26
|
Takuwa Y, Du W, Qi X, Okamoto Y, Takuwa N, Yoshioka K. Roles of sphingosine-1-phosphate signaling in angiogenesis. World J Biol Chem 2010; 1:298-306. [PMID: 21537463 PMCID: PMC3083935 DOI: 10.4331/wjbc.v1.i10.298] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/15/2010] [Accepted: 09/22/2010] [Indexed: 02/05/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a blood-borne lipid mediator with pleiotropic biological activities. S1P acts via the specific cell surface G-protein-coupled receptors, S1P1-5. S1P1 and S1P2 were originally identified from vascular endothelial cells (ECs) and smooth muscle cells, respectively. Emerging evidence shows that S1P plays crucial roles in the regulation of vascular functions, including vascular formation, barrier protection and vascular tone via S1P1, S1P2 and S1P3. In particular, S1P regulates vascular formation through multiple mechanisms; S1P exerts both positive and negative effects on angiogenesis and vascular maturation. The positive and negative effects of S1P are mediated by S1P1 and S1P2, respectively. These effects of S1P1 and S1P2 are probably mediated by the S1P receptors expressed in multiple cell types including ECs and bone-marrow-derived cells. The receptor-subtype-specific, distinct effects of S1P favor the development of novel therapeutic tactics for antitumor angiogenesis in cancer and therapeutic angiogenesis in ischemic diseases.
Collapse
|
Topic Highlight |
15 |
74 |
27
|
Sengupta R, Holmgren A. Thioredoxin and glutaredoxin-mediated redox regulation of ribonucleotide reductase. World J Biol Chem 2014; 5:68-74. [PMID: 24600515 PMCID: PMC3942543 DOI: 10.4331/wjbc.v5.i1.68] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/17/2013] [Accepted: 01/13/2014] [Indexed: 02/05/2023] Open
Abstract
Ribonucleotide reductase (RNR), the rate-limiting enzyme in DNA synthesis, catalyzes reduction of the different ribonucleotides to their corresponding deoxyribonucleotides. The crucial role of RNR in DNA synthesis has made it an important target for the development of antiviral and anticancer drugs. Taking account of the recent developments in this field of research, this review focuses on the role of thioredoxin and glutaredoxin systems in the redox reactions of the RNR catalysis.
Collapse
|
Minireviews |
11 |
74 |
28
|
Yamashita Y, Yabu T, Yamashita M. Discovery of the strong antioxidant selenoneine in tuna and selenium redox metabolism. World J Biol Chem 2010; 1:144-50. [PMID: 21540999 PMCID: PMC3083957 DOI: 10.4331/wjbc.v1.i5.144] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 05/17/2010] [Accepted: 05/21/2010] [Indexed: 02/05/2023] Open
Abstract
A novel selenium-containing compound, selenoneine, has been isolated as the major form of organic selenium in the blood and tissues of tuna. Selenoneine harbors a selenium atom in the imidazole ring, 2-selenyl-N(α), N(α), N(α)-trimethyl-L-histidine, and is a selenium analog of ergothioneine. This selenium compound has strong antioxidant capacity and binds to heme proteins, such as hemoglobin and myoglobin, to protect them from iron auto-oxidation, and it reacts with radicals and methylmercury (MeHg). The organic cations/carnitine transporter OCTN1 transports selenoneine and MeHg, regulates Se-enhanced antioxidant activity, and decreases MeHg toxicity. Thus, the dietary intake of selenoneine, by consuming fish, might decrease the formation of reactive oxygen radicals that could oxidize nucleotides in DNA, and thereby inhibit carcinogenesis, chronic diseases, and aging.
Collapse
|
Guidelines For Basic Science |
15 |
73 |
29
|
Abounit K, Scarabelli TM, McCauley RB. Autophagy in mammalian cells. World J Biol Chem 2012; 3:1-6. [PMID: 22312452 PMCID: PMC3272585 DOI: 10.4331/wjbc.v3.i1.1] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/22/2011] [Accepted: 08/29/2011] [Indexed: 02/05/2023] Open
Abstract
Autophagy is a regulated process for the degradation of cellular components that has been well conserved in eukaryotic cells. The discovery of autophagy-regulating proteins in yeast has been important in understanding this process. Although many parallels exist between fungi and mammals in the regulation and execution of autophagy, there are some important differences. The pre-autophagosomal structure found in yeast has not been identified in mammals, and it seems that there may be multiple origins for autophagosomes, including endoplasmic reticulum, plasma membrane and mitochondrial outer membrane. The maturation of the phagophore is largely dependent on 5'-AMP activated protein kinase and other factors that lead to the dephosphorylation of mammalian target of rapamycin. Once the process is initiated, the mammalian phagophore elongates and matures into an autophagosome by processes that are similar to those in yeast. Cargo selection is dependent on the ubiquitin conjugation of protein aggregates and organelles and recognition of these conjugates by autophagosomal receptors. Lysosomal degradation of cargo produces metabolites that can be recycled during stress. Autophagy is an important cellular safeguard during starvation in all eukaryotes; however, it may have more complicated, tissue specific roles in mammals. With certain exceptions, autophagy seems to be cytoprotective, and defects in the process have been associated with human disease.
