1
|
Tanabe S, Quader S, Cabral H, Ono R. Interplay of EMT and CSC in Cancer and the Potential Therapeutic Strategies. Front Pharmacol 2020; 11:904. [PMID: 32625096 PMCID: PMC7311659 DOI: 10.3389/fphar.2020.00904] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023] Open
Abstract
The mechanism of epithelial-mesenchymal transition (EMT) consists of the cellular phenotypic transition from epithelial to mesenchymal status. The cells exhibiting EMT exist in cancer stem cell (CSC) population, which is involved in drug resistance. CSCs demonstrating EMT feature remain after cancer treatment, which leads to drug resistance, recurrence, metastasis and malignancy of cancer. In this context, the recent advance of nanotechnology in the medical application has ascended the possibility to target CSCs using nanomedicines. In this review article, we focused on the mechanism of CSCs and EMT, especially into the signaling pathways in EMT, regulation of EMT and CSCs by microRNAs and nanomedicine-based approaches to target CSCs.
Collapse
|
Review |
5 |
111 |
2
|
Tanabe S, Sato Y, Suzuki T, Suzuki K, Nagao T, Yamaguchi T. Gene expression profiling of human mesenchymal stem cells for identification of novel markers in early- and late-stage cell culture. J Biochem 2008; 144:399-408. [PMID: 18550633 DOI: 10.1093/jb/mvn082] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) are multipotent cells that differentiate into several cell types, and are expected to be a useful tool for cellular therapy. Although the hMSCs differentiate into osteogenic cells during early to middle stages, this differentiation capacity decreases during the late stages of cell culture. To test a hypothesis that there are biomarkers indicating the differentiation potential of hMSCs, we performed microarray analyses and profiled the gene expression in six batches of hMSCs (passages 4-28). At least four genes [necdin homolog (mouse) (NDN), EPH receptor A5 (EPHA5), nephroblastoma overexpressed gene (NOV) and runt-related transcription factor 2 (RUNX2)] were identified correlating with the passage numbers in all six batches. The results showed that the osteogenic differentiation capacity of hMSCs is down-regulated in the late stages of cell culture. It seemed that adipogenic differentiation capacity was also down-regulated in late stage of the culture. The cells in late stage are oligopotent and the genes identified in this study have the potential to act as quality-control markers of the osteogenic differentiation capacity of hMSCs.
Collapse
|
|
17 |
42 |
3
|
Tanabe S, Aoyagi K, Yokozaki H, Sasaki H. Gene expression signatures for identifying diffuse-type gastric cancer associated with epithelial-mesenchymal transition. Int J Oncol 2014; 44:1955-1970. [PMID: 24728500 DOI: 10.3892/ijo.2014.2387] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/28/2014] [Indexed: 02/07/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is associated with tumor malignancy. The hedgehog-EMT pathway is preferentially activated in diffuse-type gastric cancer (GC) compared with intestinal-type GC; however, histological typing is currently the only method for distinguishing these two major types of GC. We compared the gene expression profiles of 12 bone marrow-derived mesenchymal stem cell cultures and 5 diffuse-type GC tissue samples. Numerous upregulated or downregulated genes were identified in diffuse-type GC, including CDH1, CDH2, VIM, WNT4 and WNT5. Among these genes, the mRNA ratio of CDH2 to CDH1 could distinguish the 15 diffuse-type GC samples from the 17 intestinal-type GC samples. Our results suggested that the mesenchymal features were more prominent in diffuse-type GC than in intestinal-type GC, but were weaker in diffuse-type GC than in mesenchymal stem cells. Diffuse-type GC that has undergone extensive EMT, which has a poor prognosis, can be identified by quantitative PCR analysis of only two genes.
