51
|
Wang L, Li G, Ren L, Kong X, Wang Y, Han X, Jiang W, Dai K, Yang K, Hao Y. Nano-copper-bearing stainless steel promotes fracture healing by accelerating the callus evolution process. Int J Nanomedicine 2017; 12:8443-8457. [PMID: 29225463 PMCID: PMC5708188 DOI: 10.2147/ijn.s146866] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] [Imported: 07/25/2023] Open
Abstract
Treatment for fractures requires internal fixation devices, which are mainly produced from stainless steel or titanium alloy without biological functions. Therefore, we developed a novel nano-copper-bearing stainless steel with nano-sized copper-precipitation (317L-Cu SS). Based on previous studies, this work explores the effect of 317L-Cu SS on fracture healing; that is, proliferation, osteogenic differentiation, osteogenesis-related gene expression, and lysyl oxidase activity of human bone mesenchymal stem cells were detected in vitro. Sprague-Dawley rats were used to build an animal fracture model, and fracture healing and callus evolution were investigated by radiology (X-ray and micro-CT), histology (H&E, Masson, and safranin O/fast green staining), and histomorphometry. Further, the Cu2+ content and Runx2 level in the callus were determined, and local mechanical test of the fracture was performed to assess the healing quality. Our results revealed that 317L-Cu SS did not affect the proliferation of human bone mesenchymal stem cells, but promoted osteogenic differentiation and the expression of osteogenesis-related genes. In addition, 317L-Cu SS upregulated the lysyl oxidase activity. The X-ray and micro-CT results showed that the callus evolution efficiency and fracture healing speed were superior for 317L-Cu SS. Histological staining displayed large amounts of fibrous tissues at 3 weeks, and cartilage and new bone at 6 weeks. Further, histomorphometric analysis indicated that the callus possessed higher osteogenic efficiency at 6 weeks, and a high Cu2+ content and increased Runx2 expression were observed in the callus for 317L-Cu SS. Besides, the mechanical strength of the fracture site was much better than that of the control group. Overall, we conclude that 317L-Cu SS possesses the ability to increase Cu2+ content and promote osteogenesis in the callus, which could accelerate the callus evolution process and bone formation to provide faster and better fracture healing.
Collapse
|
research-article |
8 |
18 |
52
|
Wang Y, Shi M, Fu H, Xu H, Wei J, Wang T, Wang X. Mammalian target of the rapamycin pathway is involved in non-alcoholic fatty liver disease. Mol Med Rep 2010; 3:909-915. [PMID: 21472332 DOI: 10.3892/mmr.2010.365] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 09/06/2010] [Indexed: 12/12/2022] [Imported: 07/25/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common liver disease associated with an increased risk of type 2 diabetes and cardiovascular disease. Many factors may contribute to NAFLD development and progression, but the exact mechanisms are still not fully understood. In this study, Sprague-Dawley rats were fed either a standard diet (control group), a high-fat diet for 8 weeks (the HFD-8 group) or a high-fat diet for 16 weeks (the HFD-16 group). The HFD animals showed high levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and insulin resistance index (Homa-IR). Mild and severe steatosis was found in both the HFD-8 and HFD-16 groups, respectively. Compared with the controls, mRNA levels of mTOR, S6K1, IL-1α, IL-6 and TNFα were significantly increased in the HFD-8 and HFD-16 groups. IRS-1 mRNA was significantly increased in the HFD-8 group, but not in the HFD-16 group. The protein levels of mTOR, pmTOR(Ser2448), S6K1, pIRS-1(Ser307), IL-1α and IL-6 were significantly increased in the HFD-8 and HFD-16 groups. The protein levels of pmTOR(Ser2448) and IL-1α were significantly higher in the HFD-16 group compared to those in the HFD-8 group. However, the protein expression level of mTOR did not differ significantly between the HFD-8 and HFD-16 groups. The pIRS-1(Tyr102) level was significantly lower in both the HFD-8 and HFD-16 groups when compared to that in the control group, and the pIRS-1(Tyr102) level was significantly lower in the HFD-16 group compared to that of the HFD-8 group. pmTOR(Ser2448) was positively correlated with the TNFα mRNA level, and pIRS-1(Ser307) was positively correlated with pmTOR(Ser2448), TNFα, S6K1 and mTOR. pIRS-1(Tyr102) was negatively correlated with pmTOR(Ser2448), TNFα, S6K1 and mTOR. These data indicate that mTOR contributes to insulin resistance and chronic liver inflammation, and may play an important role in the development and progression of NAFLD.
Collapse
|
|
15 |
17 |
53
|
Zhu LY, Wang YG, Wei LQ, Zhou J, Dai WJ, Zhang XY. The effects of the insulin resistance index on the virologic response to entecavir in patients with HBeAg-positive chronic hepatitis B and nonalcoholic fatty liver disease. Drug Des Devel Ther 2016; 10:2739-2744. [PMID: 27621595 PMCID: PMC5012598 DOI: 10.2147/dddt.s114761] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] [Imported: 07/23/2023] Open
Abstract
PURPOSE To further observe and verify the effect of nonalcoholic fatty liver disease (NAFLD) on the response to antiviral therapy in patients with chronic hepatitis B (CHB) and investigate the relationship between the virologic response and insulin resistance. PATIENTS AND METHODS A retrospective study was adopted and 61 NAFLD patients with HBeAg-positive CHB were included as the observation group (group A), and 64 patients with simple CHB were included as the control group (group B). RESULTS After 12 weeks of treatment with entecavir, the total virologic response rate in group A was statistically significantly lower than that in group B (P<0.05). During weeks 24-96, the difference was not statistically significant (P>0.05). In weeks 48 and 96, there was no significant difference in the HBeAg seroconversion rates between the two groups (P>0.05). In weeks 12 and 24, there was also no significant difference in the alanine transaminase (ALT) normalization rate between the two groups (P>0.05). Then, in weeks 48 and 96, the ALT normalization rate of group A was obviously lower than that of group B (P<0.05). Group A patients were divided into group A1 (≤M) and group A2 (>M) according to the median value (M=2.79) of the baseline homeostatic model assessment method insulin resistance levels. In weeks 48 and 96, the ALT normalization rate of group A1 was significantly higher than that of group A2 (P<0.05). The correlation coefficient (r) of the baseline homeostatic model assessment method insulin resistance level and the severity of fatty liver in group A was 0.426 (P=0.001). CONCLUSION NAFLD cannot affect the long-term total virologic response rate and HBeAg seroconversion rate in CHB patients treated with entecavir but can reduce the long-term biochemical response rate, which has a positive correlation with the severity of fatty liver and the insulin resistance index.
