1
|
Wang L, Tang G, Hu K, Liu X, Zhou W, Li H, Huang S, Han Y, Chen L, Zhong J, Wu H. Comparison of 68Ga-FAPI and 18F-FDG PET/CT in the Evaluation of Advanced Lung Cancer. Radiology 2022; 303:191-199. [PMID: 34981976 DOI: 10.1148/radiol.211424] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] [Imported: 04/24/2025]
Abstract
Background Gallium 68 (68Ga)-labeled fibroblast-activation protein inhibitor (FAPI) has recently been introduced as a promising tumor imaging agent. Purpose To compare 68Ga-FAPI PET/CT with fluorine 18 (18F)-labeled fluorodeoxyglucose (FDG) PET/CT in evaluating lung cancer. Materials and Methods In this prospective study conducted from September 2020 to February 2021, images from participants with lung cancer who underwent both 68Ga-FAPI and 18F-FDG PET/CT examinations were analyzed. The tracer uptakes, quantified by maximum standardized uptake value (SUVmax) and target-to-background ratio (TBR), were compared for paired positive lesions between both modalities using the paired t test or Wilcoxon signed-rank test. Results Thirty-four participants (median age, 64 years [interquartile range: 46-80 years]; 20 men) were evaluated. From visual evaluation, 68Ga-FAPI PET/CT and 18F-FDG PET/CT showed similar performance in the delineation of primary tumors and detection of suspected metastases in the lungs, liver, and adrenal glands. The metabolic tumor volume in primary and recurrent lung tumors showed no difference between modalities (mean: 11.6 vs 10.8, respectively; P = .68). However, compared with 18F-FDG PET/CT, 68Ga-FAPI PET/CT depicted more suspected metastases in lymph nodes (356 vs 320), brain (23 vs 10), bone (109 vs 91), and pleura (66 vs 35). From semiquantitative evaluation, the SUVmax and TBR of primary or recurrent tumors, positive lymph nodes, bone lesions, and pleural lesions at 68Ga-FAPI PET/CT were all higher than those at 18F-FDG PET/CT (all P < .01). Although SUVmax of 68Ga-FAPI and 18F-FDG in brain metastases were not different (mean SUVmax: 9.0 vs 7.4, P = .32), TBR was higher with 68Ga-FAPI than with 18F-FDG (mean: 314.4 vs 1.0, P = .02). Conclusion Gallium 68-labeled fibroblast-activation protein inhibitor PET/CT may outperform fluorine 18-labeled fluorodeoxyglucose PET/CT in staging lung cancer, particularly in the detection of metastasis to the brain, lymph nodes, bone, and pleura. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Jacobson and Van den Abbeele in this issue.
Collapse
|
|
3 |
94 |
2
|
Tang G, Zeng W, Yu M, Kabalka G. Facile synthesis ofN-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) for protein labeling. J Labelled Comp Radiopharm 2008. [DOI: 10.1002/jlcr.1481] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] [Imported: 04/24/2025]
|
|
17 |
62 |
3
|
Hu K, Wang L, Wu H, Huang S, Tian Y, Wang Q, Xiao C, Han Y, Tang G. [ 18F]FAPI-42 PET imaging in cancer patients: optimal acquisition time, biodistribution, and comparison with [ 68Ga]Ga-FAPI-04. Eur J Nucl Med Mol Imaging 2021; 49:2833-2843. [PMID: 34893920 DOI: 10.1007/s00259-021-05646-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022] [Imported: 04/24/2025]
Abstract
PURPOSE [18F]FAPI-42 is a new fibroblast activation protein (FAP)-specific tracer used for cancer imaging. Here, we describe the optimal acquisition time and in vivo evaluation of [18F]FAPI-42 and compared intra-individual biodistribution, tumor uptake, and detection ability to [68Ga]Ga-FAPI-04. METHODS A total of 22 patients with various types of cancer received [18F]FAPI-42 whole-body positron emission tomography/computed tomography (PET/CT). Among them, 4 patients underwent PET/CT scans, including an early dynamic 20-min, static 1-h, and static 2-h scans. The in vivo biodistribution in normal organs and tumor uptake were semiquantitatively evaluated using the standardized uptake value (SUV) and tumor-to-background ratio (TBR). Furthermore, both [18F]FAPI-42 and [68Ga]Ga-FAPI-04 PET/CT were performed in 12 patients to compare biodistribution, tumor uptake, and tumor detection ability. RESULTS [18F]FAPI-42 uptake in the tumors was rapid and reached a high level with an average SUVmax of 15.8 at 18 min, which stayed at a similarly high level to 2 h. The optimal image acquisition time for [18F]FAPI-42 was determined to be 1 h postinjection. For tumor detection, [18F]FAPI-42 had a high uptake and could be clearly visualized in the lesions. Compared to [68Ga]Ga-FAPI-04, [18F]FAPI-42 had the same detectability for 144 positive lesions. In addition, [18F]FAPI-42 showed a higher SUVmax in liver and bone lesions (P < 0.05) and higher TBRs in liver, bone, lymph node, pleura, and peritoneal lesions (all P < 0.05). CONCLUSION The present study demonstrates that the optimal image acquisition time of [18F]FAPI-42 is 1 h postinjection and that [18F]FAPI-42 exhibits comparable lesion detectability to [68Ga]Ga-FAPI-04. TRIAL REGISTRATION Chinese Clinical Trial Registry (ChiCTR2100045757).
