1
|
Ip BWK, Lee DJK, Tan KY. Delivering a high-quality colonoscopy service fit for the 21 st century. Artif Intell Gastrointest Endosc 2024; 5:92742. [DOI: 10.37126/aige.v5.i3.92742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/12/2024] [Accepted: 05/11/2024] [Indexed: 09/05/2024] [Imported: 09/05/2024] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer globally. There is a concerning increase in its incidence among younger individuals. Colonoscopy remains the gold standard for CRC diagnosis. With the introduction of population-based bowel screening and increased public awareness, there has been a significant rise in referrals for colonoscopy. Healthcare providers worldwide will need to strategically evaluate how to allocate resources to adequately train the next generation of colonoscopists who will need to provide accurate endoscopic assessment and treatment for premalignant polyps and early CRC. This review outlines the current workload challenges faced by colonoscopists whilst exploring emerging technologies such as artificial intelligence for adenoma detection. Additionally, advanced endoscopic surgical techniques like endoscopic submucosal dissection are discussed.
Collapse
|
2
|
Bangolo A, Wadhwani N, Nagesh VK, Dey S, Tran HHV, Aguilar IK, Auda A, Sidiqui A, Menon A, Daoud D, Liu J, Pulipaka SP, George B, Furman F, Khan N, Plumptre A, Sekhon I, Lo A, Weissman S. Impact of artificial intelligence in the management of esophageal, gastric and colorectal malignancies. Artif Intell Gastrointest Endosc 2024; 5:90704. [DOI: 10.37126/aige.v5.i2.90704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/28/2024] [Accepted: 03/04/2024] [Indexed: 05/11/2024] [Imported: 05/11/2024] Open
Abstract
The incidence of gastrointestinal malignancies has increased over the past decade at an alarming rate. Colorectal and gastric cancers are the third and fifth most commonly diagnosed cancers worldwide but are cited as the second and third leading causes of mortality. Early institution of appropriate therapy from timely diagnosis can optimize patient outcomes. Artificial intelligence (AI)-assisted diagnostic, prognostic, and therapeutic tools can assist in expeditious diagnosis, treatment planning/response prediction, and post-surgical prognostication. AI can intercept neoplastic lesions in their primordial stages, accurately flag suspicious and/or inconspicuous lesions with greater accuracy on radiologic, histopathological, and/or endoscopic analyses, and eliminate over-dependence on clinicians. AI-based models have shown to be on par, and sometimes even outperformed experienced gastroenterologists and radiologists. Convolutional neural networks (state-of-the-art deep learning models) are powerful computational models, invaluable to the field of precision oncology. These models not only reliably classify images, but also accurately predict response to chemotherapy, tumor recurrence, metastasis, and survival rates post-treatment. In this systematic review, we analyze the available evidence about the diagnostic, prognostic, and therapeutic utility of artificial intelligence in gastrointestinal oncology.
Collapse
|
3
|
Lingam G, Shakir T, Kader R, Chand M. Role of artificial intelligence in colorectal cancer. Artif Intell Gastrointest Endosc 2024; 5:90723. [DOI: 10.37126/aige.v5.i2.90723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 05/11/2024] [Imported: 05/11/2024] Open
Abstract
The sphere of artificial intelligence (AI) is ever expanding. Applications for clinical practice have been emerging over recent years. Although its uptake has been most prominent in endoscopy, this represents only one aspect of holistic patient care. There are a multitude of other potential avenues in which gastrointestinal care may be involved. We aim to review the role of AI in colorectal cancer as a whole. We performed broad scoping and focused searches of the applications of AI in the field of colorectal cancer. All trials including qualitative research were included from the year 2000 onwards. Studies were grouped into pre-operative, intra-operative and post-operative aspects. Pre-operatively, the major use is with endoscopic recognition. Colonoscopy has embraced the use for human derived classifications such as Narrow-band Imaging International Colorectal Endoscopic, Japan Narrow-band Imaging Expert Team, Paris and Kudo. However, novel detection and diagnostic methods have arisen from advances in AI classification. Intra-operatively, adjuncts such as image enhanced identification of structures and assessment of perfusion have led to improvements in clinical outcomes. Post-operatively, monitoring and surveillance have taken strides with potential socioeconomic and environmental savings. The uses of AI within the umbrella of colorectal surgery are multiple. We have identified existing technologies which are already augmenting cancer care. The future applications are exciting and could at least match, if not surpass human standards.
