1
|
Fang Y, Eglen RM. Three-Dimensional Cell Cultures in Drug Discovery and Development. SLAS DISCOVERY 2019; 22:456-472. [PMID: 28520521 PMCID: PMC5448717 DOI: 10.1177/1087057117696795] [Citation(s) in RCA: 522] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] [Imported: 05/14/2025]
Abstract
The past decades have witnessed significant efforts toward the development of three-dimensional (3D) cell cultures as systems that better mimic in vivo physiology. Today, 3D cell cultures are emerging, not only as a new tool in early drug discovery but also as potential therapeutics to treat disease. In this review, we assess leading 3D cell culture technologies and their impact on drug discovery, including spheroids, organoids, scaffolds, hydrogels, organs-on-chips, and 3D bioprinting. We also discuss the implementation of these technologies in compound identification, screening, and development, ranging from disease modeling to assessment of efficacy and safety profiles.
Collapse
|
Review |
6 |
522 |
2
|
Fang Y, Ferrie AM, Fontaine NH, Mauro J, Balakrishnan J. Resonant waveguide grating biosensor for living cell sensing. Biophys J 2006; 91:1925-1940. [PMID: 16766609 PMCID: PMC1544314 DOI: 10.1529/biophysj.105.077818] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Accepted: 05/23/2006] [Indexed: 01/18/2023] [Imported: 08/29/2023] Open
Abstract
This article presents theoretical analysis and experimental data for the use of resonant waveguide grating (RWG) biosensors to characterize stimulation-mediated cell responses including signaling. The biosensor is capable of detecting redistribution of cellular contents in both directions that are perpendicular and parallel to the sensor surface. This capability relies on online monitoring cell responses with multiple optical output parameters, including the changes in incident angle and the shape of the resonant peaks. Although the changes in peak shape are mainly contributed to stimulation-modulated inhomogeneous redistribution of cellular contents parallel to the sensor surface, the shift in incident angle primarily reflects the stimulation-triggered dynamic mass redistribution (DMR) perpendicular to the sensor surface. The optical signatures are obtained and used to characterize several cellular processes including cell adhesion and spreading, detachment and signaling by trypsinization, and signaling through either epidermal growth factor receptor or bradykinin B2 receptor. A mathematical model is developed to link the bradykinin-mediated DMR signals to the dynamic relocation of intracellular proteins and the receptor internalization during B2 receptor signaling cycle. This model takes the form of a set of nonlinear, ordinary differential equations that describe the changes in four different states of B2 receptors, diffusion of proteins and receptor-protein complexes, and the DMR responses. Classical analysis shows that the system converges to a unique optical signature, whose dynamics (amplitudes, transition time, and kinetics) is dependent on the bradykinin signal input, and consistent with those observed using the RWG biosensors. This study provides fundamentals for probing living cells with the RWG biosensors, in general, optical biosensors.
Collapse
|
research-article |
19 |
243 |
3
|
Abstract
This paper describes the fabrication of microarrays consisting of G protein-coupled receptors (GPCRs) on surfaces coated with gamma-aminopropylsilane (GAPS). Microspots of model membranes on GAPS-coated surfaces were observed to have several desired properties-high mechanical stability, long range lateral fluidity, and a thickness corresponding to a lipid bilayer in the bulk of the microspot. GPCR arrays were obtained by printing membrane preparations containing GPCRs using a quill-pin printer. To demonstrate specific binding of ligands, arrays presenting neurotensin (NTR1), adrenergic (beta1), and dopamine (D1) receptors were treated with fluorescently labeled neurotensin (BT-NT). Fluorescence images revealed binding only to microspots corresponding to the neurotensin receptor; this specificity was further demonstrated by the inhibition of binding in the presence of excess unlabeled neurotensin. The ability of GPCR arrays to enable selectivity studies between the different subtypes of a receptor was examined by printing arrays consisting of three subtypes of the adrenergic receptor: beta1, beta2, and alpha2A. When treated with fluorescently labeled CGP 12177, a cognate antagonist analogue specific to beta-adrenergic receptors, binding was only observed to microspots of the beta1 and beta2 receptors. Furthermore, binding of labeled CGP 12177 was inhibited when the arrays were incubated with solutions also containing ICI 118551, and in a manner consistent with the higher affinity of ICI 118551 for the beta2 receptor relative to that for the beta1 receptor. The ability to estimate binding affinities of compounds using GPCR arrays was examined using a competitive binding assay with BT-NT and unlabeled neurotensin on NTR1 arrays. The estimated IC(50) value (2 nM) for neurotensin is in agreement with the literature; this agreement suggests that the receptor -G protein complex is preserved in the microspot. This first ever demonstration of direct pin-printing of membrane proteins and ligand-binding assays thereof fills a significant void in protein microchip technology--the lack of practical microarray-based methods for membrane proteins.