Collapse
|
|
4 |
61 |
4
|
Tang G, Wang M, Tang X, Gan M, Luo L. Fully automated one-pot synthesis of [18F]fluoromisonidazole. Nucl Med Biol 2005; 32:553-8. [PMID: 15982586 DOI: 10.1016/j.nucmedbio.2005.03.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 03/24/2005] [Indexed: 10/25/2022] [Imported: 04/24/2025]
Abstract
A (18)F-labeled fluoromisonidazole (1H-1-(3-[(18)F]fluoro-2-hydroxypropyl)-2-nitroimidazole, [(18)F]FMISO) was prepared via a one-pot, two-step synthesis procedure using a modified commercial Tracerlab FX(F-N) synthesis module. Nucleophilic fluorination of the precursor molecule 1-(2'-nitro-1'-imidazolyl)-2-O-tetrahydropyranyl-3-O-toluenesulphonylpropanediol using no-carrier-added [(18)F]fluoride, followed by hydrolysis of the protecting group with 1 mol/L HCl and purification with Sep-Paks instead of HPLC, gave [(18)F]FMISO. The overall radiochemical yield with no decay correction was greater than 40%, the whole synthesis time was less than 40 min and the radiochemical purity was greater than 95%. The new automated synthesis procedure can be applied to the fully automated synthesis of [(18)F]FMISO using a commercial FDG synthesis module.
Collapse
|
|
20 |
57 |
5
|
Hu K, Li J, Wang L, Huang Y, Li L, Ye S, Han Y, Huang S, Wu H, Su J, Tang G. Preclinical evaluation and pilot clinical study of [ 18F]AlF-labeled FAPI-tracer for PET imaging of cancer associated fibroblasts. Acta Pharm Sin B 2022; 12:867-875. [PMID: 35256951 PMCID: PMC8897030 DOI: 10.1016/j.apsb.2021.09.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/03/2021] [Accepted: 08/31/2021] [Indexed: 01/22/2023] [Imported: 04/24/2025] Open
Abstract
In recent years, fibroblast activation protein (FAP) has emerged as an attractive target for the diagnosis and radiotherapy of cancers using FAP-specific radioligands. Herein, we aimed to design a novel 18F-labeled FAP tracer ([18F]AlF-P-FAPI) for FAP imaging and evaluated its potential for clinical application. The [18F]AlF-P-FAPI novel tracer was prepared in an automated manner within 42 min with a non-decay corrected radiochemical yield of 32 ± 6% (n = 8). Among A549-FAP cells, [18F]AlF-P-FAPI demonstrated specific uptake, rapid internalization, and low cellular efflux. Compared to the patent tracer [18F]FAPI-42, [18F]AlF-P-FAPI exhibited lower levels of cellular efflux in the A549-FAP cells and higher stability in vivo. Micro-PET imaging in the A549-FAP tumor model indicated higher specific tumor uptake of [18F]AlF-P-FAPI (7.0 ± 1.0% ID/g) compared to patent tracers [18F]FAPI-42 (3.2 ± 0.6% ID/g) and [68Ga]Ga-FAPI-04 (2.7 ± 0.5% ID/g). Furthermore, in an initial diagnostic application in a patient with nasopharyngeal cancer, [18F]AlF-P-FAPI and [18F]FDG PET/CT showed comparable results for both primary tumors and lymph node metastases. These results suggest that [18F]AlF-P-FAPI can be conveniently prepared, with promising characteristics in the preclinical evaluation. The feasibility of FAP imaging was demonstrated using PET studies.