Collapse
|
4
|
Ghosh NK, Kumar A. Ultra-minimally invasive endoscopic techniques and colorectal diseases: Current status and its future. Artif Intell Gastrointest Endosc 2024; 5:91424. [DOI: 10.37126/aige.v5.i2.91424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/12/2024] [Accepted: 05/06/2024] [Indexed: 05/11/2024] [Imported: 05/11/2024] Open
Abstract
Colorectal diseases are increasing due to altered lifestyle, genetic, and environmental factors. Colonoscopy plays an important role in diagnosis. Advances in colonoscope (ultrathin scope, magnetic scope, capsule) and technological gadgets (Balloon assisted scope, third eye retroscope, NaviAid G-EYE, dye-based chromoendoscopy, virtual chromoendoscopy, narrow band imaging, i-SCAN, etc.) have made colonoscopy more comfortable and efficient. Now in-vivo microscopy can be performed using confocal laser endomicroscopy, optical coherence tomography, spectroscopy, etc. Besides developments in diagnostic colonoscopy, therapeutic colonoscopy has improved to manage lower gastrointestinal tract bleeding, obstruction, perforations, resection polyps, and early colorectal cancers. The introduction of combined endo-laparoscopic surgery and robotic endoscopic surgery has made these interventions feasible. The role of artificial intelligence in the diagnosis and management of colorectal diseases is also increasing day by day. Hence, this article is to review cutting-edge developments in endoscopic principles for the management of colorectal diseases.
Collapse
|
5
|
Dương TQ, Soldera J. Virtual reality tools for training in gastrointestinal endoscopy: A systematic review. Artif Intell Gastrointest Endosc 2024; 5:92090. [DOI: 10.37126/aige.v5.i2.92090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/11/2024] [Accepted: 04/07/2024] [Indexed: 05/11/2024] [Imported: 05/11/2024] Open
Abstract
BACKGROUND Virtual reality (VR) has emerged as an innovative technology in endoscopy training, providing a simulated environment that closely resembles real-life scenarios and offering trainees a valuable platform to acquire and enhance their endoscopic skills. This systematic review will critically evaluate the effectiveness and feasibility of VR-based training compared to traditional methods.
AIM To evaluate the effectiveness and feasibility of VR-based training compared to traditional methods. By examining the current state of the field, this review seeks to identify gaps, challenges, and opportunities for further research and implemen-tation of VR in endoscopic training.
METHODS The study is a systematic review, following the guidelines for reporting systematic reviews set out by the PRISMA statement. A comprehensive search command was designed and implemented and run in September 2023 to identify relevant studies available, from electronic databases such as PubMed, Scopus, Cochrane, and Google Scholar. The results were systematically reviewed.
RESULTS Sixteen articles were included in the final analysis. The total number of participants was 523. Five studies focused on both upper endoscopy and colonoscopy training, two on upper endoscopy training only, eight on colon-oscopy training only, and one on sigmoidoscopy training only. Gastro-intestinal Mentor virtual endoscopy simulator was commonly used. Fifteen reported positive results, indicating that VR-based training was feasible and acceptable for endoscopy learners. VR technology helped the trainees enhance their skills in manipulating the endoscope, reducing the procedure time or increasing the technical accuracy, in VR scenarios and real patients. Some studies show that the patient discomfort level decreased significantly. However, some studies show there were no significant differences in patient discomfort and pain scores between VR group and other groups.
CONCLUSION VR training is effective for endoscopy training. There are several well-designed randomized controlled trials with large sample sizes, proving the potential of this innovative tool. Thus, VR should be more widely adopted in endoscopy training. Furthermore, combining VR training with conventional methods could be a promising approach that should be implemented in training.
Collapse
|
6
|
van der Zander QEW, Schreuder RM, Thijssen A, Kusters CHJ, Dehghani N, Scheeve T, Winkens B, van der Ende - van Loon MCM, de With PHN, van der Sommen F, Masclee AAM, Schoon EJ. Artificial intelligence for characterization of diminutive colorectal polyps: A feasibility study comparing two computer-aided diagnosis systems. Artif Intell Gastrointest Endosc 2024; 5:90574. [DOI: 10.37126/aige.v5.i1.90574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/11/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024] [Imported: 02/20/2024] Open
Abstract
BACKGROUND Artificial intelligence (AI) has potential in the optical diagnosis of colorectal polyps.