Collapse
|
research-article |
9 |
15 |
54
|
Mao Z, Fang Z, Yang Y, Chen X, Wang Y, Kang J, Qu X, Yuan W, Dai K. Strontium ranelate-loaded PLGA porous microspheres enhancing the osteogenesis of MC3T3-E1 cells. RSC Adv 2017; 7:24607-24615. [DOI: 10.1039/c7ra01445g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023] [Imported: 07/25/2023] Open
Abstract
Biodegradable poly lactic-co-glycolic acid (PLGA) has been used as a tissue engineering scaffold as well as a carrier for the delivery of proteins, drugs, and other macromolecules.
Collapse
|
|
8 |
15 |
55
|
Liang F, Wang YG, Wang C. Metformin Inhibited Growth, Invasion and Metastasis of Esophageal Squamous Cell Carcinoma in Vitro and in Vivo. Cell Physiol Biochem 2018; 51:1276-1286. [PMID: 30481793 DOI: 10.1159/000495539] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 11/19/2018] [Indexed: 11/19/2022] [Imported: 07/23/2023] Open
Abstract
BACKGROUND/AIMS This study aimed at investigating the effects of metformin on the growth and metastasis of esophageal squamous cell carcinoma (ESCC) in vitro and in vivo. METHODS Two human ESCC cell lines EC9706 and Eca109 were selected and challenged with metformin in this study. Western blot assay was performed to detect th level of Bcl-2, Bax and Caspase-3. Scratch wound assay, transwell assay and Millicell invasion assay were used to assay the invasion and migration of EC9706 and Eca109 cells. Nude mice tumor models were used to assay the growth and lung metastasis of ESCC cells after metformin treatment. The plasma glucose level was also assayed. RESULTS We found that metformin significantly inhibited proliferation and induced apoptosis of both ESCC cell lines in a dose- and time-dependent manner, and the expression of Bcl-2 was down-regulated and Bax and Caspase-3 were up-regulated. Metformin significantly inhibited the invasion and migration of EC9706 and Eca109 cells (p < 0.05). mRNA and protein levels of MMP-2 and MMP-9 decreased significantly upon treatment with metformin of 10mM for 12, 24 and 48h in a time-dependent manner (p < 0.05). In line with in vitro results, in vivo experiments demonstrated that metformin inhibited tumorigenicity, inhibited lung metastasis and down-regulated the expression of MMP-2 and MMP-9. Moreover, we showed that metformin treatment did not cause significant alteration in liver and renal functions and plasma glucose level. CONCLUSION Our study for the first time demonstrated the anti-invasive and anti-metastatic effects of metformin on human ESCC cells both in vitro and in vivo, which might be associated with the down-regulation of MMP-2 and MMP-9. As a whole, our results indicate the potential of metformin to be developed as a chemotherapeutic agent for patients with ESCC and might stimulate future studies on this area.
Collapse
|
|
7 |
14 |
56
|
Wang YG, Xu L, Wang T, Wei J, Meng WY, Wang N, Shi M. Givinostat inhibition of hepatic stellate cell proliferation and protein acetylation. World J Gastroenterol 2015; 21:8326-8339. [PMID: 26217084 PMCID: PMC4507102 DOI: 10.3748/wjg.v21.i27.8326] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/02/2015] [Accepted: 05/21/2015] [Indexed: 02/06/2023] [Imported: 07/23/2023] Open
Abstract
AIM To explore the effect of the histone deacetylase inhibitor givinostat on proteins related to regulation of hepatic stellate cell proliferation. METHODS The cell counting kit-8 assay and flow cytometry were used to observe changes in proliferation, apoptosis, and cell cycle in hepatic stellate cells treated with givinostat. Western blot was used to observe expression changes in p21, p57, CDK4, CDK6, cyclinD1, caspase-3, and caspase-9 in hepatic stellate cells exposed to givinostat. The scratch assay was used to analyze the effect of givinostat on cell migration. Effects of givinostat on the reactive oxygen species profile, mitochondrial membrane potential, and mitochondrial permeability transition pore opening in JS-1 cells were observed by laser confocal microscopy. RESULTS Givinostat significantly inhibited JS-1 cell proliferation and promoted cell apoptosis, leading to cell cycle arrest in G0/G1 phases. Treatment with givinostat downregulated protein expression of CDK4, CDK6, and cyclin D1, whereas expression of p21 and p57 was significantly increased. The givinostat-induced apoptosis of hepatic stellate cells was mainly mediated through p38 and extracellular signal-regulated kinase 1/2. Givinostat treatment increased intracellular reactive oxygen species production, decreased mitochondrial membrane potential, and promoted mitochondrial permeability transition pore opening. Acetylation of superoxide dismutase (acetyl K68) and nuclear factor-κB p65 (acetyl K310) was upregulated, while there was no change in protein expression. Moreover, the notable beneficial effect of givinostat on liver fibrosis was also confirmed in the mouse models. CONCLUSION Givinostat has antifibrotic activities via regulating the acetylation of nuclear factor-κB and superoxide dismutase 2, thus inhibiting hepatic stellate cell proliferation and inducing apoptosis.