Collapse
|
|
11 |
40 |
4
|
Tanabe S, Kawabata T, Aoyagi K, Yokozaki H, Sasaki H. Gene expression and pathway analysis of CTNNB1 in cancer and stem cells. World J Stem Cells 2016; 8:384-395. [PMID: 27928465 PMCID: PMC5120243 DOI: 10.4252/wjsc.v8.i11.384] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/22/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate β-catenin (CTNNB1) signaling in cancer and stem cells, the gene expression and pathway were analyzed using bioinformatics. METHODS The expression of the catenin β 1 (CTNNB1) gene, which codes for β-catenin, was analyzed in mesenchymal stem cells (MSCs) and gastric cancer (GC) cells. Beta-catenin signaling and the mutation of related proteins were also analyzed using the cBioPortal for Cancer Genomics and HOMology modeling of Complex Structure (HOMCOS) databases. RESULTS The expression of the CTNNB1 gene was up-regulated in GC cells compared to MSCs. The expression of EPH receptor A8 (EPHA8), synovial sarcoma translocation chromosome 18 (SS18), interactor of little elongation complex ELL subunit 1 (ICE1), patched 1 (PTCH1), mutS homolog 3 (MSH3) and caspase recruitment domain family member 11 (CARD11) were also shown to be altered in GC cells in the cBioPortal for Cancer Genomics analysis. 3D complex structures were reported for E-cadherin 1 (CDH1), lymphoid enhancer binding factor 1 (LEF1), transcription factor 7 like 2 (TCF7L2) and adenomatous polyposis coli protein (APC) with β-catenin. CONCLUSION The results indicate that the epithelial-mesenchymal transition (EMT)-related gene CTNNB1 plays an important role in the regulation of stem cell pluripotency and cancer signaling.
Collapse
|
research-article |
9 |
25 |
5
|
Tanabe S, Quader S, Ono R, Cabral H, Aoyagi K, Hirose A, Yokozaki H, Sasaki H. Molecular Network Profiling in Intestinal- and Diffuse-Type Gastric Cancer. Cancers (Basel) 2020; 12:3833. [PMID: 33353109 PMCID: PMC7765985 DOI: 10.3390/cancers12123833] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) plays an important role in the acquisition of cancer stem cell (CSC) feature and drug resistance, which are the main hallmarks of cancer malignancy. Although previous findings have shown that several signaling pathways are activated in cancer progression, the precise mechanism of signaling pathways in EMT and CSCs are not fully understood. In this study, we focused on the intestinal and diffuse-type gastric cancer (GC) and analyzed the gene expression of public RNAseq data to understand the molecular pathway regulation in different subtypes of gastric cancer. Network pathway analysis was performed by Ingenuity Pathway Analysis (IPA). A total of 2815 probe set IDs were significantly different between intestinal- and diffuse-type GC data in cBioPortal Cancer Genomics. Our analysis uncovered 10 genes including male-specific lethal 3 homolog (Drosophila) pseudogene 1 (MSL3P1), CDC28 protein kinase regulatory subunit 1B (CKS1B), DEAD-box helicase 27 (DDX27), golgi to ER traffic protein 4 (GET4), chromosome segregation 1 like (CSE1L), translocase of outer mitochondrial membrane 34 (TOMM34), YTH N6-methyladenosine RNA binding protein 1 (YTHDF1), ribonucleic acid export 1 (RAE1), par-6 family cell polarity regulator beta (PARD6B), and MRG domain binding protein (MRGBP), which have differences in gene expression between intestinal- and diffuse-type GC. A total of 463 direct relationships with three molecules (MYC, NTRK1, UBE2M) were found in the biomarker-filtered network generated by network pathway analysis. The networks and features in intestinal- and diffuse-type GC have been investigated and profiled in bioinformatics. Our results revealed the signaling pathway networks in intestinal- and diffuse-type GC, bringing new light for the elucidation of drug resistance mechanisms in CSCs.