Collapse
|
|
23 |
145 |
4
|
Fang Y. Label-free cell-based assays with optical biosensors in drug discovery. Assay Drug Dev Technol 2006; 4:583-595. [PMID: 17115929 DOI: 10.1089/adt.2006.4.583] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] [Imported: 08/29/2023] Open
Abstract
Once viewed solely as a tool for low throughput and kinetic analysis of biomolecular interactions, optical biosensors are gaining widespread uses in drug discovery because of recent advances in instrumentation and experimental design. These advances have expanded the capabilities of optical biosensors to meet the needs at many points in the drug discovery process. Concurrent shifts in drug discovery paradigms have seen the growing use of whole cell systems for drug screens, thus creating both a need in drug discovery and a solution in optical biosensors. This article reviews important advances in optical biosensor instrumentation, and highlights the potential of optical biosensors for drug discovery with an emphasis on whole cell sensing in both high throughput and high content fashions.
Collapse
|
Review |
19 |
120 |
5
|
Fang Y, Ferrie AM, Fontaine NH, Yuen PK. Characteristics of dynamic mass redistribution of epidermal growth factor receptor signaling in living cells measured with label-free optical biosensors. Anal Chem 2005; 77:5720-5725. [PMID: 16131087 DOI: 10.1021/ac050887n] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] [Imported: 08/29/2023]
Abstract
This paper reported the identification of a novel optical signature for epidermal growth factor (EGF) receptor signaling in human epidermoid carcinoma A431 cells mediated by EGF. The optical signature was based on dynamic mass redistribution (DMR) in living cells triggered by EGFR activation, as monitored in real time with resonant waveguide grating biosensors. Analysis of the modulation of the EGF-induced DMR signals by a variety of known modulators provided links of various targets to distinct steps in the cellular responses. Results showed that the dynamic mass redistribution in quiescent A431 cells mediated by EGF required EGFR tyrosine kinase activity, actin polymerization, and dynamin and mainly proceeded through MEK. The DMR signals obtained serve as integrated signatures for interaction networks in the EGFR signaling.
Collapse
|
|
20 |
112 |
6
|
Fang Y, Hoh JH. Early Intermediates in Spermidine-Induced DNA Condensation on the Surface of Mica. J Am Chem Soc 1998. [DOI: 10.1021/ja981332v] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] [Imported: 05/14/2025]
|
|
27 |
96 |
7
|
Fang Y, Yang J. Two-Dimensional Condensation of DNA Molecules on Cationic Lipid Membranes. J Phys Chem B 1997. [DOI: 10.1021/jp962382u] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] [Imported: 05/14/2025]
|
|
28 |
86 |
8
|
Fang Y, Spisz TS, Hoh JH. Ethanol-induced structural transitions of DNA on mica. Nucleic Acids Res 1999; 27:1943-9. [PMID: 10101205 PMCID: PMC148405 DOI: 10.1093/nar/27.8.1943] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] [Imported: 05/14/2025] Open
Abstract
The effect of ethanol on the structure of DNA confined to mica in the presence of Mg2+was examined by varying the ethanol concentration and imaging the DNA by atomic force microscopy. Contour length measurements of the DNA show a transition from all-B-form at 0% ethanol to all-A-form at >25% ethanol. At intermediate ethanol concentrations, contour lengths suggest that individual molecules of air-dried DNA are trapped with mixed compositions of A-form and B-form. The relative composition depends on the ethanol concentration. Fitting the length distributions at intermediate ethanol concentrations to a simple binomial model results in an upper bound estimate for the A-form and B-form domains of approximately 54 bp in the individual molecules. In addition to length changes, the apparent persistence length of DNA decreases with increasing ethanol concentration. At high concentrations of ethanol (>20%), DNA formed several higher order structures, including flower shaped condensates and toroids.
