1
|
Kaufman CS, Butler MG. Mutation in TNXB gene causes moderate to severe Ehlers-Danlos syndrome. World J Med Genet 2016; 6:17-21. [PMID: 28344932 PMCID: PMC5363719 DOI: 10.5496/wjmg.v6.i2.17] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/27/2016] [Accepted: 06/16/2016] [Indexed: 02/07/2023] Open
Abstract
We report a 28-year-old female who presented with severe joint pain, chronic muscle weakness, Raynaud’s phenomenon, and hypermobility. She was found to have a 6074A > T nucleotide transition in the TNXB gene causing an amino acid protein change at Asp2025Val classified as likely pathogenic. We add this clinical report to the literature and classical human disease gene catalogs to identify this specific mutation as disease-causing. This gene variant was reported previously in a different 36-year-old patient who shared our patient’s symptoms of joint hypermobility, skeletal and joint pain, skin elasticity and musculoskeletal problems, thereby causing a more severe presentation than seen in the hypermobility type of Ehlers-Danlos syndrome (EDS). At the time of writing, a few mutations in the TNXB gene have been recognized as pathogenic causing EDS due to tenascin-X deficiency, but the variant identified in our patient has not been recognized as pathogenic in online genetic databases. Our case study in combination with peer-reviewed literature suggests that the 6074A > T nucleotide transition in the TNXB gene may be classified as disease-causing for EDS due to tenascin-X deficiency.
Collapse
|
Case Report |
9 |
17 |
2
|
Horii T, Hatada I. Genome engineering using the CRISPR/Cas system. World J Med Genet 2014; 4:69-76. [DOI: 10.5496/wjmg.v4.i3.69] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/12/2014] [Accepted: 05/19/2014] [Indexed: 02/06/2023] Open
Abstract
Recently, an epoch-making genome engineering technology using clustered regularly at interspaced short palindromic repeats (CRISPR) and CRISPR associated (Cas) nucleases, was developed. Previous technologies for genome manipulation require the time-consuming design and construction of genome-engineered nucleases for each target and have, therefore, not been widely used in mouse research where standard techniques based on homologous recombination are commonly used. The CRISPR/Cas system only requires the design of sequences complementary to a target locus, making this technology fast and straightforward. In addition, CRISPR/Cas can be used to generate mice carrying mutations in multiple genes in a single step, an achievement not possible using other methods. Here, we review the uses of this technology in genetic analysis and manipulation, including achievements made possible to date and the prospects for future therapeutic applications.
Collapse
|
Review |
11 |
7 |
3
|
Utsumi T, Yano Y, Hotta H. Molecular epidemiology of hepatitis B virus in Asia. World J Med Genet 2014; 4:19-26. [DOI: 10.5496/wjmg.v4.i2.19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 02/25/2014] [Accepted: 03/17/2014] [Indexed: 02/05/2023] Open
Abstract
Although safe and effective vaccines against hepatitis B virus (HBV) have been available for three decades, HBV infection remains the leading cause of chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC) worldwide, especially in Asian countries. HBV has been classified into at least 9 genotypes according to the molecular evolutionary analysis of the genomic DNA sequence and shown to have a distinct geographical distribution. Novel HBV genotypes/subgenotypes have been reported, especially from Southeast Asian countries. The clinical characteristics and therapeutic effectiveness of interferon (IFN) and nucleos(t)ide analogues vary among different HBV genotypes. Mutations at T1653C in subgenotype C2 from Japan and South Korea, C/A1753T and C1858T in subgenotype C1 from Vietnam, and C1638T and T1753V in subgenotype B3 from Indonesia were reported to be associated with advanced liver diseases including HCC. Genotype distribution in Japan has been changed by an increasing ratio of subgenotype A2 in chronic hepatitis B. While a large number of epidemiological and clinical studies have been reported from Asian countries, most of the studies were conducted in developed countries such as Taiwan, China, South Korea and Japan. In this review, the most recent publications on the geographical distribution of genetic variants of HBV and related issues such as disease progression and therapy in Asia are updated and summarized.
Collapse
|
Review |
11 |
7 |
4
|
Mundhofir FEP, Winarni TI, Nillesen W, Bon BWMV, Schepens M, Ruiterkamp-Versteeg M, Hamel BCJ, Yntema HG, Faradz SMH. Prevalence of fragile X syndrome in males and females in Indonesia. World J Med Genet 2012; 2:15-22. [DOI: 10.5496/wjmg.v2.i3.15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the prevalence of fragile X syndrome (FXS) in intellectually disabled male and female Indonesians.