Collapse
|
Topic Highlight |
13 |
70 |
30
|
Numakawa T, Yokomaku D, Richards M, Hori H, Adachi N, Kunugi H. Functional interactions between steroid hormones and neurotrophin BDNF. World J Biol Chem 2010; 1:133-43. [PMID: 21540998 PMCID: PMC3083963 DOI: 10.4331/wjbc.v1.i5.133] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 05/20/2010] [Accepted: 05/24/2010] [Indexed: 02/05/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a critical neurotrophin, regulates many neuronal aspects including cell differentiation, cell survival, neurotransmission, and synaptic plasticity in the central nervous system (CNS). Though BDNF has two types of receptors, high affinity tropomyosin-related kinase (Trk)B and low affinity p75 receptors, BDNF positively exerts its biological effects on neurons via activation of TrkB and of resultant intracellular signaling cascades including mitogen-activated protein kinase/extracellular signal-regulated protein kinase, phospholipase Cγ, and phosphoinositide 3-kinase pathways. Notably, it is possible that alteration in the expression and/or function of BDNF in the CNS is involved in the pathophysiology of various brain diseases such as stroke, Parkinson’s disease, Alzheimer’s disease, and mental disorders. On the other hand, glucocorticoids, stress-induced steroid hormones, also putatively contribute to the pathophysiology of depression. Interestingly, in addition to the reduction in BDNF levels due to increased glucocorticoid exposure, current reports demonstrate possible interactions between glucocorticoids and BDNF-mediated neuronal functions. Other steroid hormones, such as estrogen, are involved in not only sexual differentiation in the brain, but also numerous neuronal events including cell survival and synaptic plasticity. Furthermore, it is well known that estrogen plays a role in the pathophysiology of Parkinson’s disease, Alzheimer’s disease, and mental illness, while serving to regulate BDNF expression and/or function. Here, we present a broad overview of the current knowledge concerning the association between BDNF expression/function and steroid hormones (glucocorticoids and estrogen).
Collapse
|
Guidelines For Basic Science |
15 |
68 |
31
|
Maru GB, Hudlikar RR, Kumar G, Gandhi K, Mahimkar MB. Understanding the molecular mechanisms of cancer prevention by dietary phytochemicals: From experimental models to clinical trials. World J Biol Chem 2016; 7:88-99. [PMID: 26981198 PMCID: PMC4768127 DOI: 10.4331/wjbc.v7.i1.88] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/04/2015] [Accepted: 11/25/2015] [Indexed: 02/05/2023] Open
Abstract
Chemoprevention is one of the cancer prevention approaches wherein natural/synthetic agent(s) are prescribed with the aim to delay or disrupt multiple pathways and processes involved at multiple steps, i.e., initiation, promotion, and progression of cancer. Amongst environmental chemopreventive compounds, diet/beverage-derived components are under evaluation, because of their long history of exposure to humans, high tolerability, low toxicity, and reported biological activities. This compilation briefly covers and compares the available evidence on chemopreventive efficacy and probable mechanism of chemoprevention by selected dietary phytochemicals (capsaicin, curcumin, diallyl sulphide, genistein, green/black tea polyphenols, indoles, lycopene, phenethyl isocyanate, resveratrol, retinoids and tocopherols) in experimental systems and clinical trials. All the dietary phytochemicals covered in this review have demonstrated chemopreventive efficacy against spontaneous or carcinogen-induced experimental tumors and/or associated biomarkers and processes in rodents at several organ sites. The observed anti-initiating, anti-promoting and anti-progression activity of dietary phytochemicals in carcinogen-induced experimental models involve phytochemical-mediated redox changes, modulation of enzymes and signaling kinases resulting to effects on multiple genes and cell signaling pathways. Results from clinical trials using these compounds have not shown them to be chemopreventive. This may be due to our: (1) inability to reproduce the exposure conditions, i.e., levels, complexity, other host and lifestyle factors; and (2) lack of understanding about the mechanisms of action and agent-mediated toxicity in several organs and physiological processes in the host. Current research efforts in addressing the issues of exposure conditions, bioavailability, toxicity and the mode of action of dietary phytochemicals may help address the reason for observed mismatch that may ultimately lead to identification of new chemopreventive agents for protection against broad spectrum of exposures.