Collapse
|
research-article |
5 |
18 |
6
|
Tanabe S, O’Brien J, Tollefsen KE, Kim Y, Chauhan V, Yauk C, Huliganga E, Rudel RA, Kay JE, Helm JS, Beaton D, Filipovska J, Sovadinova I, Garcia-Reyero N, Mally A, Poulsen SS, Delrue N, Fritsche E, Luettich K, La Rocca C, Yepiskoposyan H, Klose J, Danielsen PH, Esterhuizen M, Jacobsen NR, Vogel U, Gant TW, Choi I, FitzGerald R. Reactive Oxygen Species in the Adverse Outcome Pathway Framework: Toward Creation of Harmonized Consensus Key Events. FRONTIERS IN TOXICOLOGY 2022; 4:887135. [PMID: 35875696 PMCID: PMC9298159 DOI: 10.3389/ftox.2022.887135] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/13/2022] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are formed as a result of natural cellular processes, intracellular signaling, or as adverse responses associated with diseases or exposure to oxidizing chemical and non-chemical stressors. The action of ROS and RNS, collectively referred to as reactive oxygen and nitrogen species (RONS), has recently become highly relevant in a number of adverse outcome pathways (AOPs) that capture, organize, evaluate and portray causal relationships pertinent to adversity or disease progression. RONS can potentially act as a key event (KE) in the cascade of responses leading to an adverse outcome (AO) within such AOPs, but are also known to modulate responses of events along the AOP continuum without being an AOP event itself. A substantial discussion has therefore been undertaken in a series of workshops named "Mystery or ROS" to elucidate the role of RONS in disease and adverse effects associated with exposure to stressors such as nanoparticles, chemical, and ionizing and non-ionizing radiation. This review introduces the background for RONS production, reflects on the direct and indirect effects of RONS, addresses the diversity of terminology used in different fields of research, and provides guidance for developing a harmonized approach for defining a common event terminology within the AOP developer community.
Collapse
|
Review |
3 |
17 |
7
|
Tanabe S. Role of mesenchymal stem cells in cell life and their signaling. World J Stem Cells 2014; 6:24-32. [PMID: 24567785 PMCID: PMC3927011 DOI: 10.4252/wjsc.v6.i1.24] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/18/2013] [Accepted: 12/12/2013] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have various roles in the body and cellular environment, and the cellular phenotypes of MSCs changes in different conditions. MSCs support the maintenance of other cells, and the capacity of MSCs to differentiate into several cell types makes the cells unique and full of possibilities. The involvement of MSCs in the epithelial-mesenchymal transition is an important property of these cells. In this review, the role of MSCs in cell life, including their application in therapy, is first described, and the signaling mechanism of MSCs is investigated for a further understanding of these cells.
Collapse
|
Review |
11 |
16 |
8
|
Tanabe S, Aoyagi K, Yokozaki H, Sasaki H. Regulated genes in mesenchymal stem cells and gastric cancer. World J Stem Cells 2015; 7:208-222. [PMID: 25621121 PMCID: PMC4300932 DOI: 10.4252/wjsc.v7.i1.208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/18/2014] [Accepted: 11/17/2014] [Indexed: 02/07/2023] Open
Abstract
AIM To investigate the genes regulated in mesenchymal stem cells (MSCs) and diffuse-type gastric cancer (GC), gene expression was analyzed. METHODS Gene expression of MSCs and diffuse-type GC cells were analyzed by microarray. Genes related to stem cells, cancer and the epithelial-mesenchymal transition (EMT) were extracted from human gene lists using Gene Ontology and reference information. Gene panels were generated, and messenger RNA gene expression in MSCs and diffuse-type GC cells was analyzed. Cluster analysis was performed using the NCSS software. RESULTS The gene expression of regulator of G-protein signaling 1 (RGS1) was up-regulated in diffuse-type GC cells compared with MSCs. A panel of stem-cell related genes and genes involved in cancer or the EMT were examined. Stem-cell related genes, such as growth arrest-specific 6, musashi RNA-binding protein 2 and hairy and enhancer of split 1 (Drosophila), NOTCH family genes and Notch ligands, such as delta-like 1 (Drosophila) and Jagged 2, were regulated. CONCLUSION Expression of RGS1 is up-regulated, and genes related to stem cells and NOTCH signaling are altered in diffuse-type GC compared with MSCs.
Collapse
|
research-article |
10 |
14 |
9
|
Tanabe S, Aoyagi K, Yokozaki H, Sasaki H. Regulation of CTNNB1 signaling in gastric cancer and stem cells. World J Gastrointest Oncol 2016; 8:592-598. [PMID: 27574551 PMCID: PMC4980649 DOI: 10.4251/wjgo.v8.i8.592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/22/2016] [Accepted: 05/17/2016] [Indexed: 02/05/2023] Open
Abstract
Recent research has shown that the alteration of combinations in gene expression contributes to cellular phenotypic changes. Previously, it has been demonstrated that the combination of cadherin 1 and cadherin 2 expression can identify the diffuse-type and intestinal-type gastric cancers. Although the diffuse-type gastric cancer has been resistant to treatment, the precise mechanism and phenotypic involvement has not been revealed. It may be possible that stem cells transform into gastric cancer cells, possibly through the involvement of a molecule alteration and signaling mechanism. In this review article, we focus on the role of catenin beta 1 (CTNNB1 or β-catenin) and describe the regulation of CTNNB1 signaling in gastric cancer and stem cells.
