Exercise improves choroid plexus epithelial cells metabolism to prevent glial cell-associated neurodegeneration. Front Pharmacol 2022; 13:1010785. [PMID: 36188600 PMCID: PMC9523215 DOI: 10.3389/fphar.2022.1010785] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/29/2022] [Indexed: 02/05/2023] Open
Abstract
Recent studies have shown that physical activities can prevent aging-related neurodegeneration. Exercise improves the metabolic landscape of the body. However, the role of these differential metabolites in preventing neurovascular unit degeneration (NVU) is still unclear. Here, we performed single-cell analysis of brain tissue from young and old mice. Normalized mutual information (NMI) was used to measure heterogeneity between each pair of cells using the non-negative Matrix Factorization (NMF) method. Astrocytes and choroid plexus epithelial cells (CPC), two types of CNS glial cells, differed significantly in heterogeneity depending on their aging status and intercellular interactions. The MetaboAnalyst 5.0 database and the scMetabolism package were used to analyze and calculate the differential metabolic pathways associated with aging in the CPC. These mRNAs and corresponding proteins were involved in the metabolites (R)-3-Hydroxybutyric acid, 2-Hydroxyglutarate, 2-Ketobutyric acid, 3-Hydroxyanthranilic acid, Fumaric acid, L-Leucine, and Oxidized glutathione pathways in CPC. Our results showed that CPC age heterogeneity-associated proteins (ECHS1, GSTT1, HSD17B10, LDHA, and LDHB) might be directly targeted by the metabolite of oxidized glutathione (GSSG). Further molecular dynamics and free-energy simulations confirmed the insight into GSSG's targeting function and free-energy barrier on these CPC age heterogeneity-associated proteins. By inhibiting these proteins in CPC, GSSG inhibits brain energy metabolism, whereas exercise improves the metabolic pathway activity of CPC in NVU by regulating GSSG homeostasis. In order to develop drugs targeting neurodegenerative diseases, further studies are needed to understand how physical exercise enhances NVU function and metabolism by modulating CPC-glial cell interactions.
Collapse
|
research-article |
3 |
19 |
14
|
Wang Z, Luo Z, Li S, Luo Z, Wang Z. Anxiety screening tools in people with epilepsy: A systematic review of validated tools. Epilepsy Behav 2019; 99:106392. [PMID: 31521915 DOI: 10.1016/j.yebeh.2019.06.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Anxiety is a common neurological condition often comorbid with epilepsy, with approximately 20% of patients with epilepsy exhibiting symptoms of anxiety. Despite this prevalence, accurate and efficacious tools designed to screen for anxiety specifically in patients with epilepsy have not yet been developed. The purpose of this study is to systematically review the literature and better understand this relationship. METHODS Ovid MEDLINE, EMBASE, and PsyclNFO were searched until April 22nd, 2019 without language restrictions. We extracted abstracts, data abstraction, and full-text reviews in duplicate and chose the studies that included measures for anxiety screening in patients with epilepsy. The Quality Assessment of Diagnostic Accuracy Studies Version was used to assess study quality. We used the medians and ranges to calculate the accuracy of the tools. RESULTS We screened 4758 abstracts and selected 11 articles dealing with anxiety. The most common validated anxiety screening tools were the Generalized Anxiety Disorder (GAD-7) and Hospital Anxiety and Depression Scale-A (HADS-A). The Mini International Neuropsychiatric Interview (MINI) was the most common reference standard used. SIGNIFICANCE Many studies have validated depression screening tools rather than anxiety. This lack of data has left much uncertainty about the relationship of epilepsy to anxiety, as well as diagnostic inconsistencies. The effectiveness of these assessments in practice may be overestimating the prevalence, as the cutpoints are usually chosen after the fact, based on the study sample.
