Kyrochristos ID, Ziogas DE, Goussia A, Glantzounis GK, Roukos DH. Bulk and Single-Cell Next-Generation Sequencing: Individualizing Treatment for Colorectal Cancer.
Cancers (Basel) 2019;
11:cancers11111809. [PMID:
31752125 PMCID:
PMC6895993 DOI:
10.3390/cancers11111809]
[Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/24/2022] [Imported: 08/29/2023] Open
Abstract
The increasing incidence combined with constant rates of early diagnosis and mortality of colorectal cancer (CRC) over the past decade worldwide, as well as minor overall survival improvements in the industrialized world, suggest the need to shift from conventional research and clinical practice to the innovative development of screening, predictive and therapeutic tools. Explosive integration of next-generation sequencing (NGS) systems into basic, translational and, more recently, basket trials is transforming biomedical and cancer research, aiming for substantial clinical implementation as well. Shifting from inter-patient tumor variability to the precise characterization of intra-tumor genetic, genomic and transcriptional heterogeneity (ITH) via multi-regional bulk tissue NGS and emerging single-cell transcriptomics, coupled with NGS of circulating cell-free DNA (cfDNA), unravels novel strategies for therapeutic response prediction and drug development. Remarkably, underway and future genomic/transcriptomic studies and trials exploring spatiotemporal clonal evolution represent most rational expectations to discover novel prognostic, predictive and therapeutic tools. This review describes latest advancements and future perspectives of integrated sequencing systems for genome and transcriptome exploration to overcome unmet research and clinical challenges towards Precision Oncology.
Collapse