Collapse
|
Review |
9 |
67 |
32
|
Wang QE. DNA damage responses in cancer stem cells: Implications for cancer therapeutic strategies. World J Biol Chem 2015; 6:57-64. [PMID: 26322164 PMCID: PMC4549769 DOI: 10.4331/wjbc.v6.i3.57] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 04/16/2015] [Accepted: 05/28/2015] [Indexed: 02/05/2023] Open
Abstract
The identification of cancer stem cells (CSCs) that are responsible for tumor initiation, growth, metastasis, and therapeutic resistance might lead to a new thinking on cancer treatments. Similar to stem cells, CSCs also display high resistance to radiotherapy and chemotherapy with genotoxic agents. Thus, conventional therapy may shrink the tumor volume but cannot eliminate cancer. Eradiation of CSCs represents a novel therapeutic strategy. CSCs possess a highly efficient DNA damage response (DDR) system, which is considered as a contributor to the resistance of these cells from exposures to DNA damaging agents. Targeting of enhanced DDR in CSCs is thus proposed to facilitate the eradication of CSCs by conventional therapeutics. To achieve this aim, a better understanding of the cellular responses to DNA damage in CSCs is needed. In addition to the protein kinases and enzymes that are involved in DDR, other processes that affect the DDR including chromatin remodeling should also be explored.
Collapse
|
Editorial |
10 |
67 |
33
|
Wei W, Graeff R, Yue J. Roles and mechanisms of the CD38/cyclic adenosine diphosphate ribose/Ca 2+ signaling pathway. World J Biol Chem 2014; 5:58-67. [PMID: 24600514 PMCID: PMC3942542 DOI: 10.4331/wjbc.v5.i1.58] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/09/2013] [Accepted: 12/19/2013] [Indexed: 02/05/2023] Open
Abstract
Mobilization of intracellular Ca2+ stores is involved in many diverse cell functions, including: cell proliferation; differentiation; fertilization; muscle contraction; secretion of neurotransmitters, hormones and enzymes; and lymphocyte activation and proliferation. Cyclic adenosine diphosphate ribose (cADPR) is an endogenous Ca2+ mobilizing nucleotide present in many cell types and species, from plants to animals. cADPR is formed by ADP-ribosyl cyclases from nicotinamide adenine dinucleotide. The main ADP-ribosyl cyclase in mammals is CD38, a multi-functional enzyme and a type II membrane protein. It has been shown that many extracellular stimuli can induce cADPR production that leads to calcium release or influx, establishing cADPR as a second messenger. cADPR has been linked to a wide variety of cellular processes, but the molecular mechanisms regarding cADPR signaling remain elusive. The aim of this review is to summarize the CD38/cADPR/Ca2+ signaling pathway, focusing on the recent advances involving the mechanism and physiological functions of cADPR-mediated Ca2+ mobilization.
Collapse
|
Review |
11 |
62 |
34
|
Solozobova V, Blattner C. p53 in stem cells. World J Biol Chem 2011; 2:202-14. [PMID: 21949570 PMCID: PMC3178757 DOI: 10.4331/wjbc.v2.i9.202] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/23/2011] [Accepted: 08/30/2011] [Indexed: 02/05/2023] Open
Abstract
p53 is well known as a “guardian of the genome” for differentiated cells, in which it induces cell cycle arrest and cell death after DNA damage and thus contributes to the maintenance of genomic stability. In addition to this tumor suppressor function for differentiated cells, p53 also plays an important role in stem cells. In this cell type, p53 not only ensures genomic integrity after genotoxic insults but also controls their proliferation and differentiation. Additionally, p53 provides an effective barrier for the generation of pluripotent stem cell-like cells from terminally differentiated cells. In this review, we summarize our current knowledge about p53 activities in embryonic, adult and induced pluripotent stem cells.
Collapse
|
Review |
14 |
61 |
35
|
Terlecky SR, Terlecky LJ, Giordano CR. Peroxisomes, oxidative stress, and inflammation. World J Biol Chem 2012; 3:93-7. [PMID: 22649571 PMCID: PMC3362841 DOI: 10.4331/wjbc.v3.i5.93] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 05/10/2012] [Accepted: 05/17/2012] [Indexed: 02/05/2023] Open
Abstract
Peroxisomes are intracellular organelles mediating a wide variety of biosynthetic and biodegradative reactions. Included among these are the metabolism of hydrogen peroxide and other reactive species, molecules whose levels help define the oxidative state of cells. Loss of oxidative equilibrium in cells of tissues and organs potentiates inflammatory responses which can ultimately trigger human disease. The goal of this article is to review evidence for connections between peroxisome function, oxidative stress, and inflammation in the context of human health and degenerative disease. Dysregulated points in this nexus are identified and potential remedial approaches are presented.
Collapse
|
Topic Highlight |
13 |
61 |
36
|
Vandooren J, Geurts N, Martens E, Van den Steen PE, Jonghe SD, Herdewijn P, Opdenakker G. Gelatin degradation assay reveals MMP-9 inhibitors and function of O-glycosylated domain. World J Biol Chem 2011; 2:14-24. [PMID: 21537473 PMCID: PMC3083944 DOI: 10.4331/wjbc.v2.i1.14] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/18/2010] [Accepted: 11/25/2010] [Indexed: 02/05/2023] Open
Abstract
AIM: To establish a novel, sensitive and high-throughput gelatinolytic assay to define new inhibitors and compare domain deletion mutants of gelatinase B/matrix metalloproteinase (MMP)-9.