Collapse
|
Systematic Review |
6 |
18 |
15
|
Chen Y, Sun Y, Luo Z, Lin J, Qi B, Kang X, Ying C, Guo C, Yao M, Chen X, Wang Y, Wang Q, Chen J, Chen S. Potential Mechanism Underlying Exercise Upregulated Circulating Blood Exosome miR-215-5p to Prevent Necroptosis of Neuronal Cells and a Model for Early Diagnosis of Alzheimer's Disease. Front Aging Neurosci 2022; 14:860364. [PMID: 35615585 PMCID: PMC9126031 DOI: 10.3389/fnagi.2022.860364] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Exercise is crucial for preventing Alzheimer's disease (AD), although the exact underlying mechanism remains unclear. The construction of an accurate AD risk prediction model is beneficial as it can provide a theoretical basis for preventive exercise prescription. In recent years, necroptosis has been confirmed as an important manifestation of AD, and exercise is known to inhibit necroptosis of neuronal cells. In this study, we extracted 67 necroptosis-related genes and 32 necroptosis-related lncRNAs and screened for key predictive AD risk genes through a random forest analysis. Based on the neural network Prediction model, we constructed a new logistic regression-based AD risk prediction model in order to provide a visual basis for the formulation of exercise prescription. The prediction model had an area under the curve (AUC) value of 0.979, indicative of strong predictive power and a robust clinical application prospect. In the exercise group, the expression of exosomal miR-215-5p was found to be upregulated; miR-215-5p could potentially inhibit the expressions of IDH1, BCL2L11, and SIRT1. The single-cell SCENIC assay was used to identify key transcriptional regulators in skeletal muscle. Among them, CEBPB and GATA6 were identified as putative transcriptional regulators of miR-215. After "skeletal muscle removal of load," the expressions of CEBPB and GATA6 increased substantially, which in turn led to the elevation of miR-215 expression, thereby suggesting a putative mechanism for negative feedback regulation of exosomal homeostasis.
Collapse
|
research-article |
3 |
18 |
16
|
Luo ZW, Sun YY, Xia W, Xu JY, Xie DJ, Jiao CM, Dong JZ, Chen H, Wan RW, Chen SY, Mei J, Mao WJ. Physical exercise reverses immuno-cold tumor microenvironment via inhibiting SQLE in non-small cell lung cancer. Mil Med Res 2023; 10:39. [PMID: 37592367 PMCID: PMC10436398 DOI: 10.1186/s40779-023-00474-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] [Imported: 10/13/2024] Open
|
Letter |
2 |
15 |
17
|
Sun Y, Lin J, Luo Z, Chen J. Preoperative Lymphocyte to Monocyte Ratio Can Be a Prognostic Factor in Arthroscopic Repair of Small to Large Rotator Cuff Tears. Am J Sports Med 2020; 48:3042-3050. [PMID: 32931300 DOI: 10.1177/0363546520953427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Complete arthroscopic repair can treat small to large rotator cuff tears (RCTs) with good outcomes; however, the repair might be compromised by inflammation. PURPOSE To investigate the prognostic value of preoperative lymphocyte to monocyte ratio (LMR), a marker of systemic inflammation before surgery, in arthroscopic rotator cuff repair. STUDY DESIGN Case-control study; Level of evidence, 3. METHODS Between January 2014 and January 2016, primary small to large RCTs without stiffness, significant muscle fatty infiltration, or atrophy were completely repaired in 110 consecutive patients and followed. Preoperative LMR was obtained from blood routinely examined 1 day before surgery. Descriptive data and pre- and intraoperative variables were collected. Correlation analysis and multivariable linear regression analysis were used to determine the relationship between preoperative LMR and recovery including American Shoulder and Elbow Surgeons (ASES) score, Constant-Murley score, Fudan University Shoulder Score (FUSS), visual analog scale (VAS) score for pain, and range of motion (ROM). Poor recovery was defined as ASES score <80, shoulder stiffness as external rotation ≤20°, and pain as VAS score >3. The predictive value of preoperative LMR was determined by receiver operating characteristic (ROC) curve. RESULTS A total of 99 patients (101 shoulders) were followed for 2.88 ± 0.43 years. Overall, mean ASES, Constant-Murley, FUSS, and VAS scores were significantly improved at the final follow-up; however, 27 cases had either ASES <80, shoulder stiffness, pain, or a combination of these. Correlation analysis and multivariable linear analysis showed that preoperative LMR was the only factor independently associated with functional recovery, pain, and ROM. Patients with poor recovery had lower preoperative LMR than those with good recovery. Based on the ROC curve, the cutoff value of preoperative LMR was 4.760. Patients with preoperative LMR <4.760 had significantly inferior clinical outcomes compared with their counterparts. The corresponding specificity was 0.542, and sensitivity was 0.779. CONCLUSION Arthroscopic repair for small to large RCTs yielded good outcomes; however, some patients still had inferior functional scores, shoulder stiffness, or pain, which correlated with the level of preoperative systemic inflammation. As a marker of systemic inflammation, preoperative LMR could be prognostic for rotator cuff repair.