METHODS: This research is an extension of a previously reported study on the identification of chromosomal aberrations in a large cohort of 527 Indonesians with intellectual disability (ID). In this previous study, 87 patients had a chromosomal abnormality, five of whom expressed fragile sites on Xq27.3. Since FXS cannot always be identified by cytogenetic analysis, molecular testing of the fragile X mental retardation 1 CGG repeat was performed in 440 samples. The testing was also conducted in the five previously identified samples to confirm the abnormality. In total, a molecular study was conducted in 445 samples (162 females and 283 males).
RESULTS: In the cohort of Indonesian ID population, the prevalence of FXS is 9/527 (1.7%). The prevalence in males and females is 1.5% (5/329) and 2% (4/198), respectively. Segregation analysis in the families and X-inactivation studies were performed. We performed the first comprehensive genetic survey of a representative sample of male and female ID individuals from institutions and special schools in Indonesia. Our findings show that a comprehensive study of FXS can be performed in a developing country like Indonesia where diagnostic facilities are limited.
CONCLUSION: The prevalence of FXS is equal in females and males in our study, which suggests that the prevalence of FXS in females could be underestimated.
Collapse
|
Original Article |
13 |
5 |
5
|
Rigterink A, Houpt K. Genetics of canine behavior: A review. World J Med Genet 2014; 4:46-57. [DOI: 10.5496/wjmg.v4.i3.46] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 05/20/2014] [Accepted: 06/11/2014] [Indexed: 02/06/2023] Open
Abstract
The past decade has seen rapid progress in the field of canid behavioral genetics. The recent advances are summarized in this review. The identification of the genes responsible for tameness in silver foxes is the culmination of a half century of behavioral testing and, more recently, genomic investigation. There is agreement that domestic dogs evolved from wolves, but when and from which population remains controversial. The genetic differences between wolves and dogs identified include those for neurotransmitters and digestion. Breed differences in behavior are well known, but only recently have the genetics underlying these differences been investigated. The genes responsible for flank sucking in Doberman Pinschers and for several other obsessive compulsive problems in other breeds have been identified. Aggression is the least desirable canine trait, and several laboratories have detected differences in neurotransmitters and their receptors between aggressive and non-aggressive dogs. In English Cocker Spaniels, the genes linked to aggressive behavior code for dopamine, serotonin, and glutamate receptors. A dopamine transporter gene has been associated with impulsive behavior in Malinois.
Collapse
|
Review |
11 |
5 |
6
|
Timson DJ. Value of predictive bioinformatics in inherited metabolic diseases. World J Med Genet 2015; 5:46-51. [DOI: 10.5496/wjmg.v5.i3.46] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/28/2015] [Accepted: 05/18/2015] [Indexed: 02/06/2023] Open
Abstract
Typically, inherited metabolic diseases arise from point mutations in genes encoding metabolic enzymes. Although some of these mutations directly affect amino acid residues in the active sites of these enzymes, the majority do not. It is now well accepted that the majority of these disease-associated mutations exert their effects through alteration of protein stability, which causes a reduction in enzymatic activity. This finding suggests a way to predict the severity of newly discovered mutations. In silico prediction of the effects of amino acid sequence alterations on protein stability often correlates with disease severity. However, no stability prediction tool is perfect and, in general, better results are obtained if the predictions from a variety of tools are combined and then interpreted. In addition to predicted alterations to stability, the degree of conservation of a particular residue can also be a factor which needs to be taken into account: alterations to highly conserved residues are more likely to be associated with severe forms of the disease. The approach has been successfully applied in a variety of inherited metabolic diseases, but further improvements are necessary to enable robust translation into clinically useful tools.
Collapse
|
Editorial |
10 |
4 |
7
|
Romero-López C, Berzal-Herranz A. Structure-function relationship in viral RNA genomes: The case of hepatitis C virus. World J Med Genet 2014; 4:6-18. [DOI: 10.5496/wjmg.v4.i2.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/23/2014] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
The acquisition of a storage information system beyond the nucleotide sequence has been a crucial issue for the propagation and dispersion of RNA viruses. This system is composed by highly conserved, complex structural units in the genomic RNA, termed functional RNA domains. These elements interact with other regions of the viral genome and/or proteins to direct viral translation, replication and encapsidation. The genomic RNA of the hepatitis C virus (HCV) is a good model for investigating about conserved structural units. It contains functional domains, defined by highly conserved structural RNA motifs, mostly located in the 5’-untranslatable regions (5’UTRs) and 3’UTR, but also occupying long stretches of the coding sequence. Viral translation initiation is mediated by an internal ribosome entry site located at the 5’ terminus of the viral genome and regulated by distal functional RNA domains placed at the 3’ end. Subsequent RNA replication strongly depends on the 3’UTR folding and is also influenced by the 5’ end of the HCV RNA. Further increase in the genome copy number unleashes the formation of homodimers by direct interaction of two genomic RNA molecules, which are finally packed and released to the extracellular medium. All these processes, as well as transitions between them, are controlled by structural RNA elements that establish a complex, direct and long-distance RNA-RNA interaction network. This review summarizes current knowledge about functional RNA domains within the HCV RNA genome and provides an overview of the control exerted by direct, long-range RNA-RNA contacts for the execution of the viral cycle.