Collapse
|
|
3 |
41 |
6
|
Sun A, Liu X, Tang G. Carbon-11 and Fluorine-18 Labeled Amino Acid Tracers for Positron Emission Tomography Imaging of Tumors. Front Chem 2018; 5:124. [PMID: 29379780 PMCID: PMC5775220 DOI: 10.3389/fchem.2017.00124] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022] [Imported: 08/29/2023] Open
Abstract
Tumor cells have an increased nutritional demand for amino acids (AAs) to satisfy their rapid proliferation. Positron-emitting nuclide labeled AAs are interesting probes and are of great importance for imaging tumors using positron emission tomography (PET). Carbon-11 and fluorine-18 labeled AAs include the [1-11C] AAs, labeling alpha-C- AAs, the branched-chain of AAs and N-substituted carbon-11 labeled AAs. These tracers target protein synthesis or amino acid (AA) transport, and their uptake mechanism mainly involves AA transport. AA PET tracers have been widely used in clinical settings to image brain tumors, neuroendocrine tumors, prostate cancer, breast cancer, non-small cell lung cancer (NSCLC) and hepatocellular carcinoma. This review focuses on the fundamental concepts and the uptake mechanism of AAs, AA PET tracers and their clinical applications.
Collapse
|
Review |
7 |
38 |
7
|
Tang G, Tang X, Wang X. A facile automated synthesis of N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) for 18F-labeled cell-penetrating peptide as PET tracer. J Labelled Comp Radiopharm 2010. [DOI: 10.1002/jlcr.1758] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] [Imported: 04/24/2025]
|
|
15 |
37 |
8
|
Fu L, Huang S, Wu H, Dong Y, Xie F, Wu R, Zhou K, Tang G, Zhou W. Superiority of [ 68Ga]Ga-FAPI-04/[ 18F]FAPI-42 PET/CT to [ 18F]FDG PET/CT in delineating the primary tumor and peritoneal metastasis in initial gastric cancer. Eur Radiol 2022; 32:6281-6290. [PMID: 35380229 DOI: 10.1007/s00330-022-08743-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/07/2023] [Imported: 04/24/2025]
Abstract
OBJECTIVE This study aimed to compare [68Ga]Ga-FAPI-04/[18F]FAPI-42 PET/CT with [18F]FDG PET/CT in the evaluation of initial gastric cancer. METHODS We retrospectively compared [68Ga]Ga-FAPI-04/[18F]FAPI-42 PET/CT with [18F]FDG PET/CT in patients with initial gastric cancer from September 2020 to March 2021. Lesion detectability and the uptake of lesions quantified by the maximum standardized uptake value (SUVmax) and target-to-background ratio (TBR) were compared between the two modalities using the Wilcoxon signed-rank test, Mann-Whitney U test, and McNemar's chi-square test. RESULTS A total of 61 patients (37 males, aged 23-81 years) were included, of which 22 underwent radical gastrectomy. For primary lesions, higher uptake of [68Ga]Ga-FAPI-04/[18F]FAPI-42 was observed compared to [18F]FDG (median SUVmax, 14.60 vs 4.35, p < 0.001), resulting in higher positive detection using [68Ga]Ga-FAPI-04/[18F]FAPI-42 PET/CT than [18F]FDG PET/CT (95.1% vs 73.8%, p < 0.001), particularly for tumors with signet-ring cell carcinoma (SRCC) (96.4% vs 57.1%, p < 0.001). [68Ga]Ga-FAPI-04/[18F]FAPI-42 PET/CT detected more positive lymph nodes than [18F]FDG PET/CT (637 vs 407). However, both modalities underestimated N staging compared to pathological N staging. [68Ga]Ga-FAPI-04/[18F]FAPI-42 PET/CT showed a higher sensitivity (92.3% vs 53.8%, p = 0.002) and peritoneal cancer index score (18 vs 3, p < 0.001) in peritoneum metastasis and other suspect metastases compared to [18F]FDG PET/CT. CONCLUSION Our findings indicate that [68Ga]Ga-FAPI-04/[18F]FAPI-42 PET/CT outperformed [18F]FDG PET/CT in the evaluation of primary tumors with SRCC and peritoneum metastasis in initial gastric cancer. However, no clinically useful improvement was seen in N staging. KEY POINTS • The uptake of [68Ga]Ga-FAPI-04/[18F]FAPI-42 in primary tumor and metastasis was intensely higher than that of [18F]FDG (p < 0.001) in 61 patients with initial gastric cancer. • [68Ga]Ga-FAPI-04/[18F]FAPI-42 PET/CT had a higher sensitivity detection in primary tumors (95.1% vs 73.8%, p < 0.001) and peritoneal metastases (92.3% vs 53.8%, p = 0.002) than [18F]FDG PET/CT. • [68Ga]Ga-FAPI-04/[18F]FAPI-42 PET/CT depicted more positive lymph nodes than [18F]FDG PET/CT (637 vs 407); however, both underestimated N staging compared to pathological N staging.