Collapse
|
research-article |
26 |
85 |
9
|
Fang Y, Hoh JH. Surface-directed DNA condensation in the absence of soluble multivalent cations. Nucleic Acids Res 1998; 26:588-93. [PMID: 9421520 PMCID: PMC147264 DOI: 10.1093/nar/26.2.588] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] [Imported: 05/14/2025] Open
Abstract
Multivalent cations are known to condense DNA into higher ordered structures, including toroids and rods. Here we report that solid supports treated with monovalent or multivalent cationic silanes, followed by removal of soluble molecules, can condense DNA. The mechanism of this surface-directed condensation depends on surface-mobile silanes, which are apparently recruited to the condensation site. The yield and species of DNA aggregates can be controlled by selecting the type of functional groups on surfaces, DNA and salt concentrations. For plasmid DNA, the toroidal form can represent >70% of adsorbed structures.
Collapse
|
research-article |
27 |
81 |
10
|
Fang Y. Ligand-receptor interaction platforms and their applications for drug discovery. Expert Opin Drug Discov 2012; 7:969-988. [PMID: 22860803 DOI: 10.1517/17460441.2012.715631] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] [Imported: 08/29/2023]
Abstract
INTRODUCTION The study of drug-target interactions is essential for the understanding of biological processes and for the efforts to develop new therapeutic molecules. Increased ligand-binding assays have coincided with the advances in reagents, detection and instrumentation technologies, the expansion in therapeutic targets of interest, and the increasingly recognized importance of biochemical aspects of drug-target interactions in determining the clinical performance of drug molecules. Nowadays, ligand-binding assays can determine every aspect of many drug-target interactions. AREAS COVERED Given that ligand-target interactions are very diverse, the author has decided to focus on the binding of small molecules to protein targets. This article first reviews the key biochemical aspects of drug-target interactions, and then discusses the detection principles of various ligand-binding techniques in the context of their primary applications for drug discovery and development. EXPERT OPINION Equilibrium-binding affinity should not be used as a solo indicator for the in vivo pharmacology of drugs. The clinical relevance of drug-binding kinetics demands high throughput kinetics early in drug discovery. The dependence of ligand binding and function on the conformation of targets necessitates solution-based and whole cell-based ligand-binding assays. The increasing need to examine ligand binding at the proteome level, driven by the clinical importance of the polypharmacology of ligands, has started to make the structure-based in silico binding screen an indispensable technique for drug discovery and development. Integration of different ligand-binding assays is important to improve the efficiency of the drug discovery and development process.
Collapse
|
Review |
13 |
81 |
11
|
Fang Y, Li G, Ferrie AM. Non-invasive optical biosensor for assaying endogenous G protein-coupled receptors in adherent cells. J Pharmacol Toxicol Methods 2007; 55:314-322. [PMID: 17207642 DOI: 10.1016/j.vascn.2006.11.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Accepted: 11/15/2006] [Indexed: 01/08/2023] [Imported: 08/29/2023]
Abstract
INTRODUCTION Screening drugs against G protein-coupled receptors (GPCRs) - the single largest family of drug targets in the human genome - is still a major effort in pharmaceutical and biotech industries. Conventional cell-based assays generally measure a single cellular event, such as the generation of a second messenger or the relocation of a specific protein target. However, manipulation or engineering of cells is often a prerequisite for these technologies to achieve desired sensitivities. The present study is focused on the use of non-invasive and manipulation-free optical biosensors for assaying endogenous GPCRs in adherent cells. METHODS Resonant waveguide grating (RWG) biosensor was applied to manifest ligand-induced dynamic mass redistribution (DMR) within the bottom portion of adherent cell layer. The DMR signatures mediated through the activation of several endogenous GPCRs in cells were characterized. Endogenous receptor panning was examined at cell system level by using a panel of agonists known to activate many GPCRs, and also at family receptor level by determining the efficacies of a set of family-specific agonists. RESULTS Three major types of optical signatures were identified; each was correlated with the activation of a class of GPCRs, depending on the G protein with which the receptor is coupled (i.e., G(q), G(s) and G(i)). The characteristics of DMR signals, mostly the amplitude and kinetics of a DMR event, were dependent on the doses of agonists and the expression levels of endogenous receptors. All three classes of endogenous receptors were found in human epidermoid carcinoma A431 cells. Interestingly, the dose-dependent switching from one type of DMR signal to another was observed for several GPCR agonists examined. A small panel of P2Y receptor agonists exhibited distinct efficacies in three cell lines examined. DISCUSSIONS The RWG biosensors were applicable to study the activation of endogenous GPCRs. Like second messengers or gene expression, the DMR signals obtained could be considered as novel and quantifiable physiological responses of living cells mediated through GPCRs and used for studying receptor biology.