METHODS: Fluorogenic Dye-quenched (DQ)™-gelatin was used as a substrate and biochemical parameters (substrate and enzyme concentrations, DMSO solvent concentrations) were optimized to establish a high-throughput assay system. Various small-sized libraries (ChemDiv, InterBioScreen and ChemBridge) of heterocyclic, drug-like substances were tested and compared with prototypic inhibitors.
RESULTS: First, we designed a test system with gelatin as a natural substrate. Second, the assay was validated by selecting a novel pyrimidine-2,4,6-trione (barbiturate) inhibitor. Third, and in line with present structural data on collagenolysis, it was found that deletion of the O-glycosylated region significantly decreased gelatinolytic activity (kcat/kM± 40% less than full-length MMP-9).
CONCLUSION: The DQ™-gelatin assay is useful in high-throughput drug screening and exosite targeting. We demonstrate that flexibility between the catalytic and hemopexin domain is functionally critical for gelatinolysis.
Collapse
|
Original Article |
14 |
57 |
37
|
Qi QR, Yang ZM. Regulation and function of signal transducer and activator of transcription 3. World J Biol Chem 2014; 5:231-239. [PMID: 24921012 PMCID: PMC4050116 DOI: 10.4331/wjbc.v5.i2.231] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 01/07/2014] [Accepted: 01/20/2014] [Indexed: 02/05/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3), a member of the STAT family, is a key regulator of many physiological and pathological processes. Significant progress has been made in understanding the transcriptional control, posttranslational modification, cellular localization and functional regulation of STAT3. STAT3 can translocate into the nucleus and bind to specific promoter sequences, thereby exerting transcriptional regulation. Recent studies have shown that STAT3 can also translocate into mitochondria, participating in aerobic respiration and apoptosis. In addition, STAT3 plays an important role in inflammation and tumorigenesis by regulating cell proliferation, differentiation and metabolism. Conditional knockout mouse models make it possible to study the physiological function of STAT3 in specific tissues and organs. This review summarizes the latest advances in the understanding of the expression, regulation and function of STAT3 in physiological and tumorigenic processes.
Collapse
|
Minireviews |
11 |
56 |
38
|
Verma S, Kesh K, Ganguly N, Jana S, Swarnakar S. Matrix metalloproteinases and gastrointestinal cancers: Impacts of dietary antioxidants. World J Biol Chem 2014; 5:355-376. [PMID: 25225603 PMCID: PMC4160529 DOI: 10.4331/wjbc.v5.i3.355] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/07/2014] [Accepted: 06/11/2014] [Indexed: 02/05/2023] Open
Abstract
The process of carcinogenesis is tightly regulated by antioxidant enzymes and matrix degrading enzymes, namely, matrix metalloproteinases (MMPs). Degradation of extracellular matrix (ECM) proteins like collagen, proteoglycan, laminin, elastin and fibronectin is considered to be the prerequisite for tumor invasion and metastasis. MMPs can degrade essentially all of the ECM components and, most MMPs also substantially contribute to angiogenesis, differentiation, proliferation and apoptosis. Hence, MMPs are important regulators of tumor growth both at the primary site and in distant metastases; thus the enzymes are considered as important targets for cancer therapy. The implications of MMPs in cancers are no longer mysterious; however, the mechanism of action is yet to be explained. Herein, our major interest is to clarify how MMPs are tied up with gastrointestinal cancers. Gastrointestinal cancer is a variety of cancer types, including the cancers of gastrointestinal tract and organs, i.e., esophagus, stomach, biliary system, pancreas, small intestine, large intestine, rectum and anus. The activity of MMPs is regulated by its endogenous inhibitor tissue inhibitor of metalloproteinase (TIMP) which bind MMPs with a 1:1 stoichiometry. In addition, RECK (reversion including cysteine-rich protein with kazal motifs) is a membrane bound glycoprotein that inhibits MMP-2, -9 and -14. Moreover, α2-macroglobulin mediates the uptake of several MMPs thereby inhibit their activity. Cancerous conditions increase intrinsic reactive oxygen species (ROS) through mitochondrial dysfunction leading to altered protease/anti-protease balance. ROS, an index of oxidative stress is also involved in tumorigenesis by activation of different MAP kinase pathways including MMP induction. Oxidative stress is involved in cancer by changing the activity and expression of regulatory proteins especially MMPs. Epidemiological studies have shown that high intake of fruits that rich in antioxidants is associated with a lower cancer incidence. Evidence indicates that some antioxidants inhibit the growth of malignant cells by inducing apoptosis and inhibiting the activity of MMPs. This review is discussed in six subchapters, as follows.