Collapse
|
Retracted Publication |
3 |
28 |
9
|
Hu K, Wang H, Tang G, Huang T, Tang X, Liang X, Yao S, Nie D. In Vivo Cancer Dual-Targeting and Dual-Modality Imaging with Functionalized Quantum Dots. J Nucl Med 2015; 56:1278-1284. [PMID: 26112023 DOI: 10.2967/jnumed.115.158873] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/17/2015] [Indexed: 11/16/2022] [Imported: 08/29/2023] Open
|
|
10 |
28 |
10
|
Tang G, Wang M, Tang X, Luo L, Gan M. Pharmacokinetics and radiation dosimetry estimation of O-(2-[18F]fluoroethyl)-L-tyrosine as oncologic PET tracer. Appl Radiat Isot 2003; 58:219-25. [PMID: 12573321 DOI: 10.1016/s0969-8043(02)00311-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] [Imported: 04/24/2025]
Abstract
An easy-to-automate synthetic procedure and the kinetics and radiation dosimetry of O-(2-[18F]fluoroethyl)-L-tyrosine (FET), a recently developed amino acid tracer with potential applications in tumor imaging with PET, are described. FET was prepared in high radiochemical yield, 20-25% with no decay correction, and radiochemical purity of more than 95% in less than 60min synthesis time by a modified two-step procedure and manual operation. The kinetics and radiation dosimetry of FET were evaluated by using mice biodistribution data and the medical internal radiation dosimetry (MIRD) method. The bone (total) was the organ receiving the highest dose, 4.78x10(-3)mGy/MBq, and the brain and the whole body received the lowest dose, 1.6x10(-3)mGy/MBq, respectively. The effective dose was 9.0x10(-3)mSv/MBq. The data show that a 370-MBq (10mCi) injection of FET leads to an estimated effective dose of 3.3mSv and an estimated dose to the whole body of 0.6mGy. The potential radiation risks associated with this study are well within accepted limits.
Collapse
|
|
22 |
28 |
11
|
Synthesis and biological evaluation of N-(2-[18F]Fluoropropionyl)-L-methionine for tumor imaging. Nucl Med Biol 2013; 40:926-32. [PMID: 23886847 DOI: 10.1016/j.nucmedbio.2013.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/05/2013] [Accepted: 06/14/2013] [Indexed: 11/20/2022] [Imported: 04/24/2025]
|
|
12 |
24 |
12
|
Yao S, Hu K, Tang G, Liang X, Du K, Nie D, Jiang S, Zang L. Positron emission tomography imaging of cell death with [(18)F]FPDuramycin. Apoptosis 2014; 19:841-50. [PMID: 24464510 DOI: 10.1007/s10495-013-0964-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] [Imported: 04/24/2025]
Abstract
The noninvasive imaging of cell death, including apoptosis and necrosis, is an important tool for the assessment of degenerative diseases and in the monitoring of tumor treatments. Duramycin is a peptide of 19-amino acids. It binds specifically to phosphatidylethanolamine a novel molecular target for cell death. N-(2-(18)F-Fluoropropionyl)duramycin ([(18)F]FPDuramycin) was prepared as a novel positron emission tomography (PET) tracer from the reaction of duramycin with 4-nitrophenyl 2-[(18)F]fluoropropionate ([(18)F]NFP). Compared with control cells (viable tumor cells), the in vitro binding of [(18)F]FPDuramycin with apoptotic cells induced by anti-Fas antibody resulted in a doubling increase, while the binding of [(18)F]FPDuramycin with necrotic cells induced by three freeze and thaw cycles resulted in a threefold increase. Biodistribution study in mice exhibited its rapid blood and renal clearance and predominant accumulation in liver and spleen over 120 min postinjection. Small-animal PET/CT imaging with [(18)F]FPDuramycin proved to be a successful way to visualize in vivo therapeutic-induced tumor cell death. In summary, [(18)F]FPDuramycin seems to be a potential PET probe candidate for noninvasive visualization of in vivo cell death sites induced by chemotherapy in tumors.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
24 |
13
|
Deng H, Tang X, Wang H, Tang G, Wen F, Shi X, Yi C, Wu K, Meng Q. S-11C-Methyl-L-Cysteine: A New Amino Acid PET Tracer for Cancer Imaging. J Nucl Med 2011; 52:287-93. [PMID: 21233188 DOI: 10.2967/jnumed.110.081349] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] [Imported: 04/24/2025] Open