Collapse
|
Basic Study |
10 |
14 |
57
|
Gan G, Shi Z, Liu D, Zhang S, Zhu H, Wang Y, Mi J. 3-hydroxyanthranic acid increases the sensitivity of hepatocellular carcinoma to sorafenib by decreasing tumor cell stemness. Cell Death Discov 2021; 7:173. [PMID: 34230478 PMCID: PMC8260721 DOI: 10.1038/s41420-021-00561-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/20/2021] [Accepted: 06/21/2021] [Indexed: 01/15/2023] Open
Abstract
Sorafenib is the FDA-approved first-line target drug for HCC patients. However, sorafenib only confers 3-5 months of survival benefit with <30% of HCC patients. Thus, it is necessary to develop a sensitizer for hepatocellular carcinoma (HCC) to sorafenib. Here, we report that in representative HCC cell lines (SMMC-7721 and PLC8024) that are insensitive to sorafenib, 3-HAA (50 μM) significantly enhances cell sensitivity to sorafenib to an extent that could not be explained by additive effects. In nude mice carrying HCC xenograft, tumor growth is inhibited by sorafenib (10 mg/kg/day) or 3-HAA (100 mg/kg/day) alone. When used in combination, the treatment effectively prevents the xenograft from growing. In a set of mechanistic experiments, we find enhanced AKT activation and increased proportion of CD44+CD133+ cells in sorafenib-resistant HCC cells and tissues. The proportion of CD44+CD133+ cells is reduced upon 3-HAA treatment in both cultured cells and mouse xenografts, suggesting that 3-HAA could decrease the stemness of HCC. We also detect decreased phosphorylation of AKT, a regulator of the GSK3β/β-catenin signaling upon 3-HAA treatment. The AKT activator SC79 activates GSK3 β/β-catenin signaling while the Wnt inhibitor XAV-939 abolishes 3-HAA inhibition of HCC growth in vitro and in mice. The current study demonstrates that 3-HAA sensitizes HCC cells to sorafenib by reducing tumor stemness, suggesting it is a promising molecule for HCC therapy.
Collapse
|
research-article |
4 |
14 |
58
|
Wang YG, Shi M, Wang T, Shi T, Wei J, Wang N, Chen XM. Signal transduction mechanism of TRB3 in rats with non-alcoholic fatty liver disease. World J Gastroenterol 2009; 15:2329-2335. [PMID: 19452573 PMCID: PMC2684597 DOI: 10.3748/wjg.15.2329] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 03/28/2009] [Accepted: 04/04/2009] [Indexed: 02/06/2023] [Imported: 07/23/2023] Open
Abstract
AIM To evaluate the possible role of Tribble 3 (TRB3) in a rat model of non-alcoholic fatty liver disease (NAFLD) and its signal transduction mechanism. METHODS Thirty Sprague-Dawley rats were randomized into three groups: normal control group, non-alcoholic fatty liver group A (fed on a high-fat diet for 8 wk) and group B (fed on a high-fat diet for 16 wk). To determine the degree of hepatic steatosis in rats of each group, livers were stained with hematoxylin and eosin, and evaluated; real-time fluorescent quantitative reverse transcriptase-polymerase chain reaction was performed to measure the expression levels of TRB3 mRNA; and Western blotting analysis was done to determine the expression levels of protein kinase B (Akt) and phosphorylated protein kinase B (p-Akt-Thr308, p-Akt-Ser473). RESULTS Hepatic steatosis was evident in both NAFLD groups: mild to moderate hepatic steatosis occurred in group A, mainly as mild steatosis. Moderate to severe hepatic steatosis occurred in group B, mainly as severe steatosis. The expression level of TRB3 mRNA in group B was significantly higher than in the control group (122.28 +/- 95.37 vs 3.06 +/- 2.33, P = 0.001) and group A (122.28 +/- 95.37 vs 5.77 +/- 4.20, P = 0.001). There was no significant difference in the expression levels of Akt (1.03 +/- 0.53 vs 1.12 +/- 0.77, P = 0.729) and p-Akt-Thr308 (0.82 +/- 0.45 vs 0.92 +/- 0.38, P = 0.592) between group A and the control group. The expression level of Akt and p-Akt-Thr308 in group B was significantly lower than in group A (Akt 0.41 +/- 0.16 vs 1.12 +/- 0.77, P = 0.008; p-Akt-Thr308 0.47 +/- 0.19 vs 0.82 +/- 0.45, P = 0.036) and the control group (Akt 0.41 +/- 0.16 vs 1.03 +/- 0.53, P = 0.018; p-Akt-Thr308 0.47 +/- 0.19 vs 0.92 +/- 0.38, P = 0.010). The expression level of p-Akt-Ser473 in group A was significantly higher than in group B (1.48 +/- 0.50 vs 0.81 +/- 0.39, P = 0.041) as well as the control group (1.48 +/- 0.50 vs 0.45 +/- 0.26, P = 0.003). CONCLUSION TRB3 blocks insulin signaling by inhibiting Akt activation, which contributes to insulin resistance. It may be an important factor in the occurrence and development of NAFLD.