Collapse
|
Review |
11 |
56 |
39
|
Wang Z. MicroRNA: A matter of life or death. World J Biol Chem 2010; 1:41-54. [PMID: 21537368 PMCID: PMC3083949 DOI: 10.4331/wjbc.v1.i4.41] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 04/07/2010] [Accepted: 04/19/2010] [Indexed: 02/05/2023] Open
Abstract
Progressive cell loss due to apoptosis is a pathological hallmark implicated in a wide spectrum of degenerative diseases such as heart disease, atherosclerotic arteries and hypertensive vessels, Alzheimer's disease and other neurodegenerative disorders. Tremendous efforts have been made to improve our understanding of the molecular mechanisms and signaling pathways involved in apoptosistic cell death. Once ignored completely or overlooked as cellular detritus, microRNAs (miRNAs) that were discovered only a decade ago, have recently taken many by surprise. The importance of miRNAs has steadily gained appreciation and miRNA biology has exploded into a massive swell of interest with enormous range and potential in almost every biological discipline because of their widespread expression and diverse functions in both animals and humans. It has been established that miRNAs are critical regulators of apoptosis of various cell types. These small molecules act by repressing the expression of either the proapoptotic or antiapoptotic genes to produce antiapoptotic or proapoptotic effects. Appealing evidence has been accumulating for the involvement of miRNAs in human diseases associated with apoptotic cell death and the potential of miRNAs as novel therapeutic targets for the treatment of the diseases. This editorial aims to convey this message and to boost up the research interest by providing a timely, comprehensive overview on regulation of apoptosis by miRNAs and a synopsis on the pathophysiologic implications of this novel regulatory network based on the currently available data in the literature. It begins with a brief introduction to apoptosis and miRNAs, followed by the description of the fundamental aspects of miRNA biogenesis and action, and the role of miRNAs in regulating apoptosis of cancer cells and cardiovascular cells. Speculations on the development of miRNAs as potential therapeutic targets are also presented. Remarks are also provided to point out the unanswered questions and to outline the new directions for the future research of the field.
Collapse
|
Editorial |
15 |
55 |
40
|
Wang T, Wang J, Hu X, Huang XJ, Chen GX. Current understanding of glucose transporter 4 expression and functional mechanisms. World J Biol Chem 2020; 11:76-98. [PMID: 33274014 PMCID: PMC7672939 DOI: 10.4331/wjbc.v11.i3.76] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/22/2020] [Accepted: 09/22/2020] [Indexed: 02/05/2023] Open
Abstract
Glucose is used aerobically and anaerobically to generate energy for cells. Glucose transporters (GLUTs) are transmembrane proteins that transport glucose across the cell membrane. Insulin promotes glucose utilization in part through promoting glucose entry into the skeletal and adipose tissues. This has been thought to be achieved through insulin-induced GLUT4 translocation from intracellular compartments to the cell membrane, which increases the overall rate of glucose flux into a cell. The insulin-induced GLUT4 translocation has been investigated extensively. Recently, significant progress has been made in our understanding of GLUT4 expression and translocation. Here, we summarized the methods and reagents used to determine the expression levels of Slc2a4 mRNA and GLUT4 protein, and GLUT4 translocation in the skeletal muscle, adipose tissues, heart and brain. Overall, a variety of methods such real-time polymerase chain reaction, immunohistochemistry, fluorescence microscopy, fusion proteins, stable cell line and transgenic animals have been used to answer particular questions related to GLUT4 system and insulin action. It seems that insulin-induced GLUT4 translocation can be observed in the heart and brain in addition to the skeletal muscle and adipocytes. Hormones other than insulin can induce GLUT4 translocation. Clearly, more studies of GLUT4 are warranted in the future to advance of our understanding of glucose homeostasis.
Collapse
|
Review |
5 |
55 |
41
|
Triggs-Raine B, Natowicz MR. Biology of hyaluronan: Insights from genetic disorders of hyaluronan metabolism. World J Biol Chem 2015; 6:110-120. [PMID: 26322170 PMCID: PMC4549756 DOI: 10.4331/wjbc.v6.i3.110] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/08/2015] [Accepted: 07/17/2015] [Indexed: 02/05/2023] Open
Abstract
Hyaluronan is a rapidly turned over component of the vertebrate extracellular matrix. Its levels are determined, in part, by the hyaluronan synthases, HAS1, HAS2, and HAS3, and three hyaluronidases, HYAL1, HYAL2 and HYAL3. Hyaluronan binding proteins also regulate hyaluronan levels although their involvement is less well understood. To date, two genetic disorders of hyaluronan metabolism have been reported in humans: HYAL1 deficiency (Mucopolysaccharidosis IX) in four individuals with joint pathology as the predominant phenotypic finding and HAS2 deficiency in a single person having cardiac pathology. However, inherited disorders and induced mutations affecting hyaluronan metabolism have been characterized in other species. Overproduction of hyaluronan by HAS2 results in skin folding and thickening in shar-pei dogs and the naked mole rat, whereas a complete deficiency of HAS2 causes embryonic lethality in mice due to cardiac defects. Deficiencies of murine HAS1 and HAS3 result in a predisposition to seizures. Like humans, mice with HYAL1 deficiency exhibit joint pathology. Mice lacking HYAL2 have variably penetrant developmental defects, including skeletal and cardiac anomalies. Thus, based on mutant animal models, a partial deficiency of HAS2 or HYAL2 might be compatible with survival in humans, while complete deficiencies of HAS1, HAS3, and HYAL3 may yet be recognized.