AIM To evaluate the feasibility of the real-time use of the computer-aided diagnosis system (CADx) AI for ColoRectal Polyps (AI4CRP) for the optical diagnosis of diminutive colorectal polyps and to compare the performance with CAD EYETM (Fujifilm, Tokyo, Japan). CADx influence on the optical diagnosis of an expert endoscopist was also investigated.
METHODS AI4CRP was developed in-house and CAD EYE was proprietary software provided by Fujifilm. Both CADx-systems exploit convolutional neural networks. Colorectal polyps were characterized as benign or premalignant and histopathology was used as gold standard. AI4CRP provided an objective assessment of its characterization by presenting a calibrated confidence characterization value (range 0.0-1.0). A predefined cut-off value of 0.6 was set with values < 0.6 indicating benign and values ≥ 0.6 indicating premalignant colorectal polyps. Low confidence characterizations were defined as values 40% around the cut-off value of 0.6 (< 0.36 and > 0.76). Self-critical AI4CRP’s diagnostic performances excluded low confidence characterizations.
RESULTS AI4CRP use was feasible and performed on 30 patients with 51 colorectal polyps. Self-critical AI4CRP, excluding 14 low confidence characterizations [27.5% (14/51)], had a diagnostic accuracy of 89.2%, sensitivity of 89.7%, and specificity of 87.5%, which was higher compared to AI4CRP. CAD EYE had a 83.7% diagnostic accuracy, 74.2% sensitivity, and 100.0% specificity. Diagnostic performances of the endoscopist alone (before AI) increased non-significantly after reviewing the CADx characterizations of both AI4CRP and CAD EYE (AI-assisted endoscopist). Diagnostic performances of the AI-assisted endoscopist were higher compared to both CADx-systems, except for specificity for which CAD EYE performed best.
CONCLUSION Real-time use of AI4CRP was feasible. Objective confidence values provided by a CADx is novel and self-critical AI4CRP showed higher diagnostic performances compared to AI4CRP.
Collapse
|
7
|
Juneja D. Artificial intelligence: Applications in critical care gastroenterology. Artif Intell Gastrointest Endosc 2024; 5:89138. [DOI: 10.37126/aige.v5.i1.89138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 02/20/2024] [Imported: 02/20/2024] Open
Abstract
Gastrointestinal (GI) complications frequently necessitate intensive care unit (ICU) admission. Additionally, critically ill patients also develop GI complications requiring further diagnostic and therapeutic interventions. However, these patients form a vulnerable group, who are at risk for developing side effects and complications. Every effort must be made to reduce invasiveness and ensure safety of interventions in ICU patients. Artificial intelligence (AI) is a rapidly evolving technology with several potential applications in healthcare settings. ICUs produce a large amount of data, which may be employed for creation of AI algorithms, and provide a lucrative opportunity for application of AI. However, the current role of AI in these patients remains limited due to lack of large-scale trials comparing the efficacy of AI with the accepted standards of care.
Collapse
|
8
|
Lesmana CRA. Role of endoscopic ultrasound in non-variceal upper gastrointestinal bleeding management. Artif Intell Gastrointest Endosc 2023; 4:12-17. [DOI: 10.37126/aige.v4.i2.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/14/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023] [Imported: 12/07/2023] Open
Abstract
Non-variceal upper gastrointestinal bleeding (NVUGIB) is one of the challenging situations in clinical practice. Despite that gastric ulcer and duodenal ulcer are still the main causes of acute NVUGIB, there are other causes of bleeding which might not always be detected through the standard endoscopic evaluation. Standard endoscopic management of UGIB consists of injection, thermal coagulation, hemoclips, and combination therapy. However, these methods are not always successful for rebleeding prevention. Endoscopic ultrasound (EUS) has been used recently for portal hypertension management, especially in managing acute variceal bleeding. EUS has been considered a better tool to visualize the bleeding vessel in gastroesophageal variceal bleeding. There have been studies looking at the role of EUS for managing NVUGIB; however, most of them are case reports. Therefore, it is important to review back to see the evolution and innovation of endoscopic treatment for NVUGIB and the role of EUS for possibility to replace the standard endoscopic haemostasis management in daily practice.