Collapse
|
Review |
9 |
10 |
10
|
Tanabe S. Signaling involved in stem cell reprogramming and differentiation. World J Stem Cells 2015; 7:992-998. [PMID: 26328015 PMCID: PMC4550631 DOI: 10.4252/wjsc.v7.i7.992] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/29/2015] [Accepted: 06/18/2015] [Indexed: 02/06/2023] Open
Abstract
Stem cell differentiation is regulated by multiple signaling events. Recent technical advances have revealed that differentiated cells can be reprogrammed into stem cells. The signals involved in stem cell programming are of major interest in stem cell research. The signaling mechanisms involved in regulating stem cell reprogramming and differentiation are the subject of intense study in the field of life sciences. In this review, the molecular interactions and signaling pathways related to stem cell differentiation are discussed.
Collapse
|
editorial |
10 |
10 |
11
|
Tanabe S, Quader S, Ono R, Cabral H, Aoyagi K, Hirose A, Yokozaki H, Sasaki H. Cell Cycle Regulation and DNA Damage Response Networks in Diffuse- and Intestinal-Type Gastric Cancer. Cancers (Basel) 2021; 13:5786. [PMID: 34830941 PMCID: PMC8616335 DOI: 10.3390/cancers13225786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Dynamic regulation in molecular networks including cell cycle regulation and DNA damage response play an important role in cancer. To reveal the feature of cancer malignancy, gene expression and network regulation were profiled in diffuse- and intestinal-type gastric cancer (GC). The results of the network analysis with Ingenuity Pathway Analysis (IPA) showed that the activation states of several canonical pathways related to cell cycle regulation were altered. The G1/S checkpoint regulation pathway was activated in diffuse-type GC compared to intestinal-type GC, while canonical pathways of the cell cycle control of chromosomal replication, and the cyclin and cell cycle regulation, were activated in intestinal-type GC compared to diffuse-type GC. A canonical pathway on the role of BRCA1 in the DNA damage response was activated in intestinal-type GC compared to diffuse-type GC, where gene expression of BRCA1, which is related to G1/S phase transition, was upregulated in intestinal-type GC compared to diffuse-type GC. Several microRNAs (miRNAs), such as mir-10, mir-17, mir-19, mir-194, mir-224, mir-25, mir-34, mir-451 and mir-605, were identified to have direct relationships in the G1/S cell cycle checkpoint regulation pathway. Additionally, cell cycle regulation may be altered in epithelial-mesenchymal transition (EMT) conditions. The alterations in the activation states of the pathways related to cell cycle regulation in diffuse- and intestinal-type GC highlighted the significance of cell cycle regulation in EMT.
Collapse
|
research-article |
4 |
6 |
12
|
Tanabe S. Report of the 1st and 2nd Mystery of Reactive Oxygen Species Conferences. ALTEX 2022:336-338. [PMID: 35413126 DOI: 10.14573/altex.2203011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
|
3 |
4 |
13
|
Tanabe S, Ohara M, Ito M, Noda A, Kobayashi K, Matsumoto M, Hirose A. Toxicity in repeated 28-day oral administration of <i>N</i>-phenyl-1-naphthylamine in rats. FUNDAMENTAL TOXICOLOGICAL SCIENCES 2017; 4:207-218. [DOI: 10.2131/fts.4.207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
|
8 |
4 |
14
|
Tanabe S, Kobayashi K, Matsumoto M, Serizawa H, Igarashi T, Yamada T, Hirose A. Toxicity of repeated 28-day oral administration of acenaphthylene in rats. FUNDAMENTAL TOXICOLOGICAL SCIENCES 2017; 4:247-259. [DOI: 10.2131/fts.4.247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
|
8 |
4 |
15
|
Tanabe S. Perspectives of gene combinations in phenotype presentation. World J Stem Cells 2013; 5:61-67. [PMID: 23951387 PMCID: PMC3744131 DOI: 10.4252/wjsc.v5.i3.61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/22/2013] [Accepted: 06/08/2013] [Indexed: 02/06/2023] Open
Abstract
Cells exhibit a variety of phenotypes in different stages and diseases. Although several markers for cellular phenotypes have been identified, gene combinations denoting cellular phenotypes have not been completely elucidated. Recent advances in gene analysis have revealed that various gene expression patterns are observed in each cell species and status. In this review, the perspectives of gene combinations in cellular phenotype presentation are discussed. Gene expression profiles change during cellular processes, such as cell proliferation, cell differentiation, and cell death. In addition, epigenetic regulation increases the complexity of the gene expression profile. The role of gene combinations and panels of gene combinations in each cellular condition are also discussed.