Collapse
|
Topic Highlight |
11 |
4 |
8
|
Fontana P, Passaretti FF, Maioli M, Cantalupo G, Scarano F, Lonardo F. Clinical and molecular spectrum of Wiedemann-Steiner syndrome, an emerging member of the chromatinopathy family. World J Med Genet 2020; 9:1-11. [DOI: 10.5496/wjmg.v9.i1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/19/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Wiedemann-Steiner syndrome (OMIM #605130) is a rare congenital malformation syndrome characterized by hypertrichosis cubiti associated with short stature; consistent facial features, including long eyelashes, thick or arched eyebrows with a lateral flare, wide nasal bridge, and downslanting and vertically narrow palpebral fissures; mild to moderate intellectual disability; behavioral difficulties; and hypertrichosis on the back. It is caused by heterozygous pathogenic variants in KMT2A. This gene has an established role in histone methylation, which explains the overlap of Wiedemann-Steiner syndrome with other chromatinopathies, a heterogeneous group of syndromic conditions that share a common trigger: The disruption of one of the genes involved in chromatin modification, leading to dysfunction of the epigenetic machinery.
Collapse
|
Review |
5 |
4 |
9
|
Akimoto M, Nagasawa H, Hori H, Uto Y, Honma Y, Takenaga K. An inhibitor of HIF-α subunit expression suppresses hypoxia-induced dedifferentiation of human NSCLC into cancer stem cell-like cells. World J Med Genet 2013; 3:41-54. [DOI: 10.5496/wjmg.v3.i4.41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/29/2013] [Accepted: 09/04/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether hypoxia induces dedifferentiation of non-small cell lung cancer (NSCLC) cells and whether a hypoxia-inducible factor (HIF) inhibitor is able to suppress the process.
METHODS: Human lung adenocarcinoma A549 cells and squamous carcinoma QG56 cells were cultured under normoxic (21% O2) or hypoxic (4% or 1% O2) conditions. The expression of the following genes were examined by reverse transcription-polymerase chain reaction, Western blotting and/or immunofluorescence: HIF-1α and HIF-2α subunits; differentiation marker genes, namely surfactant protein C (SP-C) (type II alveolar cell marker), CC10 (type I alveolar cell marker) and aquaporin 5 (AQP5) (Clara cell marker); and stem cell-associated genes, namely CD133, OCT4, and Musashi-1 (MSI1). The tumor sphere-forming ability of the cells was evaluated by culturing them in serum-free growth factor-rich medium containing epidermal growth factor (EGF) and fibroblast growth factor (FGF). CD133 expression in hypoxic regions in A549 tumors was examined by double-immunostaining of tissue cryosections with an anti-2-nitroimidazole EF5 antibody and an anti-CD133 antibody. The metastatic ability of A549 cells was examined macroscopically and histologically after injecting them into the tail vein of immunocompromised mice.
RESULTS: A549 cells primarily expressed SP-C, and QG56 cells expressed CC10 and AQP5. Exposure of A549 cells to hypoxia resulted in a marked down-regulation of SP-C and upregulation of CD133, OCT4, and MSI1 in a time-dependent manner. Moreover, hypoxia mimetics, namely desferrioxamine and cobalt chloride, elicited similar effects. Ectopic expression of the constitutively active HIF-1α subunit also caused the downregulation of SP-C and upregulation of CD133 and MSI1 but not OCT4, which is a direct target of HIF-2. Hypoxia enhanced the sphere-forming activity of A549 cells in serum-free medium containing EGF and FGF. Similarly, hypoxia downregulated the expression of CC10 and AQP5 genes and upregulated CD133, OCT4, and MSI1 genes in QG56 cells. TX-402 (3-amino-2-quinoxalinecarbonitrile 1, 4-dioxide), which is a small molecule inhibitor of the expression of HIF-1α and HIF-2α subunits under hypoxic conditions, inhibited the upregulation of SP-C and hypoxia-induced down-regulation of CD133, OCT4, and MSI1. Notably, TX-402 significantly suppressed the hypoxia-enhanced lung-colonizing ability of A549 cells.