Collapse
|
9
|
Goetz N, Hanigan K, Cheng RKY. Artificial intelligence fails to improve colonoscopy quality: A single centre retrospective cohort study. Artif Intell Gastrointest Endosc 2023; 4:18-26. [DOI: 10.37126/aige.v4.i2.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/07/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023] [Imported: 12/07/2023] Open
Abstract
BACKGROUND Limited data currently exists on the clinical utility of Artificial Intelligence Assisted Colonoscopy (AIAC) outside of clinical trials.
AIM To evaluate the impact of AIAC on key markers of colonoscopy quality compared to conventional colonoscopy (CC).
METHODS This single-centre retrospective observational cohort study included all patients undergoing colonoscopy at a secondary centre in Brisbane, Australia. CC outcomes between October 2021 and October 2022 were compared with AIAC outcomes after the introduction of the Olympus Endo-AID module from October 2022 to January 2023. Endoscopists who conducted over 50 procedures before and after AIAC introduction were included. Procedures for surveillance of inflammatory bowel disease were excluded. Patient demographics, proceduralist specialisation, indication for colonoscopy, and colonoscopy quality metrics were collected. Adenoma detection rate (ADR) and sessile serrated lesion detection rate (SSLDR) were calculated for both AIAC and CC.
RESULTS The study included 746 AIAC procedures and 2162 CC procedures performed by seven endoscopists. Baseline patient demographics were similar, with median age of 60 years with a slight female predominance (52.1%). Procedure indications, bowel preparation quality, and caecal intubation rates were comparable between groups. AIAC had a slightly longer withdrawal time compared to CC, but the difference was not statistically significant. The introduction of AIAC did not significantly change ADR (52.1% for AIAC vs 52.6% for CC, P = 0.91) or SSLDR (17.4% for AIAC vs 18.1% for CC, P = 0.44).
CONCLUSION The implementation of AIAC failed to improve key markers of colonoscopy quality, including ADR, SSLDR and withdrawal time. Further research is required to assess the utility and cost-efficiency of AIAC for high performing endoscopists.
Collapse
|
10
|
Panarese A, Saito Y, Zagari RM. Kyoto classification of gastritis, virtual chromoendoscopy and artificial intelligence: Where are we going? What do we need? Artif Intell Gastrointest Endosc 2023; 4:1-11. [DOI: 10.37126/aige.v4.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023] Open
Abstract
Chronic gastritis (CG) is a widespread and frequent disease, mainly caused by Helicobacter pylori infection, which is associated with an increased risk of gastric cancer. Virtual chromoendoscopy improves the endoscopic diagnostic efficacy, which is essential to establish the most appropriate therapy and to enable cancer prevention. Artificial intelligence provides algorithms for the diagnosis of gastritis and, in particular, early gastric cancer, but it is not yet used in practice. Thus, technological innovation, through image resolution and processing, optimizes the diagnosis and management of CG and gastric cancer. The endoscopic Kyoto classification of gastritis improves the diagnosis and management of this disease, but through the analysis of the most recent literature, new algorithms can be proposed.
Collapse
|
11
|
Rao B H, Trieu JA, Nair P, Gressel G, Venu M, Venu RP. Artificial intelligence in endoscopy: More than what meets the eye in screening colonoscopy and endosonographic evaluation of pancreatic lesions. Artif Intell Gastrointest Endosc 2022; 3:16-30. [DOI: 10.37126/aige.v3.i3.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/07/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI)-based tools have ushered in a new era of innovation in the field of gastrointestinal (GI) endoscopy. Despite vast improvements in endoscopic techniques and equipment, diagnostic endoscopy remains heavily operator-dependent, in particular, colonoscopy and endoscopic ultrasound (EUS). Recent reports have shown that as much as 25% of colonic adenomas may be missed at colonoscopy. This can result in an increased incidence of interval colon cancer. Similarly, EUS has been shown to have high inter-observer variability, overlap in diagnoses with a relatively low specificity for pancreatic lesions. Our understanding of Machine-learning (ML) techniques in AI have evolved over the last decade and its application in AI–based tools for endoscopic detection and diagnosis is being actively investigated at several centers. ML is an aspect of AI that is based on neural networks, and is widely used for image classification, object detection, and semantic segmentation which are key functional aspects of AI-related computer aided diagnostic systems. In this review, current status and limitations of ML, specifically for adenoma detection and endosonographic diagnosis of pancreatic lesions, will be summarized from existing literature. This will help to better understand its role as viewed through the prism of real world application in the field of GI endoscopy.