Collapse
|
editorial |
12 |
3 |
16
|
Tanabe S. Origin of cells and network information. World J Stem Cells 2015; 7:535-540. [PMID: 25914760 PMCID: PMC4404388 DOI: 10.4252/wjsc.v7.i3.535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/20/2015] [Accepted: 02/09/2015] [Indexed: 02/06/2023] Open
Abstract
All cells are derived from one cell, and the origin of different cell types is a subject of curiosity. Cells construct life through appropriately timed networks at each stage of development. Communication among cells and intracellular signaling are essential for cell differentiation and for life processes. Cellular molecular networks establish cell diversity and life. The investigation of the regulation of each gene in the genome within the cellular network is therefore of interest. Stem cells produce various cells that are suitable for specific purposes. The dynamics of the information in the cellular network changes as the status of cells is altered. The components of each cell are subject to investigation.
Collapse
|
editorial |
10 |
3 |
17
|
Tanabe S, Hirose A, Whelan M, Yamada T. [Molecular Pathway and AOP Development Using Gene Network Analysis]. YAKUGAKU ZASSHI 2020; 140:485-489. [PMID: 32238629 DOI: 10.1248/yakushi.19-00190-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Organisation for Economic Co-operation and Development (OECD) has initiated the adverse outcome pathway (AOP) Development Program in which the concept of AOP is applied to evaluate the safety of molecules such as chemicals. This program aims to assist regulatory needs and construct a knowledge base by accumulating AOP case studies. AOP consists of a molecular initiating event (MIE) as the initiating event of the pathway; key events (KEs) as the events themselves, such as cellular-molecular interactions; and adverse outcome (AO), such as signaling transduction-induced toxicity, as adverse events. KEs are extracted as important events at various levels, such as the molecular, cellular, tissue, organ, individual, and species levels; measurement of KEs and key event relationships (KERs), including mechanisms, plausibility, species differences, and empirical support information, are gathered. The development status of the AOP relating to histone deacetylase inhibition-induced testicular toxicity, currently being reviewed by the OECD, has been introduced. The AOP describing malignancies by Wnt ligand stimulation and Wnt signaling activation using gene expression network analysis-based mechanisms in molecular pathway elucidation has been suggested.
Collapse
|
Review |
5 |
2 |
18
|
Tanabe S, Quader S, Ono R, Cabral H, Aoyagi K, Hirose A, Yokozaki H, Sasaki H. Molecular network analysis of RNA viral infection pathway in diffuse- and intestinal-type gastric cancer. FUNDAMENTAL TOXICOLOGICAL SCIENCES 2022; 9:37-46. [DOI: 10.2131/fts.9.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
|
3 |
1 |
19
|
Tanabe S. EMT Mechanism, Lung Cancer Metastasis, and microRNA. Front Mol Biosci 2021; 8:731788. [PMID: 34660694 PMCID: PMC8514652 DOI: 10.3389/fmolb.2021.731788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/20/2021] [Indexed: 02/05/2023] Open
|
discussion |
4 |
1 |
20
|
Abstract
The coronavirus disease-19 (COVID-19) is circulating all over the world. To understand and find a way of the COVID-19 treatment, the therapeutic mechanism of COVID-19 is focused on in this Editorial. The pathogenesis of COVID-19 includes the molecular networks such as the binding of the membrane proteins, signaling pathways and RNA replication. The mechanism of infection and targets of the therapeutics are explored and summarized. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is a new type of the coronavirus causing COVID-19, infects the cells via the binding of the membrane proteins of human cells, and is internalized by the cells. The viral genome is replicated by RNA-dependent RNA polymerase (RdRp), followed by the packaging and releasing the viral particles. These steps can be main targets for the therapeutics of COVID-19. On the other hand, over-driven immune responses, so-called “cytokine storm” is one of the main causes of the severe COVID-19. These immune responses are also important targets for the therapeutics of severe COVID-19. In this Editorial, some of the insights in the rapidly increasing abundant research reports on COVID-19 are introduced for the future acceleration of the therapeutic development.