Collapse
|
Original Articles |
16 |
13 |
59
|
XU LING, WANG TING, MENG WENYING, WEI JUE, MA JIALI, SHI MIN, WANG YUGANG. Salinomycin inhibits hepatocellular carcinoma cell invasion and migration through JNK/JunD pathway-mediated MMP9 expression. Oncol Rep 2015; 33:1057-1063. [PMID: 25522777 PMCID: PMC4324482 DOI: 10.3892/or.2014.3680] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/28/2014] [Indexed: 12/27/2022] [Imported: 07/23/2023] Open
Abstract
The antibiotic salinomycin (Salin) was recently identified as an antitumor drug for the treatment of several types of solid tumors. However, the effects of Salin on the migratory and invasive properties of hepatocellular carcinoma (HCC) cells are unclear. The present study aimed to determine the antitumor efficacy and mechanism of Salin in HCC cells. Human HCC cells (HCCLM3) treated with Salin showed a concentration-dependent reduction in cell migration and invasion, and this was associated with reduced MMP9 expression. The MMP9 promoter and enhancer in a luciferase reporter assay revealed that Salin can regulate MMP9 expression through an activator protein (AP-1) site within the MMP9 enhancer. JunD, one of the AP-1 components, was significantly decreased by Salin in a concentration- and time-dependent manner. Salin was able to induce c-Jun NH2-kinase (JNK) phosphorylation and to block both JunD and MMP9 expression. Our results showed that JNK phosphorylation and JunD may be involved in the Salin-regulated MMP9 signaling pathway in HCCLM3 cells and may mediate HCC cell biological characteristics. Our studies provide new insight into the antitumor effects of Salin.
Collapse
|
research-article |
10 |
13 |
60
|
Yu CB, Zhu LY, Wang YG, Li F, Zhang XY, Dai WJ. Systemic transcriptome analysis of hepatocellular carcinoma. Tumour Biol 2016; 37:13323-13331. [PMID: 27460080 DOI: 10.1007/s13277-016-5286-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 07/18/2016] [Indexed: 11/26/2022] [Imported: 07/25/2023] Open
Abstract
Liver cancer is one of the most common malignant tumors, and most of which is hepatocellular carcinoma (HCC). We aim to study the characteristic changes of numerous genes and their roles in HCC through systematical analysis of the characteristics of expression spectrum of HCC. Firstly, we made systematic clustering of the HCC samples according to the RNAseq data from TCGA (The Cancer Genome Atlas) and newly classified HCC. Then the characteristic genes in different molecular subtypes were found out and further analyzed combing with methylation and SNP 6.0 chip. Finally, these genes were subjected to do functional annotation and abnormal signaling pathways of HCC in various molecular subtypes and were screened out. There were 3843 differential genes screened; among which, 689 genes were enriched into 13 KEGG-related pathways, and the expression of 27 and 924 genes showed positive and negative correlation to methylation level, respectively, while the expression of 43 genes showed positive correlation to variation level of copy number. The methylation degree of ZSCAN18 may be considered as a marker for prognosis evaluation, and ABHD6 could be a potential anti-oncogene.
Collapse
|
|
9 |
12 |
61
|
Wei J, Shi M, Wu WQ, Xu H, Wang T, Wang N, Ma JL, Wang YG. IκB kinase-beta inhibitor attenuates hepatic fibrosis in mice. World J Gastroenterol 2011; 17:5203-5213. [PMID: 22215946 PMCID: PMC3243888 DOI: 10.3748/wjg.v17.i47.5203] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 11/30/2011] [Accepted: 12/07/2011] [Indexed: 02/06/2023] [Imported: 07/23/2023] Open
Abstract
AIM To investigate the anti-fibrosis effect of IκB kinase-beta inhibitor (IKK2 inhibitor IMD0354) in liver fibrosis. METHODS Twenty male C57BL6 mice were divided into four groups. Five high-fat fed mice were injected with lipopolysaccharide (LPS, 10 mg/kg) intraperitoneally and five high-fat fed mice were without LPS injection to build models of liver injury, and the intervention group (five mice) was injected intraperitoneally with IKK2 inhibitor (IMD 30 mg/kg for 14 d), while the remaining five mice received a normal diet as controls. Hepatic function, pathological evaluation and liver interleukin-6 (IL-6) expression were examined. Western blotting and real-time polymerase chain reaction were used to detect the expressions of nuclear factor-κB (NF-κB), alpha-smooth muscle actin (α-SMA), tumor growth factor-beta1 (TGF-β1), tumor necrosis factor-alpha (TNF-α), typeIand type III collagen proteins and mRNA. RESULTS A mouse model of liver injury was successfully established, and IMD decreased nuclear translocation of NF-κB p65 in liver cells. In the IMD-treated group, the levels of alanine aminotransferase (103 ± 9.77 μ/L vs 62.4 ± 7.90 μ/L, P < 0.05) and aminotransferase (295.8 ± 38.56 μ/L vs 212 ± 25.10 μ/L, P < 0.05) were significantly decreased when compared with the model groups. The histological changes were significantly ameliorated. After treatment, the expressions of IL-6 (681 ± 45.96 vs 77 ± 7.79, P < 0.05), TGF-β1 (Western blotting 5.65% ± 0.017% vs 2.73% ± 0.005%, P < 0.05), TNF-α (11.58% ± 0.0063% vs 8.86% ± 0.0050%, P < 0.05), typeIcollagen (4.49% ± 0.014% vs 1.90% ± 0.0006%, P < 0.05) and type III collagen (3.46% ± 0.008% vs 2.29% ± 0.0035%, P < 0.05) as well as α-SMA (6.19 ± 0.0036 μ/L vs 2.16 ± 0.0023 μ/L, P < 0.05) protein and mRNA were downregulated in the IMD group compared to the fibrosis control groups (P < 0.05). CONCLUSION IKK2 inhibitor IMD markedly improved non-alcoholic fatty liver disease in mice by lowering NF-κB activation, which could become a remedial target for liver fibrosis.