Collapse
|
|
5 |
15 |
18
|
Luo Z, Lin J, Sun Y, Zhu K, Wang C, Chen J. Outcome Comparison of Latissimus Dorsi Transfer and Pectoralis Major Transfer for Irreparable Subscapularis Tendon Tear: A Systematic Review. Am J Sports Med 2022; 50:2032-2041. [PMID: 34138660 DOI: 10.1177/03635465211018216] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Latissimus dorsi transfer (LDT) and pectoralis major transfer (PMT) were developed to treat an irreparable subscapularis tendon tear (ISScT); however, the difference in their outcomes remains unclear. PURPOSE To systematically review and compare the outcomes of LDT and PMT for ISScT. STUDY DESIGN Systematic review; Level of evidence, 4. METHODS A systematic review was performed through a comprehensive search of Embase, PubMed, and the Cochrane Library. Studies of LDT or PMT were included according to the inclusion and exclusion criteria. The primary outcome was the Constant-Murley score (CMS) at the final follow-up. Secondary outcomes included the subjective shoulder value (SSV), visual analog scale (VAS) score for pain, active shoulder range of motion, and the belly-press and lift-off tests. Postoperative failure and complication rates were the safety outcome measures. Outcomes were summarized into the LDT and PMT groups, and results were compared statistically (P < .05). RESULTS Twelve studies were included in this review: 184 shoulders from 9 studies for the PMT group and 85 shoulders from 3 studies for the LDT group. For the PMT and LDT groups, the mean ages were 58.9 and 55.1 years, respectively, and the mean follow-up was 66.9 and 17.4 months, respectively. Overall, the LDT and PMT groups improved in the primary outcome (CMS) and secondary outcomes (SSV, VAS, ROM, and belly-press and lift-off tests), with low rates of failure and complication. When compared with the PMT group, the LDT group showed more significant improvements in CMS (35.2 vs 24.7; P < .001), active forward flexion (44.3° vs 14.7°; P < .001), abduction (35.0° vs 17.6°; P < .002), and positive belly-press test rate (45% vs 27%; P < .001). No statistically significant difference was seen between the groups in postoperative failure rate, complication rate, mean improvement of active internal rotation, VAS, or SSV. CONCLUSION In general, LDT showed significantly better clinical outcomes postoperatively than did PMT. The available fair-quality evidence suggested that LDT might be a better choice for ISScT. Further evaluations on the relative benefits of the 2 surgical approaches are required, with more high-quality randomized controlled studies.