CONCLUSION: Hypoxia induces the de-differentiation of NSCLC cells into cancer stem cell-like cells, and HIF inhibitors are promising agents to prevent this process.
Collapse
|
Original Article |
12 |
3 |
10
|
Kuliev A, Rechitsky S. Preimplantation HLA typing: Practical tool for stem cell transplantation treatment of congenital disorders. World J Med Genet 2014; 4:105-109. [DOI: 10.5496/wjmg.v4.i4.105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 08/31/2014] [Indexed: 02/06/2023] Open
Abstract
It is well known that to achieve an acceptable engraftment and survival in stem cell therapy, an human leukocyte antigens (HLA) identical stem cell transplant is strongly required. However, the availability of the HLA matched donors even among family members is extremely limited, so preimplantation HLA typing provides an attractive practical tool of stem cell therapy for children requiring HLA matched stem cell transplantation. The present experience of preimplantation genetic diagnosis (PGD) for HLA typing of over one thousand cases shows that PGD provides the at-risk couples with the option to establish an unaffected pregnancy, which may benefit the affected member of the family with hemoglobinopathies, immunodeficiencies and other congenital or acquired bone marrow failures. Despite ethical issues involved in preimplantation HLA typing, the data presented below show an extremely high attractiveness of this option for the couples with affected children requiring HLA compatible stem cell transplantation.
Collapse
|
Minireviews |
11 |
3 |
11
|
Nguyen TK, Iyer NG. Genetic alterations in head and neck squamous cell carcinoma: The next-gen sequencing era. World J Med Genet 2013; 3:22-33. [DOI: 10.5496/wjmg.v3.i4.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 11/08/2013] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinoma is the sixth most common cancer in the world with approximately 650000 new cases diagnosed annually. Next-generation molecular techniques and results from phase 2 of the Cancer Genome Atlas becoming available have drastically improved our current knowledge on the genetics basis of head and neck squamous cell carcinoma. New insights and new perspectives on the mutational landscape implicated in head and neck squamous cell carcinoma provide improved tools for prognostication. More importantly, depend on the patient’s tumor subtypes and prognosis, deescalated or more aggressive therapy maybe chosen to achieve greater potency while minimizing the toxicity of therapy. This paper aims to review our current knowledge on the genetic mutations and altered molecular pathways in head and neck squamous cell carcinoma. Some of the most common mutations in head and neck squamous cell carcinoma reported by the cancer genome atlas including TP53, NOTCH1, Rb, CDKN2A, Ras, PIK3CA and EGFR are described here. Additionally, the emerging role of epigenetics and the role of human papilloma virus in head and neck squamous cell carcinoma are also discussed in this review. The molecular pathways, clinical applications, actionable molecular targets and potential therapeutic strategies are highlighted and discussed in details.
Collapse
|
Review |
12 |
2 |
12
|
Chen H. Adeno-associated virus vectors for human gene therapy. World J Med Genet 2015; 5:28-45. [DOI: 10.5496/wjmg.v5.i3.28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/08/2015] [Accepted: 05/18/2015] [Indexed: 02/06/2023] Open
Abstract
Adeno-associated virus (AAV) is a small, non-enveloped virus that contains a single-stranded DNA genome. It was the first gene therapy drug approved in the Western world in November 2012 to treat patients with lipoprotein lipase deficiency. AAV made history and put human gene therapy in the forefront again. More than four decades of research on AAV vector biology and human gene therapy has generated a huge amount of valuable information. Over 100 AAV serotypes and variants have been isolated and at least partially characterized. A number of them have been used for preclinical studies in a variety of animal models. Several AAV vector production platforms, especially the baculovirus-based system have been established for commercial-scale AAV vector production. AAV purification technologies such as density gradient centrifugation, column chromatography, or a combination, have been well developed. More than 117 clinical trials have been conducted with AAV vectors. Although there are still challenges down the road, such as cross-species variation in vector tissue tropism and gene transfer efficiency, pre-existing humoral immunity to AAV capsids and vector dose-dependent toxicity in patients, the gene therapy community is forging ahead with cautious optimism. In this review I will focus on the properties and applications of commonly used AAV serotypes and variants, and the technologies for AAV vector production and purification. I will also discuss the advancement of several promising gene therapy clinical trials.