Collapse
|
|
18 |
75 |
12
|
Fang Y, Lahiri J, Picard L. G protein-coupled receptor microarrays for drug discovery. Drug Discov Today 2003; 8:755-761. [PMID: 12944098 DOI: 10.1016/s1359-6446(03)02779-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] [Imported: 08/29/2023]
Abstract
The dominance of G protein-coupled receptors (GPCRs) as a drug target class, coupled with the increased pace of target identification and expansion of compound libraries, presents a compelling need to develop technologies to screen multiple GPCRs simultaneously. To address this need, GPCR microarrays that require the co-immobilization of lipid molecules and the probe receptors of interest have been fabricated, using conventional robotic printing technologies. Assays to screen compounds for their pharmacological properties (binding affinity, relative potency and selectivity) using GPCR microarrays are discussed.
Collapse
|
Review |
22 |
71 |
13
|
Fang Y, Frutos A, Verklereen R. Label-Free Cell-Based Assays for GPCR Screening. Comb Chem High Throughput Screen 2008; 11:357-69. [PMID: 18537557 DOI: 10.2174/138620708784534789] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] [Imported: 05/14/2025]
|
|
17 |
66 |
14
|
Fang Y, Ferrie AM. Label-free optical biosensor for ligand-directed functional selectivity acting on beta(2) adrenoceptor in living cells. FEBS Lett 2008; 582:558-564. [PMID: 18242178 DOI: 10.1016/j.febslet.2008.01.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 01/16/2008] [Accepted: 01/18/2008] [Indexed: 11/18/2022] [Imported: 08/29/2023]
Abstract
Recent realization of ligand-directed functional selectivity demands high-resolution tools for studying receptor biology and ligand pharmacology. Here we use label-free optical biosensor to examine the dynamic mass redistribution of human epidermoid A431 cells in response to diverse beta(2)-adrenoceptor ligands. Multi-parameter analysis reveals distinct patterns in activation and signaling of the receptor induced by different agonists. Sequential and co-stimulation assays categorize various ligands for their ability to modulate signaling induced by catechol, a structural component of catecholamines. This study documents multiple ligand-specific states of the beta(2)-adrenoceptor and highlights the power of the biosensor assays for screening pathway-biased ligands.
Collapse
|
|
17 |
62 |
15
|
Abstract
Label-free biosensors offer integrated, kinetic and multi-parametric measures of receptor biology and ligand pharmacology in whole cells. Being highly sensitive and pathway-unbiased, label-free receptor assays can be used to probe the systems cell biology including pleiotropic signaling of receptors, and to characterize the functional selectivity and phenotypic pharmacology of ligand molecules. These assays provide a new dimension for elucidating receptor biology and for facilitating drug discovery.