Collapse
|
12
|
Awidi M, Bagga A. Artificial intelligence and machine learning in colorectal cancer. Artif Intell Gastrointest Endosc 2022; 3:31-43. [DOI: 10.37126/aige.v3.i3.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/24/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous illness characterized by various epigenetic and microenvironmental changes and is the third-highest cause of cancer-related death in the US. Artificial intelligence (AI) with its ability to allow automatic learning and improvement from experiences using statistical methods and Deep learning has made a distinctive contribution to the diagnosis and treatment of several cancer types. This review discusses the uses and application of AI in CRC screening using automated polyp detection assistance technologies to the development of computer-assisted diagnostic algorithms capable of accurately detecting polyps during colonoscopy and classifying them. Furthermore, we summarize the current research initiatives geared towards building computer-assisted diagnostic algorithms that aim at improving the diagnostic accuracy of benign from premalignant lesions. Considering the evolving transition to more personalized and tailored treatment strategies for CRC, the review also discusses the development of machine learning algorithms to understand responses to therapies and mechanisms of resistance as well as the future roles that AI applications may play in assisting in the treatment of CRC with the aim to improve disease outcomes. We also discuss the constraints and limitations of the use of AI systems. While the medical profession remains enthusiastic about the future of AI and machine learning, large-scale randomized clinical trials are needed to analyze AI algorithms before they can be used.
Collapse
|
13
|
Correia FP, Lourenço LC. Artificial intelligence in the endoscopic approach of biliary tract diseases: A current review. Artif Intell Gastrointest Endosc 2022; 3:9-15. [DOI: 10.37126/aige.v3.i2.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
In recent years there have been major developments in the field of artificial intelligence. The different areas of medicine have taken advantage of this tool to make various diagnostic and therapeutic methods more effective, safe, and user-friendly. In this way, artificial intelligence has been an increasingly present reality in medicine. In the field of Gastroenterology, the main application has been in the detection and characterization of colonic polyps, but an increasing number of studies have been published on the application of deep learning systems in other pathologies of the gastrointestinal tract. Evidence of the application of artificial intelligence in the assessment of biliary tract is still scarce. Some studies support the usefulness of these systems in the investigation and treatment of choledocholithiasis, demonstrating that they have the potential to be integrated into clinical practice and endoscopic procedures, such as endoscopic retrograde cholangiopancreatography. Its application in cholangioscopy for the investigation of undetermined biliary strictures also seems to be promising. Assessing the bile duct through endoscopic ultrasound can be challenging, especially for less experienced operators, thus becoming an area of potential interest for artificial intelligence. In this review, we summarize the state of the art of artificial intelligence in the endoscopic diagnosis and treatment of biliary diseases.
Collapse
|
14
|
Marques KF, Marques AF, Lopes MA, Beraldo RF, Lima TB, Sassaki LY. Artificial intelligence in colorectal cancer screening in patients with inflammatory bowel disease. Artif Intell Gastrointest Endosc 2022; 3:1-8. [DOI: 10.37126/aige.v3.i1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/14/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) is a branch of computer science that develops intelligent machines. In recent years, medicine has been contemplated with this recent modality to aid in the diagnosis of diseases in several specialties, including gastroenterology and gastrointestinal endoscopy. This new technology has superior ability to perform tasks mimicking human behavior and can identify possible pathological alterations, such as pre-malignant lesions and dysplasia, precursor lesions of colorectal cancer (CRC), and support medical decision-making. CRC is among the three most prevalent cancer types, and the second most common cause of cancer-related deaths worldwide; in addition, it is a leading cause of death in patients with inflammatory bowel disease (IBD). Patients with IBD tend to have greater inflammatory cell activity in the intestinal mucosa, which can favor cell proliferation and CRC development. AI can contribute to the detection of pre-neoplastic lesions in patients at risk of CRC development, such as those with extensive IBD or when additional CRC risk factors, such as smoking, are present. In fact, AI systems could improve all aspects of care related to both the detection of pre-malignant and malignant lesions and the screening of patients with IBD. In this review, we aimed to show the benefits and innovations of AI in the screening of CRC in patients with IBD. The promising applications of AI have the potential to revolutionize clinical practice and gastrointestinal endoscopy, especially in at-risk patients, such as those with IBD.