Collapse
|
Editorial |
10 |
2 |
13
|
Abstract
We have witnessed tremendous success in genome-wide association studies (GWAS) in recent years. Since the identification of variants in the complement factor H gene on the risk of age-related macular degeneration, GWAS have become ubiquitous in genetic studies and have led to the identification of genetic variants that are associated with a variety of complex human diseases and traits. These discoveries have changed our understanding of the biological architecture of common, complex diseases and have also provided new hypotheses to test. New tools, such as next-generation sequencing, will be an important part of the future of genetics research; however, GWAS studies will continue to play an important role in disease gene discovery. Many traits have yet to be explored by GWAS, especially in minority populations, and large collaborative studies are currently being conducted to maximize the return from existing GWAS data. In addition, GWAS technology continues to improve, increasing genomic coverage for major global populations and decreasing the cost of experiments. Although much of the variance attributable to genetic factors for many important traits is still unexplained, GWAS technology has been instrumental in mapping over a thousand genes to hundreds of traits. More discoveries are made each month and the scale, quality and quantity of current work has a steady trend upward. We briefly review the current key trends in GWAS, which can be summarized with three goals: increase power, increase collaborations and increase populations.
Collapse
|
Review |
14 |
2 |
14
|
Zybina TG, Zybina EV. Genome variation in the trophoblast cell lifespan: Diploidy, polyteny, depolytenization, genome segregation. World J Med Genet 2014; 4:77-93. [DOI: 10.5496/wjmg.v4.i4.77] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/11/2014] [Accepted: 08/31/2014] [Indexed: 02/06/2023] Open
Abstract
The lifespan of mammalian trophoblast cells includes polyploidization, its degree and peculiarities are, probably, accounted for the characteristics of placenta development. The main ways of genome multiplication-endoreduplication and reduced mitosis-that basically differ by the extent of repression of mitotic events, play, most probably, different roles in the functionally different trophoblast cells in a variety of mammalian species. In the rodent placenta, highly polyploid (512-2048c) trophoblast giant cells (TGC) undergoing endoreduplication serve a barrier with semiallogenic maternal tissues whereas series of reduced mitoses allow to accumulate a great number of low-ploid junctional zone and labyrinth trophoblast cells. Endoreduplication of TGC comes to the end with formation of numerous low-ploid subcellular compartments that show some signs of viable cells though mitotically inactive; it makes impossible their ectopic proliferation inside maternal tissues. In distinct from rodent trophoblast, deviation from (2n)c in human and silver fox trophoblast suggests a possibility of aneuploidy and other chromosome changes (aberrations, etc.). It suggests that in mammalian species with lengthy period of pregnancy, polyploidy is accompanied by more diverse genome changes that may be useful to select a more specific response to stressful factors that may appear occasionally during months of intrauterine development.
Collapse
|
Review |
11 |
2 |
15
|
Franco D, Lozano-Velasco E, Aranega A. Gene regulatory networks in atrial fibrillation. World J Med Genet 2016; 6:1-16. [DOI: 10.5496/wjmg.v6.i1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/15/2015] [Accepted: 02/17/2016] [Indexed: 02/06/2023] Open
Abstract
Atrial fibrillation (AF) is the most frequent arrhythmogenic syndrome in humans. With an estimate incidence of 1%-2% in the general population, AF raises up to almost 10%-12% in 80+ years. Thus, AF represents nowadays a highly prevalent medical problem generating a large economic burden. At the electrophysiological level, distinct mechanisms have been elucidated. Yet, despite its prevalence, the genetic and molecular culprits of this pandemic cardiac electrophysiological abnormality have remained largely obscure. Molecular genetics of AF familiar cases have demonstrated that single nucleotide mutations in distinct genes encoding for ion channels underlie the onset of AF, albeit such alterations only explain a minor subset of patients with AF. In recent years, analyses by means of genome-wide association studies have unraveled a more complex picture of the etiology of AF, pointing out to distinct cardiac-enriched transcription factors, as well as to other regulatory genes. Furthermore a new layer of regulatory mechanisms have emerged, i.e., post-transcriptional regulation mediated by non-coding RNA, which have been demonstrated to exert pivotal roles in cardiac electrophysiology. In this manuscript, we aim to provide a comprehensive review of the genetic regulatory networks that if impaired exert electrophysiological abnormalities that contribute to the onset, and subsequently, on self-perpetuation of AF.
Collapse
|
Review |
9 |
2 |
16
|
Abstract
Genetic interactions are functional crosstalk among different genetic loci that lead to phenotypic changes, such as health or viability alterations. A disease or lethal phenotype that results from the combined effects of gene mutations at different loci is termed a synthetic sickness or synthetic lethality, respectively. Studies of genetic interaction have provided insight on the relationships among biochemical processes or pathways. Cancer results from genetic interactions and is a major focus of current studies in genetic interactions. Various basic and translational cancer studies have explored the concept of genetic interactions, including studies of the mechanistic characterization of genes, drug discovery, biomarker identification and the rational design of combination therapies. This review discusses the implications of genetic interactions in the development of personalized cancer therapies, the identification of treatment-responsive genes, the delineation of mechanisms of chemoresistance and the rational design of combined therapeutic strategies to overcome drug resistance.