Collapse
|
Brief Article |
14 |
11 |
62
|
Wang YG, Zheng DH, Shi M, Xu XM. T cell dysfunction in chronic hepatitis B infection and liver cancer: evidence from transcriptome analysis. J Med Genet 2019; 56:22-28. [PMID: 30518547 DOI: 10.1136/jmedgenet-2018-105570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/26/2018] [Accepted: 09/22/2018] [Indexed: 12/14/2022] [Imported: 07/23/2023]
Abstract
BACKGROUND T cell dysfunction occurs in many diseases, especially in chronic virus infection and cancers. However, up to now, little is known on the distinctions in T cell exhaustion between cancer and chronic virus infection. The objective of this study is to explore the transcriptional similarities and differences in exhausted CD8 +T cell between chronic hepatitis B virus (HBV) infection and hepatocellular carcinoma (HCC). METHODS RNA sequencing was performed to compare the transcriptome of CD8 +T cells isolated from healthy donors' blood, tumour tissues of patients with HCC and chronic HBV infected HCC patients' paracancerous tissues. DESeq2 algorithm was used to determine differentially expressed genes. Gene ontology and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analysis was conducted for in-depth analysis of these differentially expressed genes. RESULTS A total number of 2109 and 2203 genes were differentially expressed in patients with chronic HBV infection and HCC, respectively. Comparing these two groups of differentially deregulated genes, we found that nearly half of them were shared, and these shared genes were further classified into several functional categories, such as metabolic process, binding and intracellular organelle. KEGG analysis revealed that these shared deregulated genes were involved in many important pathways such as Parkinson's disease, oxidative phosphorylation and messenger RNA surveillance. Interestingly, we reported that chronic HBV infection specific deregulated genes were mainly enriched in graft versus host disease, allograft rejection, phenylalanine, tyrosine and tryptophan biosynthesis pathways. Whereas, HCC-specific deregulated genes were highly enriched in oxidative phosphorylation, thyroid cancer and endometrial cancer pathways. CONCLUSION Our study demonstrated that T cell dysfunction associated with HCC and chronic HBV infection shares high similarities, however, each possesses its own features in terms of specific genes and signalling pathways. Uncovering the differences of T cells dysfunction would facilitate our understanding the diseases pathogenesis and developing innovative therapies in the future.
Collapse
|
|
6 |
8 |
63
|
Shi M, Deng Y, Yu H, Xu L, Shi C, Chen J, Li G, Du Y, Wang YG. Protective Effects of Oridonin on Acute Liver Injury via Impeding Posttranslational Modifications of Interleukin-1 Receptor-Associated Kinase 4 (IRAK4) in the Toll-Like Receptor 4 (TLR4) Signaling Pathway. Mediators Inflamm 2019; 2019:7634761. [PMID: 31611735 PMCID: PMC6757283 DOI: 10.1155/2019/7634761] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/09/2019] [Indexed: 12/31/2022] [Imported: 07/23/2023] Open
Abstract
OBJECTIVE Recent researches have demonstrated that inflammation-related diseases are effectively regulated by posttranslational modifications (PTMs) including phosphorylation and acetylation. Our previous study found a new acetyltransferase inhibitor, oridonin, which had a protective effect on acute liver injury (ALI). In the present study, we further investigated its protective mechanism against D-galactosamine (D-Gal) combined with lipopolysaccharide- (LPS-) induced ALI in mice. METHODS Intraperitoneal injections of LPS (40 μg/mouse)/D-Gal (5 mg/mouse) were given to the mice, and the experimental group was pretreated with intraperitoneal injection of oridonin (0.2 mg/mouse). To elucidate the protective mechanism of oridonin, we collected liver specimens and used RNA-sequencing (RNA-Seq) analysis. We focused on the genes that were upregulated by LPS/D-Gal and downregulated after pretreatment with oridonin. The downregulated genes examined by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were further verified by real-time polymerase chain reaction (PCR) and western blot. RESULTS GO analysis showed that genes that were downregulated after pretreatment with oridonin were extremely concentrated in immune response, chemotaxis, and inflammatory response. Real-time PCR confirmed that the expression of these genes was upregulated by LPS/D-Gal induction and reduced after treatment with oridonin, which was consistent with RNA-Seq results. KEGG pathway analysis showed a significantly enriched downregulated gene that was present in the Toll-like receptor (TLR) 4 signaling cascade. Our results manifested that phosphorylation levels of upstream signaling molecules in the TLR4 signaling cascade, including extracellular signal-regulated kinase (ERK), P38, and IκB, were significantly inhibited by oridonin. Furthermore, LPS/D-Gal stimulation triggered posttranslational modifications of related gene loci in the TLR4 signaling pathway, including phosphorylation of IL-1 receptor-associated kinase 4 (IRAK4 T345/S346) and acetylation of IRAK4 (K34). However, after treatment with oridonin, the modification pattern of IRAK4 expression stimulated by LPS/D-Gal was suggestively attenuated. CONCLUSION Our study revealed that the protective effects of oridonin on LPS/D-Gal-induced ALI mediated by inhibition of the PTMs of IRAK4, including phosphorylation of T345/S346 and acetylation of K34.