Collapse
|
15
|
Dougherty KE, Melkonian VJ, Montenegro GA. Artificial intelligence in polyp detection - where are we and where are we headed? Artif Intell Gastrointest Endosc 2021; 2:211-219. [DOI: 10.37126/aige.v2.i6.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/02/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023] Open
Abstract
The goal of artificial intelligence in colonoscopy is to improve adenoma detection rate and reduce interval colorectal cancer. Artificial intelligence in polyp detection during colonoscopy has evolved tremendously over the last decade mainly due to the implementation of neural networks. Computer aided detection (CADe) utilizing neural networks allows real time detection of polyps and adenomas. Current CADe systems are built in single centers by multidisciplinary teams and have only been utilized in limited clinical research studies. We review the most recent prospective randomized controlled trials here. These randomized control trials, both non-blinded and blinded, demonstrated increase in adenoma and polyp detection rates when endoscopists used CADe systems vs standard high definition colonoscopes. Increase of polyps and adenomas detected were mainly small and sessile in nature. CADe systems were found to be safe with little added time to the overall procedure. Results are promising as more CADe have shown to have ability to increase accuracy and improve quality of colonoscopy. Overall limitations included selection bias as all trials built and utilized different CADe developed at their own institutions, non-blinded arms, and question of external validity.
Collapse
|
16
|
Li N, Jin SZ. Artificial intelligence and early esophageal cancer. Artif Intell Gastrointest Endosc 2021; 2:198-210. [DOI: 10.37126/aige.v2.i5.198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/23/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
The development of esophageal cancer (EC) from early to advanced stage results in a high mortality rate and poor prognosis. Advanced EC not only poses a serious threat to the life and health of patients but also places a heavy economic burden on their families and society. Endoscopy is of great value for the diagnosis of EC, especially in the screening of Barrett’s esophagus and early EC. However, at present, endoscopy has a low diagnostic rate for early tumors. In recent years, artificial intelligence (AI) has made remarkable progress in the diagnosis of digestive system tumors, providing a new model for clinicians to diagnose and treat these tumors. In this review, we aim to provide a comprehensive overview of how AI can help doctors diagnose early EC and precancerous lesions and make clinical decisions based on the predicted results. We analyze and summarize the recent research on AI and early EC. We find that based on deep learning (DL) and convolutional neural network methods, the current computer-aided diagnosis system has gradually developed from in vitro image analysis to real-time detection and diagnosis. Based on powerful computing and DL capabilities, the diagnostic accuracy of AI is close to or better than that of endoscopy specialists. We also analyze the shortcomings in the current AI research and corresponding improvement strategies. We believe that the application of AI-assisted endoscopy in the diagnosis of early EC and precancerous lesions will become possible after the further advancement of AI-related research.
Collapse
|
17
|
Pérez de Arce E, Quera R, Núñez F P, Araya R. Role of capsule endoscopy in inflammatory bowel disease: Anything new? Artif Intell Gastrointest Endosc 2021; 2:136-148. [DOI: 10.37126/aige.v2.i4.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/21/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
Capsule endoscopy (CE) is a recently developed diagnostic method for diseases of the small bowel that is non-invasive, safe, and highly tolerable. Its role in patients with inflammatory bowel disease has been widely validated in suspected and established Crohn’s disease (CD) due to its ability to assess superficial lesions not detected by cross-sectional imaging and proximal lesions of the small bowel not evaluable by ileocolonoscopy. Because CE is a highly sensitive but less specific technique, differential diagnoses that can simulate CD must be considered, and its interpretation should be supported by other clinical and laboratory indicators. The use of validated scoring systems to characterize and estimate lesion severity (Lewis score, Capsule Endoscopy Crohn’s Disease Activity Index), as well as the standardization of the language used to define the lesions (Delphi Consensus), have reduced the interobserver variability in CE reading observed in clinical practice, allowing for the optimization of diagnoses and clinical management strategies. The appearance of the panenteric CE, the incorporation of artificial intelligence, magnetically-guided capsules, and tissue biopsies are elements that contribute to CE being a promising, unique diagnostic tool in digestive tract diseases.