Collapse
|
Systematic Review |
3 |
14 |
19
|
Luo ZW, Wang HT, Wang N, Sheng WW, Jin M, Lu Y, Bai YJ, Zou SQ, Pang YL, Xu H, Zhang X. Establishment of an adult zebrafish model of retinal neurodegeneration induced by NMDA. Int J Ophthalmol 2019; 12:1250-1261. [PMID: 31456914 PMCID: PMC6694058 DOI: 10.18240/ijo.2019.08.04] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/31/2019] [Indexed: 02/07/2023] Open
Abstract
AIM To establish a model of retinal neurodegeneration induced by N-Methyl-D-aspartic acid (NMDA) in adult zebrafish. METHODS We compared the effects of three different NMDA delivery methods on retinal neurodegeneration in adult zebrafish: immersion (I.M.), intravitreal injection (I.V.), and intraperitoneal injection (I.P.), and examined retinal pathology and degeneration by hematoxylin and eosin and TUNEL staining in the treated zebrafish. Effects of the NMDA receptor antagonist MK-801 and the natural product resveratrol on NMDA-induced retinal neurodegeneration were also assessed. RESULTS The thickened inner retina was seen in histology with 100 µmol/L NMDA by I.M. administration. Significant apoptosis in the retinal ganglion cell layer and retinal thickness reduction occurred in 0.5 mol/L NMDA I.P. administration group.Seizure-like behavioral changes, but no retinal histological alteration occurred in 16 mg/kg NMDA I.P. administration group. Resveratrol and MK-801 prevented NMDA-induced retinal neurodegeneration in the zebrafish. CONCLUSION Among the three drug administration methods, I.V. injection of NMDA is the most suitable for establishment of an acute retinal damage model in zebrafish. I.M. with NMDA is likely the best for use as a chronic retinal damage model. I.P. treatment with NMDA causes brain damage. Resveratrol and MK801 may be a clinically valuable treatment for retinal neurodegeneration.
Collapse
|
research-article |
6 |
13 |
20
|
Sun Y, Lin J, Luo Z, Zhang Y, Chen J. The Serum from Patients with Secondary Frozen Shoulder Following Rotator Cuff Repair Induces Shoulder Capsule Fibrosis and Promotes Macrophage Polarization and Fibroblast Activation. J Inflamm Res 2021; 14:1055-1068. [PMID: 33790620 PMCID: PMC8001608 DOI: 10.2147/jir.s304555] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/10/2021] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Disorders with systematic inflammation were prognostic for secondary frozen shoulder (sFS) following rotator cuff repair (RCR); however, how systematic inflammation affects sFS remains unclear. The aim of this study was to observe the effect of pre-operative serum from patients with sFS and the serum from those without on shoulder capsule in mice, and on macrophages and fibroblasts in vitro. METHODS Serum samples of a consecutive cohort of patients for RCR were collected pre-operatively. Three months after RCR, patients who developed sFS (Group S) were identified. Serum samples from gender- and age-matched controls without sFS (group NS) were also picked out. Firstly, the effect of serum on shoulder capsule fibrosis was observed histologically and biomechanically in a mouse model of RCR. Secondly, the roles of the serum on macrophage polarization and fibroblast activation were investigated, and the potentially involved signaling pathways were identified. Finally, inflammation and fibrosis-related cytokines in serum were quantified. RESULTS In our cohort, all patients had free pre-operative shoulder range of motion. Seven patients developed sFS at 3 months after surgery. Seven matched patients without sFS were selected as control. The inter-group difference of basic characteristics was not significant. Compared to the serum of group NS, the serum of group S significantly induced hypercellularity, capsular thickening, and range of motion deficiency in mice shoulders after RCR. Compared to the serum of group NS, samples of group S significantly promoted M2 polarization of THP-1 human macrophages and the activation of human capsule-derived fibroblasts. Meanwhile, Smad3 and p-Smad3 in macrophages and fibroblasts were significantly up-regulated. On the other hand, levels of inflammation and fibrosis-related cytokines were not significantly different between serum in group S and group NS. CONCLUSION Although all patients in this cohort had free range of motion pre-operatively, the pre-operative serum from patients with sFS at 3 months after RCR could act as a trigger of shoulder capsule fibrosis post-operatively. This effect may be related to its promotion on macrophage polarization to M2 phenotype and fibroblast activation.