Collapse
|
Review |
10 |
55 |
42
|
Fujii J, Homma T, Kobayashi S, Seo HG. Mutual interaction between oxidative stress and endoplasmic reticulum stress in the pathogenesis of diseases specifically focusing on non-alcoholic fatty liver disease. World J Biol Chem 2018; 9:1-15. [PMID: 30364769 PMCID: PMC6198288 DOI: 10.4331/wjbc.v9.i1.1] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/19/2018] [Accepted: 10/11/2018] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS) are produced during normal physiologic processes with the consumption of oxygen. While ROS play signaling roles, when they are produced in excess beyond normal antioxidative capacity this can cause pathogenic damage to cells. The majority of such oxidation occurs in polyunsaturated fatty acids and sulfhydryl group in proteins, resulting in lipid peroxidation and protein misfolding, respectively. The accumulation of misfolded proteins in the endoplasmic reticulum (ER) is enhanced under conditions of oxidative stress and results in ER stress, which, together, leads to the malfunction of cellular homeostasis. Multiple types of defensive machinery are activated in unfolded protein response under ER stress to resolve this unfavorable situation. ER stress triggers the malfunction of protein secretion and is associated with a variety of pathogenic conditions including defective insulin secretion from pancreatic β-cells and accelerated lipid droplet formation in hepatocytes. Herein we use nonalcoholic fatty liver disease (NAFLD) as an illustration of such pathological liver conditions that result from ER stress in association with oxidative stress. Protecting the ER by eliminating excessive ROS via the administration of antioxidants or by enhancing lipid-metabolizing capacity via the activation of peroxisome proliferator-activated receptors represent promising therapeutics for NAFLD.
Collapse
|
Review |
7 |
54 |
43
|
Ocker M. Deacetylase inhibitors - focus on non-histone targets and effects. World J Biol Chem 2010; 1:55-61. [PMID: 21540990 PMCID: PMC3083950 DOI: 10.4331/wjbc.v1.i5.55] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 04/23/2010] [Accepted: 04/30/2010] [Indexed: 02/05/2023] Open
Abstract
Inhibitors of protein deacetylases have recently been established as a novel therapeutic principle for several human diseases, including cancer. The original notion of the mechanism of action of these compounds focused on the epigenetic control of transcriptional processes, especially of tumor suppressor genes, by interfering with the acetylation status of nuclear histone proteins, hence the name histone deacetylase inhibitors was coined. Yet, this view could not explain the high specificity for tumor cells and recent evidence now suggests that non-histone proteins represent major targets for protein deacetylase inhibitors and that the post-translational modification of the acetylome is involved in various cellular processes of differentiation, survival and cell death induction.
Collapse
|
Editorial |
15 |
53 |
44
|
Tauran Y, Brioude A, Coleman AW, Rhimi M, Kim B. Molecular recognition by gold, silver and copper nanoparticles. World J Biol Chem 2013; 4:35-63. [PMID: 23977421 PMCID: PMC3746278 DOI: 10.4331/wjbc.v4.i3.35] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/11/2013] [Accepted: 06/18/2013] [Indexed: 02/05/2023] Open
Abstract
The intrinsic physical properties of the noble metal nanoparticles, which are highly sensitive to the nature of their local molecular environment, make such systems ideal for the detection of molecular recognition events. The current review describes the state of the art concerning molecular recognition of Noble metal nanoparticles. In the first part the preparation of such nanoparticles is discussed along with methods of capping and stabilization. A brief discussion of the three common methods of functionalization: Electrostatic adsorption; Chemisorption; Affinity-based coordination is given. In the second section a discussion of the optical and electrical properties of nanoparticles is given to aid the reader in understanding the use of such properties in molecular recognition. In the main section the various types of capping agents for molecular recognition; nucleic acid coatings, protein coatings and molecules from the family of supramolecular chemistry are described along with their numerous applications. Emphasis for the nucleic acids is on complementary oligonucleotide and aptamer recognition. For the proteins the recognition properties of antibodies form the core of the section. With respect to the supramolecular systems the cyclodextrins, calix[n]arenes, dendrimers, crown ethers and the cucurbitales are treated in depth. Finally a short section deals with the possible toxicity of the nanoparticles, a concern in public health.