Collapse
|
Guidelines For Basic Science |
14 |
2 |
17
|
Marfany G, Gonzàlez-Duarte R. Clinical applications of high-throughput genetic diagnosis in inherited retinal dystrophies: Present challenges and future directions. World J Med Genet 2015; 5:14-22. [DOI: 10.5496/wjmg.v5.i2.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/30/2014] [Accepted: 02/09/2015] [Indexed: 02/06/2023] Open
Abstract
The advent of next generation sequencing (NGS) techniques has greatly simplified the molecular diagnosis and gene identification in very rare and highly heterogeneous Mendelian disorders. Over the last two years, these approaches, especially whole exome sequencing (WES), alone or combined with homozygosity mapping and linkage analysis, have proved to be successful in the identification of more than 25 new causative retinal dystrophy genes. NGS-approaches have also identified a wealth of new mutations in previously reported genes and have provided more comprehensive information concerning the landscape of genotype-phenotype correlations and the genetic complexity/diversity of human control populations. Although whole genome sequencing is far more informative than WES, the functional meaning of the genetic variants identified by the latter can be more easily interpreted, and final diagnosis of inherited retinal dystrophies is extremely successful, reaching 80%, particularly for recessive cases. Even considering the present limitations of WES, the reductions in costs and time, the continual technical improvements, the implementation of refined bioinformatic tools and the unbiased comprehensive genetic information it provides, make WES a very promising diagnostic tool for routine clinical and genetic diagnosis in the future.
Collapse
|
Review |
10 |
2 |
18
|
Nenad B, Maurizio M. Genetic counselling in post-genomic era-to be or not to be. World J Med Genet 2013; 3:9-13. [DOI: 10.5496/wjmg.v3.i3.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/17/2013] [Accepted: 08/20/2013] [Indexed: 02/06/2023] Open
Abstract
With the surge of genetic tests and technologies, genetic counsellors are faced with the challenge of translating emerging scientific knowledge into practical information for patients, clinicians and public health policy makers. The new tests and technologies also are associated with new psychosocial and ethical considerations. New guidelines are needed for each new discovery of the genomic impact on phenotype, pathology and disease while “old” syndromes and “old” pathology, continue to require attention. In the new post-Human Genome Project era, genetic counsellors will be an integral part of translating genomic discoveries into beneficial impact on human disease, health care, and medical benefits. The needs for genetic counselling should be designed into genomic research at the onset. Genetic counsellors need to handle old while rapidly assimilating new information and the principal challenge is to be up to date and updated.
Collapse
|
Minireviews |
12 |
2 |
19
|
Schilders K, Ochieng JK, van de Ven CP, Gontan C, Tibboel D, Rottier RJ. Role of SOX2 in foregut development in relation to congenital abnormalities. World J Med Genet 2014; 4:94-104. [DOI: 10.5496/wjmg.v4.i4.94] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/14/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023] Open
Abstract
The uptake of the two essential ingredients for life, oxygen and nutrients, occurs primarily through the oral cavity, but these two lifelines need to be separated with high accuracy once inside the body. The two systems, the gas exchange pulmonary system and the gastro-intestinal feeding system, are derived from the same primitive embryonic structure during development, the foregut, which need to be separated before birth. In certain newborns, this separation occurs not or insufficiently, leading to life threatening conditions, sometimes incompatible with life. The development of the foregut, trachea and lungs is influenced and coordinated by a multitude of signaling cascades and transcription factors. In this review, we will highlight the development of the foregut and pulmonary system and focus on associated congenital abnormalities in light of known genetic alterations with specific attention to the transcription factor SOX2.