|
|
14 |
23 |
14
|
Wang H, Tang X, Tang G, Huang T, Liang X, Hu K, Deng H, Yi C, Shi X, Wu K. Noninvasive positron emission tomography imaging of cell death using a novel small-molecule probe, (18)F labeled bis(zinc(II)-dipicolylamine) complex. Apoptosis 2014; 18:1017-27. [PMID: 23613106 DOI: 10.1007/s10495-013-0852-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] [Imported: 04/24/2025]
Abstract
The synthetic bis(zinc(II)-dipicolylamine) (DPAZn2) coordination complexes are known to have a high specific and selective affinity to target the exposed phosphatidylserine (PS) on the surface of dead and dying cells. An (18)F-labeled DPAZn2 complex (4-(18)F-Fluoro-benzoyl-bis(zinc(II)-dipicolylamine), (18)F-FB-DPAZn2) as positron emission tomography (PET) tracer was developed and evaluated for in vivo imaging of tumor treated with a chemical agent. The in vitro cell stain studies revealed that fluorescent DPAZn2 complexes (Dansyl-DPAZn2) stained the same cells (apoptotic and necrotic cells) as fluorescein isothiocyanate (FITC) labeled Annexin V (FITC-Annexin V). The radiosynthesis of (18)F-FB-DPAZn2 was achieved through the amidation the precursor bis(2,2'-dipicolylamine) derivative (DPA2) with the prosthetic group N-succinimidyl-4-[(18)F]-fluorobenzoate ((18)F-SFB) and chelation with zinc nitrate. In the biodistribution study, the fast clearance of (18)F-FB-DPAZn2 from blood and kidney was observed and high uptake in liver and intestine within 90 min postinjection was also found. For the PET imaging, significantly higher tumor uptake of (18)F-FB-DPAZn2 was observed in the adriamycin (ADM)-treated Hepa1-6 hepatocellular carcinoma-bearing mice than that in the untreated tumor-model mice, while a slightly decreased tumor uptake of (18)F-FDG was found in the ADM-treated tumor-bearing mice. The results indicate that (18)F-FB-DPAZn2 has the similar capability of apoptosis detection as FITC-Annexin V and seems to be a potential PET tracer for noninvasive evaluation and monitoring of anti-tumor chemotherapy. The high uptake of (18)F-FB-DPAZn2 in the abdomen needs to optimize the structure for improving its pharmacokinetics characteristics in the future work.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
21 |
15
|
Tang G, Wang M, Tang X, Luo L, Gan M. Synthesis and evaluation of O-(3-[18F]fluoropropyl)-L-tyrosine as an oncologic PET tracer. Nucl Med Biol 2003; 30:733-9. [PMID: 14499331 DOI: 10.1016/s0969-8051(03)00097-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] [Imported: 04/24/2025]
Abstract
O-(3-[(18)F]fluoropropyl)-L-tyrosine (FPT), an analogue of O-(2-[(18)F]fluoroethyl)-L-tyrosine (FET) as an amino acid tracer for tumor imaging with positron emission tomography (PET), was synthesized and evaluated. FPT was prepared by [(18)F]fluoropropylation of L-tyrosine in a two-step procedure. Biodistribution of FPT was determined in normal mice. FPT, FET and [(18)F]fluorine-2-deoxy-D-glucose (FDG) uptake studies were performed in mice bearing S18 fibrosarcoma and S. aureus-inoculated mice. Also, carcinoma-bearing mice and S. aureus-inoculated mice were imaged using FPT PET imaging compared with FET and FDG PET imaging. Synthesis of FPT was accomplished in about 60 min with an overall radiochemical yield of 25-30% (without decay correction) by manual operation. High uptake and long retention time of FPT and FET in kidney, liver, lung, blood, etc., and low uptake in brain were found. Furthermore, high FPT, FET and FDG uptake in tumor, and almost no FPT and FET uptake in inflammatory tissue, in contrast, high FDG uptake in inflammatory tissue, were observed. In conclusion, FPT is easy to prepare and superior to FDG in the differentiation of tumor and inflammation, and seems to be a potential amino acid tracer like FET for tumors imaging with PET.