Collapse
|
Review |
12 |
53 |
45
|
Cheng Y, Yang JM. Survival and death of endoplasmic-reticulum-stressed cells: Role of autophagy. World J Biol Chem 2011; 2:226-31. [PMID: 22031845 PMCID: PMC3202126 DOI: 10.4331/wjbc.v2.i10.226] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 09/03/2011] [Accepted: 09/10/2011] [Indexed: 02/05/2023] Open
Abstract
Accumulation of unfolded proteins in the endoplasmic reticulum (ER) results in ER stress, which subsequently activates the unfolded protein response that induces a transcriptional program to alleviate the stress. Another cellular process that is activated during ER stress is autophagy, a mechanism of enclosing intracellular components in a double-membrane autophagosome, and then delivering it to the lysosome for degradation. Here, we discuss the role of autophagy in cellular response to ER stress, the signaling pathways linking ER stress to autophagy, and the possible implication of modulating autophagy in treatment of diseases such as cancer.
Collapse
|
Topic Highlight |
14 |
52 |
46
|
Matsui Y, Morimoto J, Uede T. Role of matricellular proteins in cardiac tissue remodeling after myocardial infarction. World J Biol Chem 2010; 1:69-80. [PMID: 21540992 PMCID: PMC3083960 DOI: 10.4331/wjbc.v1.i5.69] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 05/15/2010] [Accepted: 05/17/2010] [Indexed: 02/05/2023] Open
Abstract
After onset of myocardial infarction (MI), the left ventricle (LV) undergoes a continuum of molecular, cellular, and extracellular responses that result in LV wall thinning, dilatation, and dysfunction. These dynamic changes in LV shape, size, and function are termed cardiac remodeling. If the cardiac healing after MI does not proceed properly, it could lead to cardiac rupture or maladaptive cardiac remodeling, such as further LV dilatation and dysfunction, and ultimately death. Although the precise molecular mechanisms in this cardiac healing process have not been fully elucidated, this process is strictly coordinated by the interaction of cells with their surrounding extracellular matrix (ECM) proteins. The components of ECM include basic structural proteins such as collagen, elastin and specialized proteins such as fibronectin, proteoglycans and matricellular proteins. Matricellular proteins are a class of non-structural and secreted proteins that probably exert regulatory functions through direct binding to cell surface receptors, other matrix proteins, and soluble extracellular factors such as growth factors and cytokines. This small group of proteins, which includes osteopontin, thrombospondin-1/2, tenascin, periostin, and secreted protein, acidic and rich in cysteine, shows a low level of expression in normal adult tissue, but is markedly upregulated during wound healing and tissue remodeling, including MI. In this review, we focus on the regulatory functions of matricellular proteins during cardiac tissue healing and remodeling after MI.
Collapse
|
Editorial |
15 |
52 |
47
|
Loukil A, Cheung CT, Bendris N, Lemmers B, Peter M, Blanchard JM. Cyclin A2: At the crossroads of cell cycle and cell invasion. World J Biol Chem 2015; 6:346-50. [PMID: 26629317 PMCID: PMC4657123 DOI: 10.4331/wjbc.v6.i4.346] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 09/18/2015] [Accepted: 10/12/2015] [Indexed: 02/05/2023] Open
Abstract
Cyclin A2 is an essential regulator of the cell division cycle through the activation of kinases that participate to the regulation of S phase as well as the mitotic entry. However, whereas its degradation by the proteasome in mid mitosis was thought to be essential for mitosis to proceed, recent observations show that a small fraction of cyclin A2 persists beyond metaphase and is degraded by autophagy. Its implication in the control of cytoskeletal dynamics and cell movement has unveiled its role in the modulation of RhoA activity. Since this GTPase is involved in both cell rounding early in mitosis and later, in the formation of the cleavage furrow, this suggests that cyclin A2 is a novel actor in cytokinesis. Taken together, these data point to this cyclin as a potential mediator of cell-niche interactions whose dysregulation could be taken as a hallmark of metastasis.
Collapse
|
Minireviews |
10 |
52 |
48
|
Utkin YN. Last decade update for three-finger toxins: Newly emerging structures and biological activities. World J Biol Chem 2019; 10:17-27. [PMID: 30622682 PMCID: PMC6314878 DOI: 10.4331/wjbc.v10.i1.17] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/20/2018] [Accepted: 12/05/2018] [Indexed: 02/05/2023] Open
Abstract
Three-finger toxins (TFTs) comprise one of largest families of snake venom toxins. While they are principal to and the most toxic components of the venoms of the Elapidae snake family, their presence has also been detected in the venoms of snakes from other families. The first TFT, α-bungarotoxin, was discovered almost 50 years ago and has since been used widely as a specific marker of the α7 and muscle-type nicotinic acetylcholine receptors. To date, the number of TFT amino acid sequences deposited in the UniProt Knowledgebase free-access database is more than 700, and new members are being added constantly. Although structural variations among the TFTs are not numerous, several new structures have been discovered recently; these include the disulfide-bound dimers of TFTs and toxins with nonstandard pairing of disulfide bonds. New types of biological activities have also been demonstrated for the well-known TFTs, and research on this topic has become a hot topic of TFT studies. The classic TFTs α-bungarotoxin and α-cobratoxin, for example, have now been shown to inhibit ionotropic receptors of γ-aminobutyric acid, and some muscarinic toxins have been shown to interact with adrenoceptors. New, unexpected activities have been demonstrated for some TFTs as well, such as toxin interaction with interleukin or insulin receptors and even TFT-activated motility of sperm. This minireview provides a summarization of the data that has emerged in the last decade on the TFTs and their activities.