Collapse
|
research-article |
4 |
12 |
21
|
Qin C, Bai Y, Zeng Z, Wang L, Luo Z, Wang S, Zou S. The Cutting and Floating Method for Paraffin-embedded Tissue for Sectioning. J Vis Exp 2018:58288. [PMID: 30247474 PMCID: PMC6235097 DOI: 10.3791/58288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Sectioning of the paraffin-embedded tissue is widely used in histology and pathology. However, it is tedious. To improve this method, several commercial companies have devised complex section transfer systems using fluid water. To simplify this technology, we created a simple method using homemade equipment that combines cutting and floating within a simple thermostatic chamber; therefore, the sections automatically enter the water bath on the water surface. The hippocampus from adult mouse brains, adult mouse kidneys, embryonic mouse brains, and adult zebrafish eyes were cut using both conventional paraffin sectioning and the presented method for comparison. Statistical analysis shows that our improved method saved time and produced higher quality sections. In addition, paraffin sectioning of a whole specimen in a short time is easy for junior operators.
Collapse
|
Video-Audio Media |
7 |
12 |
22
|
Luo ZW, Sun YY, Lin JR, Qi BJ, Chen JW. Exosomes derived from inflammatory myoblasts promote M1 polarization and break the balance of myoblast proliferation/differentiation. World J Stem Cells 2021; 13:1762-1782. [PMID: 34909122 PMCID: PMC8641021 DOI: 10.4252/wjsc.v13.i11.1762] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/28/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acute muscle injuries are one of the most common injuries in sports. Severely injured muscles are prone to re-injury due to fibrotic scar formation caused by prolonged inflammation. How to regulate inflammation and suppress fibrosis is the focus of promoting muscle healing. Recent studies have found that myoblasts and macrophages play important roles in the inflammatory phase following muscle injury; however, the crosstalk between these two types of cells in the inflammatory environment, particularly the exosome-related mechanisms, had not been well studied. AIM To evaluate the effects of exosomes from inflammatory C2C12 myoblasts (IF-C2C12-Exos) on macrophage polarization and myoblast proliferation/differentiation. METHODS A model of inflammation was established in vitro by lipopolysaccharide stimulation of myoblasts. C2C12-Exos were isolated and purified from the supernatant of myoblasts by gradient centrifugation. Multiple methods were used to identify the exosomes. Gradient concentrations of IF-C2C12-Exos were added to normal macrophages and myoblasts. PKH67 fluorescence tracing was used to identify the interaction between exosomes and cells. Microscopic morphology, Giemsa stain, and immunofluorescence were carried out for histological analysis. Additionally, ELISA assays, flow cytometry, and western blot were conducted to analyze molecular changes. Moreover, myogenic proliferation was assessed by the BrdU test, scratch assay, and CCK-8 assay. RESULTS We found that the PKH-67-marked C2C12-Exos can be endocytosed by both macrophages and myoblasts. IF-C2C12-Exos induced M1 macrophage polarization and suppressed the M2 phenotype in vitro. In addition, these exosomes also stimulated the inflammatory reactions of macrophages. Furthermore, we demonstrated that IF-C2C12-Exos disrupted the balance of myoblast proliferation/differentiation, leading to enhanced proliferation and suppressed fibrogenic/myogenic differentiation. CONCLUSION IF-C2C12-Exos can induce M1 polarization, resulting in a sustained and aggravated inflammatory environment that impairs myoblast differentiation, and leads to enhanced myogenic proliferation. These results demonstrate why prolonged inflammation occurs after acute muscle injury and provide a new target for the regulation of muscle regeneration.