Collapse
|
|
22 |
21 |
16
|
Radiosynthesis of 1-[18F]fluoroethyl-L-tryptophan as a novel potential amino acid PET tracer. Appl Radiat Isot 2012; 70:676-80. [PMID: 22196677 DOI: 10.1016/j.apradiso.2011.11.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 10/16/2011] [Accepted: 11/29/2011] [Indexed: 11/20/2022] [Imported: 04/24/2025]
|
|
13 |
19 |
17
|
Wang Q, Li SB, Zhao YY, Dai DN, Du H, Lin YZ, Ye JC, Zhao J, Xiao W, Mei Y, Xiao YT, Liu SC, Li Y, Xia YF, Song EW, Tang GH, Zhang WG, Li ZJ, Zheng XB, Cao DH, Li MZ, Zhong Q, Chen ZP, Qian CN, Fan W, Feng GK, Zeng MS. Identification of a sodium pump Na +/K + ATPase α1-targeted peptide for PET imaging of breast cancer. J Control Release 2018; 281:178-188. [PMID: 29777796 DOI: 10.1016/j.jconrel.2018.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/03/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023] [Imported: 04/24/2025]
Abstract
The sodium pump Na+/K+ ATPase a1 subunit(NKA a1), an attractive cancer-related biomarker and therapeutic target, is closely related to the development and progression of several cancers including breast cancer. Currently, a NKA a1 inhibitor, UNBS1450, has already evidenced its great therapeutic potential in personalized cancer treatment. The ability of non-invasive imaging of NKA a1 expression would be useful for selecting cancer patients who may benefit from this drug. Here, we identified an S3 peptide that is specifically homed to breast cancer by phage display. All data of in vitro and in vivo experiments suggested the excellent targeting character of the S3 peptide. As the binding activity of the S3 phage was positively correlated to the level of NKA α1 expression in various breast cancer cells, NKA α1 was validated as the primary target of the S3 peptide. Based on immunohistochemistry staining result of 107 breast cancer patients, NKA α1 was verified to be a novel tracking marker and a prognostic predictor for breast cancer. Importantly, we proposed and validated an S3 peptide-based radiotracer 18F-ALF-NOTA-S3 for PET (Positron Emission Tomography) imaging of breast cancer and other NKA α1-overexpressing cancers, including hepatocellular carcinoma and non-small cell lung cancer, in mouse models. Our findings demonstrated the potential application of 18F-ALF-NOTA-S3 for visualization of NKA α1-positive lesions, which provide a new approach to character tumor phenotypic imaging.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
18 |
18
|
Synthesis and preclinical evaluation of an Al 18F radiofluorinated bivalent PSMA ligand. Eur J Med Chem 2021; 221:113502. [PMID: 33965863 DOI: 10.1016/j.ejmech.2021.113502] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 11/22/2022] [Imported: 04/24/2025]
Abstract
Prostate-specific membrane antigen (PSMA) has become as an outstanding prostate cancer-related target for diagnostic imaging and targeted radiotherapy. Clinical studies on a few PSMA radiotracers are currently underway to determine their efficacy as imaging agents to detect prostate cancer. To improve tumor retention and tumor-to-normal tissue contrast, we herein report the synthesis and preclinical evaluation of an Al18F-labeled bivalent PSMA ligand (18F-Bi-PSMA). 18F-Bi-PSMA was successful automated preparation and in vitro evaluation showed that 18F-Bi-PSMA was potent binding affinity, high specificity, and rapid internalization in PSMA-expressing cells. Biodistribution studies revealed a high and specific tumor uptake of 20.5 ± 3.5 %ID/g in 22Rv1 tumor-bearing mice. Furthermore, compared to the clinically used monomeric PSMA-targeting tracers, 68Ga-PSMA-11 and 18F-PSMA-1007, 18F-Bi-PSMA exhibited improved pharmacokinetics and higher tumor uptake, as well as better tumor-to-normal tissue contrast, resulting in considerably high imaging quality. Our findings indicated that the bivalent PSMA radioligand, 18F-Bi-PSMA, was successfully synthesized and ideal imaging properties.