Collapse
|
research-article |
6 |
8 |
64
|
Xu L, Gong C, Li G, Wei J, Wang T, Meng W, Shi M, Wang Y. Ebselen suppresses inflammation induced by Helicobacter pylori lipopolysaccharide via the p38 mitogen-activated protein kinase signaling pathway. Mol Med Rep 2018; 17:6847-6851. [PMID: 29488609 DOI: 10.3892/mmr.2018.8641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 02/23/2017] [Indexed: 11/05/2022] [Imported: 07/25/2023] Open
Abstract
Ebselen is a seleno-organic compound that has been demonstrated to have antioxidant and anti-inflammatory properties. A previous study determined that ebselen inhibits airway inflammation induced by inhalational lipopolysaccharide (LPS), however, the underlying molecular mechanism remains to be elucidated. The present study investigated the effect of ebselen on the glutathione peroxidase (GPX)‑reactive oxygen species (ROS) pathway and interleukin‑8 (IL‑8) expression induced by Helicobacter pylori LPS in gastric cancer (GC) cells. Cells were treated with 200 ng/ml H. pylori‑LPS in the presence or absence of ebselen for various durations and concentrations (µmol/l). The expression of toll‑like receptor 4 (TLR4), GPX2, GPX4, p38 mitogen‑activated protein kinase (p38 MAPK), phosphorylated‑p38 MAPK, ROS production and IL‑8 expression were detected with western blotting or ELISA. The present study revealed that TLR4 expression was upregulated; however, GPX2 and GPX4 expression was reduced following treatment with H. pylori LPS, which led to increased ROS production, subsequently altering the IL‑8 expression level in GC cells. Additionally, it was determined that ebselen prevented the reduction in GPX2/4 levels induced by H. pylori LPS, however, TLR4 expression was not affected. Ebselen may also block the expression of IL‑8 by inhibiting phosphorylation of p38 MAPK. These data suggest ebselen may inhibit ROS production triggered by H. pylori LPS treatment via GPX2/4 instead of TLR4 signaling and reduce phosphorylation of p38 MAPK, resulting in altered production of IL‑8. Ebselen may, therefore, be a potential therapeutic agent to mediate H. pylori LPS-induced cell damage.
Collapse
|
|
7 |
7 |
65
|
Ni J, Guan C, Liu H, Huang X, Yue J, Xiang H, Jiang Z, Tao Y, Cao W, Liu J, Wang Z, Wang Y, Wu X. Ubc13 Promotes K63-Linked Polyubiquitination of NLRP3 to Activate Inflammasome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:2376-2385. [PMID: 33893171 DOI: 10.4049/jimmunol.2001178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/02/2021] [Indexed: 12/18/2022] [Imported: 07/23/2023]
Abstract
NLRP3 inflammasome plays an important role in innate immune system through recognizing pathogenic microorganisms and danger-associated molecules. Deubiquitination of NLRP3 has been shown to be essential for its activation, yet the functions of Ubc13, the K63-linked specific ubiquitin-conjugating enzyme E2, in NLRP3 inflammasome activation are not known. In this study, we found that in mouse macrophages, Ubc13 knockdown or knockout dramatically impaired NLRP3 inflammasome activation. Catalytic activity is required for Ubc13 to control NLRP3 activation, and Ubc13 pharmacological inhibitor significantly attenuates NLRP3 inflammasome activation. Mechanistically, Ubc13 associates with NLRP3 and promotes its K63-linked polyubiquitination. Through mass spectrum and biochemical analysis, we identified lysine 565 and lysine 687 as theK63-linked polyubiquitination sites of NLRP3. Collectively, our data suggest that Ubc13 potentiates NLRP3 inflammasome activation via promoting site-specific K63-linked ubiquitination of NLRP3. Our study sheds light on mechanisms of NLRP3 inflammasome activation and identifies that targeting Ubc13 could be an effective therapeutic strategy for treating aberrant NLRP3 inflammasome activation-induced pathogenesis.
Collapse
|
|
4 |
7 |
66
|
Wang YG, Wang N, Li GM, Fang WL, Wei J, Ma JL, Wang T, Shi M. Mechanisms of trichostatin A inhibiting AGS proliferation and identification of lysine-acetylated proteins. World J Gastroenterol 2013; 19:3226-3240. [PMID: 23745024 PMCID: PMC3671074 DOI: 10.3748/wjg.v19.i21.3226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/21/2013] [Accepted: 04/09/2013] [Indexed: 02/06/2023] [Imported: 07/23/2023] Open
Abstract
AIM To explore the effect of lysine acetylation in related proteins on regulation of the proliferation of gastric cancer cells, and determine the lysine-acetylated proteins and the acetylated modified sites in AGS gastric cancer cells. METHODS The CCK-8 experiment and flow cytometry were used to observe the changes in proliferation and cycle of AGS cells treated with trichostatin A (TSA). Real time polymerase chain reaction and Western blotting were used to observe expression changes in p21, p53, Bax, Bcl-2, CDK2, and CyclinD1 in gastric cancer cells exposed to TSA. Cytoplasmic proteins in gastric cancer cells before and after TSA treatment were immunoprecipitated with anti-acetylated lysine antibodies, separated using sodium dodecyl sulfate polyacrylamide gel electrophoresis gel and silver-stained to detect the proteins by mass spectrometry after removal of the gel. The acetylated proteins in AGS cells were enriched with lysine-acetylated antibodies, and a high-resolution mass spectrometer was used to detect the acetylated proteins and modified sites. RESULTS TSA significantly inhibited AGS cell proliferation, and promoted cell apoptosis, leading to AGS cell cycle arrest in G0/G1 and G2/M phases, especially G0/G1 phase. p21, p53 and Bax gene expression levels in AGS cells were increased with TSA treatment duration; Bcl-2, CDK2, and CyclinD1 gene expression levels were decreased with TSA treatment duration. Two unknown protein bands, 72 kDa (before exposure to TSA) and 28 kDa (after exposure to TSA), were identified by silver-staining after immunoprecipitation of AGS cells with the lysine-acetylated monoclonal antibodies. Mass spectrometry showed that the 72 kDa protein band may be PKM2 and the 28 kDa protein band may be ATP5O. The acetylated proteins and modified sites in AGS cells were determined. CONCLUSION TSA can inhibit gastric cancer cell proliferation, which possibly activated signaling pathways in a variety of tumor-associated factors. ATP5O was obviously acetylated in AGS cells following TSA treatment.