Collapse
|
research-article |
4 |
11 |
23
|
Wang C, Sun Y, Ding Z, Lin J, Luo Z, Chen J. Influence of Femoral Version on the Outcomes of Hip Arthroscopic Surgery for Femoroacetabular Impingement or Labral Tears: A Systematic Review and Meta-analysis. Orthop J Sports Med 2021; 9:23259671211009192. [PMID: 34179203 PMCID: PMC8202282 DOI: 10.1177/23259671211009192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/10/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND It remains controversial whether abnormal femoral version (FV) affects the outcomes of hip arthroscopic surgery for femoroacetabular impingement (FAI) or labral tears. PURPOSE To review the outcomes of hip arthroscopic surgery for FAI or labral tears in patients with normal versus abnormal FV. STUDY DESIGN Systematic review; Level of evidence, 4. METHODS Embase, PubMed, and the Cochrane Library were searched in July 2020 for studies reporting the outcomes after primary hip arthroscopic surgery for FAI or labral tears in patients with femoral retroversion (<5°), femoral anteversion (>20°), or normal FV (5°-20°). The primary outcome was the modified Harris Hip Score (mHHS), and secondary outcomes were the visual analog scale (VAS) for pain, Hip Outcome Score-Sport-Specific Subscale (HOS-SSS), Non-Arthritic Hip Score (NAHS), failure rate, and patient satisfaction. The difference in preoperative and postoperative scores (Δ) was also calculated when applicable. RESULTS Included in this review were 5 studies with 822 patients who underwent hip arthroscopic surgery for FAI or labral tears; there were 166 patients with retroversion, 512 patients with normal version, and 144 patients with anteversion. Patients with retroversion and normal version had similar postoperative mHHS scores (mean difference [MD], 2.42 [95% confidence interval (CI), -3.42 to 8.26]; P = .42) and ΔmHHS scores (MD, -0.70 [96% CI, -8.56 to 7.15]; P = .86). Likewise, the patients with anteversion and normal version had similar postoperative mHHS scores (MD, -3.09 [95% CI, -7.66 to 1.48]; P = .18) and ΔmHHS scores (MD, -1.92 [95% CI, -6.18 to 2.34]; P = .38). Regarding secondary outcomes, patients with retroversion and anteversion had similar ΔNAHS scores, ΔHOS-SSS scores, ΔVAS scores, patient satisfaction, and failure rates to those with normal version, although a significant difference was found between the patients with retroversion and normal version regarding postoperative NAHS scores (MD, 5.96 [95% CI, 1.66-10.26]; P = .007) and postoperative HOS-SSS scores (MD, 7.32 [95% CI, 0.19-14.44]; P = .04). CONCLUSION The results of this review indicated that abnormal FV did not significantly influence outcomes after hip arthroscopic surgery for FAI or labral tears.
Collapse
|
Review |
4 |
11 |
24
|
Lin J, Luo Z, Liu S, Chen Q, Liu S, Chen J. Long non-coding RNA H19 promotes myoblast fibrogenesis via regulating the miR-20a-5p-Tgfbr2 axis. Clin Exp Pharmacol Physiol 2021; 48:921-931. [PMID: 33615521 DOI: 10.1111/1440-1681.13489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Emerging evidence has indicated long non-coding RNAs (lncRNAs) play important roles in diverse biological processes, including fibrosis. Here, we report that lncRNA H19 is able to promote skeletal muscle fibrosis. lnc-H19 was identified to be highly expressed in skeletal muscle fibrosis in vivo and in vitro; while lnc-H19 knockdown attenuated fibrosis in vitro. The knockdown of lnc-H19 was proved to inhibit the activation of the TGFβ/Smad pathway in C2C12 myoblasts by sponging miR-20a-5p to regulate Tgfbr2 expression through the competing endogenous RNA function. Our study elucidates the roles of the lnc-H19-miR-20a-5p-Tgfbr2 axis in regulating the TGFβ/Smad pathway of myoblast fibrogenesis, which might provide a promising therapeutic target for skeletal muscle fibrosis.
Collapse
|
|
4 |
10 |
25
|
Ren P, Zhang Y, Luo Z, Song P, Li Y. Theoretical and experimental study on spectra, electronic structure and photoelectric properties of three nature dyes used for solar cells. J Mol Liq 2017; 247:193-206. [DOI: 10.1016/j.molliq.2017.09.088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] [Imported: 10/13/2024]
|
|
8 |
10 |