Collapse
|
18
|
Ballotin VR, Bigarella LG, Soldera J, Soldera J. Deep learning applied to the imaging diagnosis of hepatocellular carcinoma. Artif Intell Gastrointest Endosc 2021; 2:127-135. [DOI: 10.37126/aige.v2.i4.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/05/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023] Open
Abstract
Each year, hepatocellular carcinoma is diagnosed in more than half a million people worldwide. It is the fifth most common cancer in men and the seventh most common cancer in women. Its diagnosis is currently made using imaging techniques, such as computed tomography and magnetic resonance imaging. For most cirrhotic patients, these methods are enough for diagnosis, foregoing the necessity of a liver biopsy. In order to improve outcomes and bypass obstacles, many companies and clinical centers have been trying to develop deep learning systems that could be able to diagnose and classify liver nodules in the cirrhotic liver, in which the neural networks are one of the most efficient approaches to accurately diagnose liver nodules. Despite the advances in deep learning systems for the diagnosis of imaging techniques, there are many issues that need better development in order to make such technologies more useful in daily practice.
Collapse
|
19
|
Yoo BS, D'Souza SM, Houston K, Patel A, Lau J, Elmahdi A, Parekh PJ, Johnson D. Artificial intelligence and colonoscopy − enhancements and improvements. Artif Intell Gastrointest Endosc 2021; 2:157-167. [DOI: 10.37126/aige.v2.i4.157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/21/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence is a technology that processes and analyzes information with reproducibility and accuracy. Its application in medicine, especially in the field of gastroenterology, has great potential to facilitate in diagnosis of various disease states. Currently, the role of artificial intelligence as it pertains to colonoscopy revolves around enhanced polyp detection and characterization. The aim of this article is to review the current and potential future applications of artificial intelligence for enhanced quality of detection for colorectal neoplasia.
Collapse
|
20
|
Khachfe HH, Habib JR, Chahrour MA, Nassour I. Robotic pancreaticoduodenectomy: Where do we stand? Artif Intell Gastrointest Endosc 2021; 2:103-109. [DOI: 10.37126/aige.v2.i4.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/24/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreaticoduodenectomy (PD) is a complex operation accompanied by significant morbidity rates. Due to this complexity, the transition to minimally invasive PD has lagged behind other abdominal surgical operations. The safety, feasibility, favorable post-operative outcomes of robotic PD have been suggested by multiple studies. Compared to open surgery and other minimally invasive techniques such as laparoscopy, robotic PD offers satisfactory outcomes, with a non-inferior risk of adverse events. Trends of robotic PD have been on rise with centers substantially increasing the number the operation performed. Although promising, findings on robotic PD need to be corroborated in prospective trials.
Collapse
|
21
|
Yang H, Hu B. Early gastrointestinal cancer: The application of artificial intelligence. Artif Intell Gastrointest Endosc 2021; 2:185-197. [DOI: 10.37126/aige.v2.i4.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/25/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Early gastrointestinal (GI) cancer has been the core of clinical endoscopic work. Its early detection and treatment are tightly associated with patients’ prognoses. As a novel technology, artificial intelligence has been improved and applied in the field of endoscopy. Studies on detection, diagnosis, risk, and prognosis evaluation of diseases in the GI tract have been in development, including precancerous lesions, adenoma, early GI cancers, and advanced GI cancers. In this review, research on esophagus, stomach, and colon was concluded, and associated with the process from precancerous lesions to early GI cancer, such as from Barrett’s esophagus to early esophageal cancer, from dysplasia to early gastric cancer, and from adenoma to early colonic cancer. A status quo of research on early GI cancers and artificial intelligence was provided.