Collapse
|
Original Article |
12 |
5 |
67
|
Wang Y, Dong J, Meng W, Ma J, Wang N, Wei J, Shi M. Effects of phased joint intervention on IL-35 and IL-17 expression levels in patients with portal hypertension. Int J Mol Med 2014; 33:1131-1139. [PMID: 24549402 DOI: 10.3892/ijmm.2014.1662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/05/2014] [Indexed: 11/05/2022] [Imported: 07/25/2023] Open
Abstract
The aim of the present study was to investigate the clinical efficacy of phased joint intervention [percutaneous transhepatic variceal embolization (PTVE) + phased partial splenic embolization (PSE)] in patients with portal hypertension complicated by esophageal variceal bleeding and hypersplenism and the effect of this intervention on interleukin-35 (IL-35)/IL-17 expression. A review of 53 patients with portal hypertension caused by liver cirrhosis and complicated by esophageal variceal bleeding and hypersplenism treated with phased joint intervention was conducted, and portal hemodynamics, routine blood examinations and liver function were determined. Quantitative polymerase chain reaction (qPCR) was used to evaluate EBI3, FOXP3 and IL-17 mRNA expression levels in peripheral blood mononuclear cells (PBMC) before and after the phased joint intervention, while western blot analysis was used to determine their protein expression. All 53 patients required emergency hemostasis resulting in an emergency hemostatic rate of 100%. Varicose veins disappeared, portal hemodynamics and liver function improved subsequent to the intervention. The expression levels of EBI3, FOXP3 and IL-17 mRNA in the postoperative group were significantly lower than the preoperative levels (P<0.01). The protein expression levels of EBI3, FOXP3 and IL-17 in the postoperative group were reduced compared with the preoperative levels. The concentrations of IL-35, IL-6 and IL-17 in peripheral blood were significantly reduced after the phased joint intervention (P<0.01). Serum IL-35, IL-6 and IL-17 levels were positively correlated with total bilirubin and international normalized ratio, and negatively correlated with albumin. The phased joint intervention can effectively treat esophageal variceal bleeding and hypersplenism, and improve liver function. The efficacy of this intervention may be associated with the regulation of immune function.
Collapse
|
|
11 |
5 |
68
|
Tian X, Zhu X, Meng W, Bai S, Shi M, Xiang S, Zhao C, Wang Y. A 12-immune cell signature to predict relapse and guide chemotherapy for stage II colorectal cancer. Aging (Albany NY) 2020; 12:18363-18383. [PMID: 32855365 PMCID: PMC7585080 DOI: 10.18632/aging.103707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/06/2020] [Indexed: 01/24/2023] [Imported: 07/25/2023]
Abstract
The management of stage II colorectal cancer is still difficult. We aimed to construct a new immune cell-associated signature for prognostic evaluation and guiding chemotherapy in stage II colorectal cancer. We used the "Cell Type Identification by Estimating Relative Subsets of RNA Transcripts" (CIBERSORT) method to estimate the fraction of 22 immune cells by analyzing bulk tumor transcriptomes and a LASSO Cox regression model to select the prognostic immune cells. A 12-immune cell prognostic classifier, ISCRC, was built, which could successfully discriminate the high-risk patients in the training cohort (GSE39582: HR = 3.16, 95% CI: 1.85-5.40, P < 0.0001) and another independent cohorts (GSE14333: HR = 3.47, 95% CI: 1.18-10.15, P =0.0167). The receiver operating characteristic analysis revealed that the AUC of the ISCRC model was significantly greater than that of oncotypeDX model (0.7111 versus 0.5647, p=0.0152). We introduced the propensity score matching analysis to eliminate the selection bias; survival analysis showed relatively poor prognosis after chemotherapy in stage II CRC patients. Furthermore, a nomogram was built for clinicians and did well in the calibration plots. In conclusion, this immune cell-based signature could improve prognostic prediction and may help guide chemotherapy in stage II colorectal cancer patients.
Collapse
|
research-article |
5 |
4 |
69
|
Qiao H, Cui Z, Yang S, Ji D, Wang Y, Yang Y, Han X, Fan Q, Qin A, Wang T, He XP, Bu W, Tang T. Correction to Targeting Osteocytes to Attenuate Early Breast Cancer Bone Metastasis by Theranostic Upconversion Nanoparticles with Responsive Plumbagin Release. ACS NANO 2019; 13:4857. [PMID: 30938978 DOI: 10.1021/acsnano.9b02283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] [Imported: 07/25/2023]
|
Published Erratum |
6 |
4 |
70
|
Wu Q, Wei J, Zhao C, Xiang S, Shi M, Wang Y. Targeting LncRNA EPIC1 to inhibit human colon cancer cell progression. Aging (Albany NY) 2020; 15:583-594. [PMID: 33170148 PMCID: PMC9925677 DOI: 10.18632/aging.103790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023] [Imported: 07/25/2023]
Abstract
Long non-coding RNA EPIC1 (Lnc-EPIC1) binds MYC protein, which is essential for MYC function and expression of MYC target genes. The current study tested its expression and potential functions in human colon cancer cells. We show that Lnc-EPIC1 expression is elevated in human colon cancer tissues and primary human colon cancer cells. Whereas its expression is relatively low in normal colon tissues and colon epithelial cells. In the primary human colon cancer cells, Lnc-EPIC1 siRNA largely inhibited cancer cell growth, proliferation, migration and invasion. Further, Lnc-EPIC1 silencing induced significant apoptosis activation in colon cancer cells. Conversely, ectopic overexpression of Lnc-EPIC1 augmented colon cancer cell growth, proliferation, migration and invasion. RNA-immunoprecipitation and RNA pull-down results confirmed that Lnc-EPIC1 directly binds MYC protein in colon cancer cells. MYC target proteins, including cyclin A, cyclin D and CDK9, were downregulated with Lnc-EPIC1 silencing, but upregulated after Lnc-EPIC1 overexpression in colon cancer cells. Further Lnc-EPIC1 silencing or overexpression failed to alter functions of MYC-knockout colon cancer cells. Collectively, overexpressed Lnc-EPIC1 is important for the progression of human colon cancer cells.