Collapse
|
Review |
11 |
1 |
20
|
Patel BJ, Vignesh NK, Hortelano G. Chitosan DNA nanoparticles for oral gene delivery. World J Med Genet 2016; 6:22-33. [DOI: 10.5496/wjmg.v6.i3.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023] Open
Abstract
Gene therapy is a promising technology with potential applications in the treatment of medical conditions, both congenital and acquired. Despite its label as breakthrough technology for the 21st century, the simple concept of gene therapy - the introduction of a functional copy of desired genes in affected individuals - is proving to be more challenging than expected. Oral gene delivery has shown intriguing results and warrants further exploration. In particular, oral administration of chitosan DNA nanoparticles, one the most commonly used formulations of therapeutic DNA, has repeatedly demonstrated successful in vitro and in vivo gene transfection. While oral gene therapy has shown immense promise as treatment options in a variety of diseases, there are still significant barriers to overcome before it can be considered for clinical applications. In this review we provide an overview of the physiologic challenges facing the use of chitosan DNA nanoparticles for oral gene delivery at both the extracellular and intracellular level. From administration at the oral cavity, chitosan nanoparticles must traverse the gastrointestinal tract and protect its DNA contents from significant jumps in pH levels, various intestinal digestive enzymes, thick mucus layers with high turnover, and a proteinaceous glycocalyx meshwork. Once these extracellular barriers are overcome, chitosan DNA nanoparticles must enter intestinal cells, escape endolysosomes, and disassociate from genetic material at the appropriate time allowing transport of genetic material into the nucleus to deliver a therapeutic effect. The properties of chitosan nanoparticles and modified nanoparticles are discussed in this review. An understanding of the barriers to oral gene delivery and how to overcome them would be invaluable for future gene therapy development.
Collapse
|
Review |
9 |
1 |
21
|
Ressler IB, Jaeger AS, Lindheim SR. Evolving ethical issues in third party reproduction: Local and global considerations. World J Med Genet 2012; 2:1-8. [DOI: 10.5496/wjmg.v2.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There continues to be an increase in utilization of assisted reproductive technology (ART), including the use of third party gametes. Specifically, the use of third party oocytes, most recently reported in 2010 by the United States (US) Center for Disease Control and Society of Reproductive Medicine, accounted for 15 504 cycles and 7334 live births. This translates into approximately 11% of all the in vitro fertilization cases performed in the US. As utilization increases and the technological tools advance, they have created underappreciated and unforeseen ethical quandaries. As such, many practitioners think they “have heard it all”. However, each ART scenario is novel with the potential to pose complex unforeseen issues, potentially creating global challenges that could impact broad social and legal questions and test the moral consciousness’ of practitioners, policymakers and patients. While there are published US national guidelines to assist practitioners, we have identified new complex issues in assisted reproduction that present unique challenges, and we give a perspective from our eyes in the Western Hemisphere looking out to a global level. Specifically, this review focuses on some of the more recent and evolving issues that currently are and will be confronting us in the upcoming years. Particular attention focuses on discrepancies between third party legal contracts and ART consents regarding level of information sharing, and oocyte and embryo directives and management; dilemmas and obligations surrounding disclosure of medical outcomes especially in the context of growing access to Direct to Consumer genetic testing and Reproductive Tourism-Exile. Given the complexity of these and other ethical questions, finding answers may be achieved by ending the isolation of reproductive professionals and instead promoting increased and consistent communication among physicians, embryologists, therapists and reproductive attorneys to confront these evolving ethical quandaries.
Collapse
|
Editorial |
13 |
1 |
22
|
Yahaya TO, Bashar DM, Oladele EO, Umar J, Anyebe D, Izuafa A. Epigenetics in the etiology and management of infertility. World J Med Genet 2022; 10:7-21. [DOI: 10.5496/wjmg.v10.i2.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/28/2022] [Accepted: 10/12/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Epigenetic disruptions have been implicated in some cases of infertility and can serve as therapeutic targets. However, the involvement of epigenetics in infertility has not received adequate attention.
AIM This study aimed to determine the epigenetic basis of infertility in order to enhance public knowledge.
METHODS Relevant articles on the subject were collected from PubMed, RCA, Google Scholar, SpringerLink, and Scopus. The articles were pooled together and duplicates were removed using Endnote software.
RESULTS Available information shows that epigenetic mechanisms, mainly DNA methylation, histone modification, and microRNA interference are necessary for normal gametogenesis and embryogenesis. As a result, epigenetic disruptions in genes that control gametogenesis and embryogenesis, such as DDX3X, ADH4, AZF, PLAG1, D1RAS3, CYGB, MEST, JMJD1A, KCNQ1, IGF2, H19, and MTHFR may result in infertility. Aberrant DNA methylation during genomic imprinting and parental epigenetic mark erasures, in particular, may affect the DNA epigenomes of sperm and oocytes, resulting in reproductive abnormalities. Histone epigenetic dysregulation during oocyte development and histone-protamine replacement in the sperm may also cause reproductive abnormalities. Furthermore, overexpression or repression of certain microRNAs embedded in the ovary, testis, embryo, as well as granulosa cells and oocytes may impair reproduction. Male infertility is characterized by spermatogenesis failure, which includes oligozoospermia, asthenozoospermia, and teratozoospermia, while female infertility is characterized by polycystic ovary syndrome. Some epigenetic modifications can be reversed by deactivating the regulatory enzymes, implying that epigenetic reprogramming could help treat infertility in some cases. For some disorders, epigenetic drugs are available, but none have been formulated for infertility.