Collapse
|
22
|
Lesmana CRA, Paramitha MS. Impact of endoscopic ultrasound elastography in pancreatic lesion evaluation. Artif Intell Gastrointest Endosc 2021; 2:168-178. [DOI: 10.37126/aige.v2.i4.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/20/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic malignancy still becomes a major global problem and is considered as one of the most lethal cancers in the field of gastroenterology. Most patients come in the late stage of the disease due to organ’s location, and until now the treatment result is still far away from satisfaction. Early detection is still the main key for good, prolonged survival. However, discerning from other types of tumor sometimes is not easy. Endoscopic ultrasound (EUS) is still the best tool for pancreatic assessment, whereas fine-needle aspiration biopsy (FNAB) is considered as the cornerstone for further management of pancreatic malignancy. Several conditions have become a concern for EUS-FNAB procedure, such as risk of bleeding, pancreatitis, and even needle track-seeding. Recently, an artificial intelligence innovation, such as EUS elastography has been developed to improve diagnostic accuracy in pancreatic lesions evaluation. Studies have shown the promising results of EUS elastography in improving diagnostic accuracy, as well as discerning from other tumor types. However, more studies are still needed with further considerations, such as adequate operator training, expertise, availability, and its cost-effectiveness in comparison to other imaging options.
Collapse
|
23
|
Lo B, Burisch J. Artificial intelligence assisted assessment of endoscopic disease activity in inflammatory bowel disease. Artif Intell Gastrointest Endosc 2021; 2:95-102. [DOI: 10.37126/aige.v2.i4.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/27/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
Assessment of endoscopic disease activity can be difficult in patients with inflammatory bowel disease (IBD) [comprises Crohn's disease (CD) and ulcerative colitis (UC)]. Endoscopic assessment is currently the foundation of disease evaluation and the grading is pivotal for the initiation of certain treatments. Yet, disharmony is found among experts; even when reassessed by the same expert. Some studies have demonstrated that the evaluation is no better than flipping a coin. In UC, the greatest achieved consensus between physicians when assessing endoscopic disease activity only reached a Kappa value of 0.77 (or 77% agreement adjustment for chance/accident). This is unsatisfactory when dealing with patients at risk of surgery or disease progression without proper care. Lately, across all medical specialities, computer assistance has become increasingly interesting. Especially after the emanation of machine learning – colloquially referred to as artificial intelligence (AI). Compared to other data analysis methods, the strengths of AI lie in its capability to derive complex models from a relatively small dataset and its ability to learn and optimise its predictions from new inputs. It is therefore evident that with such a model, one hopes to be able to remove inconsistency among humans and standardise the results across educational levels, nationalities and resources. This has manifested in a handful of studies where AI is mainly applied to capsule endoscopy in CD and colonoscopy in UC. However, due to its recent place in IBD, there is a great inconsistency between the results, as well as the reporting of the same. In this opinion review, we will explore and evaluate the method and results of the published studies utilising AI within IBD (with examples), and discuss the future possibilities AI can offer within IBD.
Collapse
|
24
|
Gao X, Braden B. Artificial intelligence in endoscopy: The challenges and future directions. Artif Intell Gastrointest Endosc 2021; 2:117-126. [DOI: 10.37126/aige.v2.i4.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/20/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence based approaches, in particular deep learning, have achieved state-of-the-art performance in medical fields with increasing number of software systems being approved by both Europe and United States. This paper reviews their applications to early detection of oesophageal cancers with a focus on their advantages and pitfalls. The paper concludes with future recommendations towards the development of a real-time, clinical implementable, interpretable and robust diagnosis support systems.
Collapse
|
25
|
Tagliabue F, Burati M, Chiarelli M, Cioffi U, Zago M. Robotic surgery in colon cancer: current evidence and future perspectives – narrative review. Artif Intell Gastrointest Endosc 2021; 2:110-116. [DOI: 10.37126/aige.v2.i4.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/14/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023] Open
Abstract
In the last 10 years, surgery has been developing towards minimal invasiveness; therefore, robotic surgery represents the consequent evolution of laparoscopic surgery. Worldwide, surgeons’ performances have been upgraded by the ergonomic developments of robotic systems, leading to several benefits for patients. The introduction into the market of the new Da Vinci Xi system has made it possible to perform all types of surgery on the colon, an in selected cases, to combine interventions in other organs or viscera at the same time. Optimization of the suprapubic surgical approach may shorten the length of hospital stay for patients who undergo robotic colonic resection. From this perspective, single-port robotic colectomy, has reduced the number of robotic ports needed, allowing a better anesthetic outcome and faster recovery. The introduction on the market of new surgical robotic systems from multiple manufacturers is bound to change the landscape of robotic surgery and yield high-quality surgical outcomes.
Collapse
|