Collapse
|
|
5 |
1 |
21
|
Tanabe S, Yamada T. [Molecular Pathway-based Prediction of Adverse Events in OECD etc.]. YAKUGAKU ZASSHI 2020; 140:479-480. [PMID: 32238627 DOI: 10.1248/yakushi.19-00190-f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
Editorial |
5 |
1 |
22
|
Tanabe S, Beaton D, Chauhan V, Choi I, Choi J, Clerbaux LA, Coppola L, Dumont AF, Esterhuizen M, Filipovska J, FitzGerald R, Fritsche E, Garcia-Reyero N, Goralczyk A, Huliganga E, Kim YJ, Klose J, La Rocca C, Landesmann B, Mally A, Murugadoss S, Omeragic E, Ouédraogo G, Pereira JM, Sadi B, Schaffert A, Song Y, Sovadinova I, Stöger T, Tollefsen KE, Wittwehr C, Yauk C. Report of the 3rd and 4th Mystery of Reactive Oxygen Species Conference. ALTEX 2023; 40:689-693. [PMID: 37889188 DOI: 10.14573/altex.2307041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 10/28/2023] [Imported: 12/02/2024]
|
Editorial |
2 |
1 |
23
|
Tanabe S. RNA signaling pathway <i>via</i> exosomes in cellular population. DRUG DELIVERY SYSTEM 2021; 36:241-247. [DOI: 10.2745/dds.36.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
|
4 |
|
24
|
Tanabe S, Boonstra E, Hong T, Quader S, Ono R, Cabral H, Aoyagi K, Yokozaki H, Perkins EJ, Sasaki H. Molecular Networks of Platinum Drugs and Their Interaction with microRNAs in Cancer. Genes (Basel) 2023; 14:2073. [PMID: 38003016 PMCID: PMC10671144 DOI: 10.3390/genes14112073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] [Imported: 12/02/2024] Open
Abstract
The precise mechanism of resistance to anti-cancer drugs such as platinum drugs is not fully revealed. To reveal the mechanism of drug resistance, the molecular networks of anti-cancer drugs such as cisplatin, carboplatin, oxaliplatin, and arsenic trioxide were analyzed in several types of cancers. Since diffuse-type stomach adenocarcinoma, which has epithelial-mesenchymal transition (EMT)-like characteristics, is more malignant than intestinal-type stomach adenocarcinoma, the gene expression and molecular networks in diffuse- and intestinal-type stomach adenocarcinomas were analyzed. Analysis of carboplatin revealed the causal network in diffuse large B-cell lymphoma. The upstream regulators of the molecular networks of cisplatin-treated lung adenocarcinoma included the anti-cancer drug trichostatin A (TSA), a histone deacetylase inhibitor. The upstream regulator analysis of cisplatin revealed an increase in FAS, BTG2, SESN1, and CDKN1A, and the involvement of the tumor microenvironment pathway. The molecular networks were predicted to interact with several microRNAs, which may contribute to the identification of new drug targets for drug-resistant cancer. Analysis of oxaliplatin, a platinum drug, revealed that the SPINK1 pancreatic cancer pathway is inactivated in ischemic cardiomyopathy. The study showed the importance of the molecular networks of anti-cancer drugs and tumor microenvironment in the treatment of cancer resistant to anti-cancer drugs.
Collapse
|
brief-report |
2 |
|
25
|
Tanabe S, Sachana M, FitzGerald R. Adverse Outcome Pathways in reproductive and developmental toxicology. REPRODUCTIVE AND DEVELOPMENTAL TOXICOLOGY 2022:63-72. [DOI: 10.1016/b978-0-323-89773-0.00004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
|
3 |
|