CONCLUSION Some cases of infertility have an epigenetic etiology and can be treated by reversing the same epigenetic mechanism that caused it. As a result, medical practitioners are urged to come up with epigenetic treatments for infertility that have an epigenetic cause.
Collapse
|
Systematic Reviews |
3 |
1 |
23
|
Abstract
Congratulations to the publisher, members of the editorial board of the journal, all the authors and readers for launching the World Journal of Medical Genetics (WJMG) as a new member of the World series journal family! Following the completion of the Human Genome Project, medical genetic research has seen spectacular progress over the last decade. The number of genes that have been linked to Mendelian human traits has grown exponentially and currently this process is peaking with the access to robust genome-wide sequencing power. The genomics revolution is also seen for elucidation of rare and common DNA variants that increase risk for common disorders. Given this fast progress, there is an increasing need for making the results of genetics and genomics studies rapidly and freely available to the larger community. Thus, the decision for inaugurating this new journal is a timely one. The WJMG is a peer-reviewed, open-access periodical centered in all aspects of medical genetics research, with multidisciplinary coverage: from human phenotype to genetic and genomic mutations and variations to the study of pathological mechanisms. If you want to share new results of your research with a link to medical genetics with your peers, you will find the WJMG a good media to publish your papers!
Collapse
|
Editorial |
14 |
1 |
24
|
Lamba A, Parekh P, Dvorak CT, Karlitz JJ. Pedigree analysis supports a correlation between an AXIN2 variant and polyposis/colorectal cancer. World J Med Genet 2018; 8:1-4. [DOI: 10.5496/wjmg.v8.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/18/2017] [Accepted: 12/29/2017] [Indexed: 02/06/2023] Open
Abstract
We present a patient with a history of colonic polyposis and family history significant for colon polyps and colorectal cancer (CRC). The patient and the family also had a history of bone loss of the jaw and early tooth loss, consistent with oligodontia. Genetic testing revealed the patient to have a previously unpublished variant of unknown significance (VUS) in the AXIN2 gene. These clinical findings have been demonstrated previously in only two other families, both of which exhibited oligodontia, colorectal neoplasia (polyps and cancer) and a heterozygous mutation in AXIN2. The AXIN2 protein is component of the Wnt pathway, which is known to be vital for organism development and cellular homeostasis. Alterations of the Wnt pathway lead to cell proliferation and neoplasm, in addition to agenesis of physical structures (such as teeth). The analysis of our pedigree further supports an association between colonic neoplasm (polyposis and CRC), the AXIN2 gene in general, and this particular VUS. It also highlights the importance of analyzing and disseminating information on pedigrees with less commonly encountered genomic abnormalities so that genotypic-phenotypic correlations can be solidified.
Collapse
|
Case Report |
7 |
1 |
25
|
Noh MJ, Copeland O, O’Mara M, Lee KH. Cell mediated gene therapy: A guide for doctors in the clinic. World J Med Genet 2015; 5:1-13. [DOI: 10.5496/wjmg.v5.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/16/2014] [Accepted: 01/19/2015] [Indexed: 02/06/2023] Open
Abstract
The recent approval of gene therapy products in Europe and Asia and the upsurge of gene therapy products in clinical trials signal the rebound of this technology not only for many orphan diseases but also for non-life threatening diseases. Following the success of induced pluripotent stem (iPS) cells in research, other modified ex vivo gene therapies are also knocking on the door of the clinic. Historically, gene therapy has experienced many ups and downs and still faces many challenges. During the past 10 years, many new ideas have been tried, and the goal of making this technology a more effective treatment modality through greater safety and control is coming within reach. The first clinical trial of iPS cells has begun, and cell mediated gene therapy products have reached phase III in some countries. The potential for tumorigenicity and immunogenicity are still concerns with these products, so physicians should understand the biological aspects of engineered cells in the clinic. In this review article, we attempted to provide a summary update of the current state of knowledge regarding this technology: that is, we reviewed products that have finished clinical trials, are still in clinical trials and/or are at the research stage. We also focused on the challenges, future directions, and strategies for making this technology available in the clinic. In addition, the available measures for making gene therapy products safer are within the scope of this article. It is also important to understand the manufacturing process for gene therapy products, because cell characteristics can change during the cell expansion process. When physicians use gene therapy products in the clinic, they should be aware of the viability, temperature sensitivity and stability of these cells because biologic products are different from chemical products. Although we may not be able to answer all possible questions and concerns, we believe that this is the right time for physicians to increase their interest in and understanding of this evolving technology.
Collapse
|
Review |
10 |
1 |