Collapse
|
research-article |
14 |
60 |
16
|
Fang Y, Li GG, Peng J. Optical biosensor provides insights for bradykinin B(2) receptor signaling in A431 cells. FEBS Lett 2005; 579:6365-6374. [PMID: 16263113 DOI: 10.1016/j.febslet.2005.10.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 10/10/2005] [Accepted: 10/13/2005] [Indexed: 11/18/2022] [Imported: 08/29/2023]
Abstract
The spatial and temporal targeting of proteins or protein assemblies to appropriate sites is crucial to regulate the specificity and efficiency of protein-protein interactions, thus dictating the timing and intensity of cell signaling and responses. The resultant dynamic mass redistribution could be manifested by label free optical biosensor, and lead to a novel and functional optical signature for studying cell signaling. Here we applied this technology, termed as mass redistribution cell assay technology (MRCAT), to study the signaling networks of bradykinin B(2) receptor in A431 cells. Using MRCAT, the spatial and temporal relocation of proteins and protein assemblies mediated by bradykinin was quantitatively monitored in microplate format and in live cells. The saturability to bradykinin, together with the specific and dose-dependent inhibition by a B(2) specific antagonist HOE140, suggested that the optical signature is a direct result of B(2) receptor activation. The sensitivity of the optical signature to cholesterol depletion by methyl-beta-cyclodextrin argued that B(2) receptor signaling is dependent on the integrity of lipid rafts; disruption of these microdomains hinders the B(2) signaling. Modulations of several important intracellular targets with specific inhibitors suggested that B(2) receptor activation results in signaling via at least dual pathways - G(s)- and G(q)-mediated signaling. Remarkably, the two signaling pathways counter-regulate each other. Several critical downstream targets including protein kinase C, protein kinase A, and epidermal growth factor receptor had been identified to involve in B(2) signaling. The roles of endocytosis and cytoskeleton modulation in B(2) signaling were also demonstrated.
Collapse
|
|
20 |
58 |
17
|
Fang Y. Non-invasive Optical Biosensor for Probing Cell Signaling. SENSORS (BASEL, SWITZERLAND) 2007; 7:2316-2329. [PMID: 28903229 PMCID: PMC3864524 DOI: 10.3390/s7102316] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 10/15/2007] [Indexed: 01/14/2023] [Imported: 08/29/2023]
Abstract
Cell signaling mediated through a cellular target is encoded by spatial andtemporal dynamics of downstream signaling networks. The coupling of temporal dynamicswith spatial gradients of signaling activities guides cellular responses upon stimulation.Monitoring the integration of cell signaling in real time, if realized, would provide a newdimension for understanding cell biology and physiology. Optical biosensors includingresonant waveguide grating (RWG) biosensor manifest a physiologically relevant andintegrated cellular response related to dynamic redistribution of cellular matters, thusproviding a non-invasive means for cell signaling study. This paper reviews recentprogresses in biosensor instrumentation, and theoretical considerations and potentialapplications of optical biosensors for whole cell sensing.
Collapse
|
Review |
18 |
57 |
18
|
Fang Y, Cheley S, Bayley H, Yang J. The heptameric prepore of a staphylococcal alpha-hemolysin mutant in lipid bilayers imaged by atomic force microscopy. Biochemistry 1997; 36:9518-22. [PMID: 9235997 DOI: 10.1021/bi970600j] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] [Imported: 05/14/2025]
Abstract
We have used atomic force microscopy to study the oligomeric state of a genetically engineered mutant of staphylococcal alpha-hemolysin (alphaHL-H5) that can be arrested as a "prepore" assembly intermediate. AFM images of alphaHL-H5 on supported bilayers of a fluid-phase lipid, egg-yolk phosphatidylcholine (egg-PC), under conditions that lock alphaHL-H5 into the prepore state, clearly show a heptameric structure for many individual oligomers. The central dent of the prepore has a diameter of 3.2 +/- 0.2 nm. The distance between the centers of mass of neighboring subunits is 2.8 +/- 0.3 nm. The heptamer has an average diameter of 8.9 +/- 0.6 nm. These results support a recently proposed pathway for the assembly of alpha-hemolysin.
Collapse
|
|
28 |
53 |
19
|
Abstract
Current drug discovery is dominated by label-dependent molecular approaches, which screen drugs in the context of a predefined and target-based hypothesis in vitro. Given that target-based discovery has not transformed the industry, phenotypic screen that identifies drugs based on a specific phenotype of cells, tissues, or animals has gained renewed interest. However, owing to the intrinsic complexity in drug-target interactions, there is often a significant gap between the phenotype screened and the ultimate molecular mechanism of action sought. This paper presents a label-free strategy for early drug discovery. This strategy combines label-free cell phenotypic profiling with computational approaches, and holds promise to bridge the gap by offering a kinetic and holistic representation of the functional consequences of drugs in disease relevant cells that is amenable to mechanistic deconvolution.