Collapse
|
research-article |
5 |
3 |
71
|
Chen C, Lu T, Chen P, Li Z, Yang Y, Fan S, Zhang Y, Chen K, Fu W, Wang Y, Luo C, Zhou B. Cyclization strategy leads to highly potent Bromodomain and extra-terminal (BET) Bromodomain inhibitors for the treatment of acute liver injury. Eur J Med Chem 2023; 247:115023. [PMID: 36566713 DOI: 10.1016/j.ejmech.2022.115023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] [Imported: 07/23/2023]
Abstract
Acute liver injury (ALI) is characteristic of abrupt hepatic dysfunction and inflammatory response, and currently the main treatment for ALI is merely supportive rather than curative. Therefore, the development of novel and effective therapeutic strategies for ALI therapy is highly desirable. The emerging biological understanding of the role of BET Bromodomains has opened up an exciting opportunity to develop potent BET Bromodomain inhibitors as an effective therapeutic strategy for the treatment of acute liver injury. Herein, we synthesized a series of potent BET Bromodomain inhibitors with a tetracyclic scaffold, exemplified by compound 28 which showed good in vitro anti-inflammatory activity and good therapeutic effects in the LPS-induced acute liver injury model without obvious cytotoxicity, suggesting that compound 28 is a highly promising candidate worthy for further development.
Collapse
|
|
2 |
2 |
72
|
Ding Z, Zhang X, Wang Y, Ogino K, Wu Y, Yue H, Jiao Z, Song C, Lu G, Wang S, Gao X, Gao Y, Shi M, Wang Y, Ma G, Wei W. Nanomaterial's interfacial stimulation of vascular endothelial cells and divergent guidances for nanomedicine treating vasculature-associated diseases. NANO TODAY 2023; 49:101815. [DOI: 10.1016/j.nantod.2023.101815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023] [Imported: 07/23/2023]
|
|
2 |
1 |
73
|
Qiao H, Wang TY, Yan W, Qin A, Fan QM, Han XG, Wang YG, Tang TT. Author Correction: Synergistic suppression of human breast cancer cells by combination of plumbagin and zoledronic acid in vitro. Acta Pharmacol Sin 2019; 40:1127-1128. [PMID: 31097762 PMCID: PMC6786349 DOI: 10.1038/s41401-019-0232-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] [Imported: 07/25/2023]
Abstract
The authors regretted to find the mis-representative images in Fig. 3a, c and Fig. 4a, c when re-read our previously published article Synergistic suppression of human breast cancer cells by combination of plumbagin and zoledronic acid In vitro (DOI: 10.1038/aps.2015.42) in the journal of Acta Pharmacologica Sinica. This mistake occurred due to the careless compilation when the authors tried to show the synergistic effect against tumor apoptosis during figure presentation process. The right Fig. 3a, c and Fig. 4a, c were provided below. Despite that this correction does not affect the results and conclusions of the aforementioned paper, all the authors still consent on the correction of this negligence. We apologize to the Editor and the readership of the journal for any inconvenience caused. Your thoughtful understanding is highly appreciated.
Collapse
|
Published Erratum |
6 |
1 |
74
|
Qiao H, Wang TY, Yu ZF, Han XG, Liu XQ, Wang YG, Fan QM, Qin A, Tang TT. Retraction Note: Structural simulation of adenosine phosphate via plumbagin and zoledronic acid competitively targets JNK/Erk to synergistically attenuate osteoclastogenesis in a breast cancer model. Cell Death Dis 2019; 10:371. [PMID: 31068574 PMCID: PMC6506481 DOI: 10.1038/s41419-019-1606-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] [Imported: 07/25/2023]
Abstract
This article has been retracted at the request of the authors. After publication, the authors found that in Figure 2B-a the first two images in the third row partly overlapped and that there is also overlap between the fourth and fifth image in the second row. The two images were taken from two adjacent wells, treated by ZA 0.3uM-CM or ZA 0.75uM-CM, with or without PL 1.25uM. This overlap may have been caused by mishandling in the imaging process when the authors made microscope observations and so the findings are no longer reliable. All authors agree to this retraction.
Collapse
|
Retraction Notice |
6 |
1 |
75
|
Cui M, Liu D, Xiong W, Wang Y, Mi J. ERRFI1 induces apoptosis of hepatocellular carcinoma cells in response to tryptophan deficiency. Cell Death Discov 2021; 7:274. [PMID: 34608122 PMCID: PMC8490388 DOI: 10.1038/s41420-021-00666-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022] [Imported: 07/23/2023] Open
Abstract
Tryptophan metabolism is an essential regulator of tumor immune evasion. However, the effect of tryptophan metabolism on cancer cells remains largely unknown. Here, we find that tumor cells have distinct responses to tryptophan deficiency in terms of cell growth, no matter hepatocellular carcinoma (HCC) cells, lung cancer cells, or breast cancer cells. Further study shows that ERRFI1 is upregulated in sensitive HCC cells, but not in resistant HCC cells, in response to tryptophan deficiency, and ERRFI1 expression level positively correlates with HCC patient overall survival. ERRFI1 knockdown recovers tryptophan deficiency-suppressed cell growth of sensitive HCC cells. In contrast, ERRFI1 overexpression sensitizes resistant HCC cells to tryptophan deficiency. Moreover, ERRFI1 induces apoptosis by binding PDCD2 in HCC cells, PDCD2 knockdown decreases the ERRFI1-induced apoptosis in HCC cells. Thus, we conclude that ERRFI1-induced apoptosis increases the sensitivity of HCC cells to tryptophan deficiency and ERRFI1 interacts with PDCD2 to induce apoptosis in HCC cells.
Collapse
|
research-article |
4 |
1 |