Collapse
|
Minireviews |
6 |
50 |
49
|
Ibrahim D, Weloosamy H, Lim SH. Effect of agitation speed on the morphology of Aspergillus niger HFD5A-1 hyphae and its pectinase production in submerged fermentation. World J Biol Chem 2015; 6:265-271. [PMID: 26322181 PMCID: PMC4549767 DOI: 10.4331/wjbc.v6.i3.265] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/05/2015] [Accepted: 07/02/2015] [Indexed: 02/05/2023] Open
Abstract
AIM: To investigate the impact of agitation speed on pectinase production and morphological changing of Aspergillus niger (A. niger) HFD5A-1 in submerged fermentation.
METHODS: A. niger HFM5A-1 was isolated from a rotted pomelo. The inoculum preparation was performed by adding 5.0 mL of sterile distilled water containing 0.1% Tween 80 to a sporulated culture. Cultivation was carried out with inoculated 1 × 107 spores/mL suspension and incubated at 30 °C with different agitation speed for 6 d. The samples were withdrawn after 6 d cultivation time and were assayed for pectinase activity and fungal growth determination. The culture broth was filtered through filter paper (Whatman No. 1, London) to separate the fungal mycelium. The cell-free culture filtrate containing the crude enzyme was then assayed for pectinase activity. The biomass was dried at 80 °C until constant weight. The fungal cell dry weight was then expressed as g/L. The 6 d old fungal mycelia were harvested from various agitation speed, 0, 50, 100, 150, 200 and 250 rpm. The morphological changing of samples was then viewed under the light microscope and scanning electron microscope.
RESULTS: In the present study, agitation speed was found to influence pectinase production in a batch cultivation system. However, higher agitation speeds than the optimal speed (150 rpm) reduced pectinase production which due to shear forces and also collision among the suspended fungal cells in the cultivation medium. Enzyme activity increased with the increasing of agitation speed up to 150 rpm, where it achieved its maximal pectinase activity of 1.559 U/mL. There were significant different (Duncan, P < 0.05) of the pectinase production with the agitation speed at static, 50, 100, 200 and 250 rpm. At the static condition, a well growth mycelial mat was observed on the surface of the cultivation medium and sporulation occurred all over the fungal mycelial mat. However with the increased in agitation speed, the mycelial mat turned slowly to become a single circular pellet. Thus, it was found that agitation speed affected the morphological characteristics of the fungal hyphae/mycelia of A. niger HFD5A-1 by altering their external as well as internal cell structures.
CONCLUSION: Exposure to higher shear stress with an increasing agitation speed could result in lower biomass yields as well as pectinase production by A. niger HFD5A-1.
Collapse
|
Basic Study |
10 |
48 |
50
|
Cohen JG, White M, Cruz A, Farias-Eisner R. In 2014, can we do better than CA125 in the early detection of ovarian cancer? World J Biol Chem 2014; 5:286-300. [PMID: 25225597 PMCID: PMC4160523 DOI: 10.4331/wjbc.v5.i3.286] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/12/2014] [Accepted: 05/14/2014] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer is a lethal gynecologic malignancy with greater than 70% of women presenting with advanced stage disease. Despite new treatments, long term outcomes have not significantly changed in the past 30 years with the five-year overall survival remaining between 20% and 40% for stage III and IV disease. In contrast patients with stage I disease have a greater than 90% five-year overall survival. Detection of ovarian cancer at an early stage would likely have significant impact on mortality rate. Screening biomarkers discovered at the bench have not translated to success in clinical trials. Existing screening modalities have not demonstrated survival benefit in completed prospective trials. Advances in high throughput screening are making it possible to evaluate the development of ovarian cancer in ways never before imagined. Data in the form of human “-omes” including the proteome, genome, metabolome, and transcriptome are now available in various packaged forms. With the correct pooling of resources including prospective collection of patient specimens, integration of high throughput screening, and use of molecular heterogeneity in biomarker discovery, we are poised to make progress in ovarian cancer screening. This review will summarize current biomarkers, imaging, and multimodality screening strategies in the context of emerging technologies.
Collapse
|
Topic Highlight |
11 |
47 |