Collapse
|
Review |
11 |
50 |
20
|
Fang Y. The development of label-free cellular assays for drug discovery. Expert Opin Drug Discov 2011; 6:1285-1298. [PMID: 22647067 DOI: 10.1517/17460441.2012.642360] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] [Imported: 08/29/2023]
Abstract
INTRODUCTION The need to improve drug research and development productivity continues to drive innovation in pharmacological assays. Technologies that can leverage the advantages of both molecular and phenotypic assays would hold great promise for discovery of new medicines. AREAS COVERED This article briefly reviews current label-free platforms for cell-based assays and is primarily focused on fundamental aspects of these assays using dynamic mass redistribution technology as an example. The article also presents strategies for relating label-free profiles to molecular modes of actions of drugs. EXPERT OPINION Emerging evidence suggests that label-free cellular assays are phenotypic in nature, yet permit molecular mechanistic deconvolution. Together with unique competency in throughput, sensitivity and pathway coverages, label-free cellular assays allow users to screen drugs against endogenous receptors in native cells (including disease relevant primary cells) and determine the molecular modes of action of drug molecules. However, there are challenges for label-free in both basic research and drug discovery: the deconvolution of the cellular and molecular mechanisms for the biosensor signatures of receptor-drug interactions, new methodologies for data analysis and the development of new biosensor technologies. These challenges will need to be met for the wide adoption of these assays in drug discovery.
Collapse
|
|
14 |
48 |
21
|
Fang Y, Yang J. The growth of bilayer defects and the induction of interdigitated domains in the lipid-loss process of supported phospholipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1324:309-19. [PMID: 9092717 DOI: 10.1016/s0005-2736(96)00236-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] [Imported: 05/14/2025]
Abstract
The lipid-loss process has been studied with in situ atomic force microscopy (AFM) at six different temperatures for supported dipalmitoylphosphatidylcholine (DPPC) bilayers. A typical structural characteristic is the creation and the growth of bilayer defects as lipid molecules are lost from the bilayer. The rate of the lipid loss has an Arrhenius behavior, with an activation energy of 37 kT, where kT is the thermal energy at room temperature. For the lipid-loss processes at temperatures above 45 degrees C, interdigitated membrane domains are induced and are mostly in contact with some bilayer defects. These domains disappear at the increase of the area of bilayer defects. Possible mechanisms of these phenomena are discussed.
Collapse
|
|
28 |
43 |
22
|
Abstract
In vitro condensation of DNA has been widely studied to gain insight into the mechanisms of DNA compaction in biological systems such as chromosomes and phage heads and has been used to produce nanostructured particles with novel material and functional properties. Here we report on the condensation of DNA in aqueous solutions by cationic silanes, which combine the condensing properties of polyamines with the cross-linking chemistry of silanes. DNA can be reversibly condensed into classical toroidal and rod-shaped structures with these agents. At low silane concentrations DNA forms a variety of looped structures with well-defined characteristics, including flower- and sausage-shaped forms. These structures suggest that at low silane concentrations a DNA-DNA contact in which the strands are at very large angles to each other is stabilized. Changes in these structures observed as a function of silane concentration suggest possible pathways for the formation of toroids and rods.
Collapse
|
|
26 |
42 |
23
|
Fang Y, Frutos AG, Lahiri J. Ganglioside Microarrays for Toxin Detection. LANGMUIR 2003; 19:1500-1505. [DOI: 10.1021/la026151s] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] [Imported: 05/14/2025]
|
|
22 |
37 |
24
|
Fang Y, Yang J. Role of the Bilayer−Bilayer Interaction on the Ripple Structure of Supported Bilayers in Solution. ACTA ACUST UNITED AC 1996. [DOI: 10.1021/jp961054r] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] [Imported: 05/14/2025]
|
|
29 |
36 |
25
|
Abstract
Membrane-bound proteins represent the single most important class of drug targets. Arraying these proteins is difficult because they typically need to be embedded in membranes to maintain their correctly folded conformations. We describe here the fabrication of microarrays consisting of G-protein-coupled receptors (GPCRs)--the single largest family of membrane-bound proteins-by robotic pin-printing on slides, and demonstrate assays for screening of ligands on these arrays.
Collapse
|
|
23 |
36 |