Collapse
|
Journal Article |
4 |
17 |
19
|
Automated synthesis of [18F]Florbetaben as Alzheimer's disease imaging agent based on a synthesis module system. Appl Radiat Isot 2013; 71:41-6. [PMID: 23085550 DOI: 10.1016/j.apradiso.2012.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Revised: 08/10/2012] [Accepted: 09/17/2012] [Indexed: 11/19/2022] [Imported: 04/24/2025]
|
|
12 |
17 |
20
|
Tang G, Tang X, Wang M, Luo L, Gan M, Huang Z. Automated commercial synthesis system for preparation of O-(2-[18F]fluoroethyl)-L-tyrosine by direct nucleophilic displacement on a resin column. J Labelled Comp Radiopharm 2003. [DOI: 10.1002/jlcr.706] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] [Imported: 04/24/2025]
|
|
22 |
16 |
21
|
13N-ammonia combined with 18F-FDG could discriminate between necrotic high-grade gliomas and brain abscess. Clin Nucl Med 2015; 40:195-9. [PMID: 25546194 DOI: 10.1097/rlu.0000000000000649] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] [Imported: 04/24/2025]
Abstract
PURPOSE Accurate prediction of brain abscess is beneficial for timely management. In this study, we investigated the utility of 13N-ammonia and its combination with 18F-FDG in differentiating brain abscess from necrotic high-grade gliomas. PATIENTS AND METHODS Thirteen patients with ring-like enhancement high-grade gliomas and 11 patients with brain abscess were recruited in our study. All of them underwent both 18F-FDG and 13N-ammonia PET imaging. Lesion uptake was evaluated by lesion to normal gray matter ratio (L/N). Histopathology diagnosis was obtained for all the patients after PET imaging. RESULTS The L/N values of 18F-FDG were not significantly different between brain abscess and necrotic high-grade gliomas (P = 0.35). The uptake of 13N-ammonia in gliomas was higher than that in abscess lesions (L/N: 1.38 ± 0.31 vs 0.84 ± 0.18, P < 0.001). The receiver operating characteristic curve analysis determined the optimal L/N cutoff value (13N-ammonia) of 1.0 with the area under the curve of 0.94 and the overall accuracy of 87.5%. Discriminant analysis demonstrated that the combination of 18F-FDG and 13N-ammonia could distinguish the 2 clinical entities with higher accuracy of 95%, and only 1 necrotic glioma lesion was misclassified into the abscess group. CONCLUSIONS 13N-ammonia is effective in distinguishing brain abscess from necrotic high-grade gliomas, and its combination with 18F-FDG could further elevate the diagnostic accuracy.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
16 |
22
|
Tang G, Wang M, Tang X, Luo L, Gan M. Fully automated synthesis module for preparation of S-(2-[(18)F]fluoroethyl)-L-methionine by direct nucleophilic exchange on a quaternary 4-aminopyridinium resin. Nucl Med Biol 2003; 30:509-12. [PMID: 12831988 DOI: 10.1016/s0969-8051(02)00454-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] [Imported: 04/24/2025]
Abstract
A fully automated preparation of S-(2-[(18)F]fluoroethyl)-L-methionine (FEMET), an amino acid tracer for tumor imaging with positron emission tomography, is described. [(18)F]F(-) was produced via nuclear reaction (18)O(p,n) [(18)F] at PETtrace Cyclotron. Direction nucleophilic fluorination reaction of [(18)F]fluoride with 1,2-di(4-methylphenylsulfonyloxy)ethane on a quaternary 4-(4-methylpiperidinyl)pyridinium functionalized polystyrene anion exchange resin gave 2-[(18)F]-1-(4-methylphenyl-sulfonyloxy)ethane, and then [(18)F]fluoroalkylation of L-homocysteine thiolactone with 2-[(18)F]-1-(4-methylphenylsulfonyloxy)ethane yielded FEMET. The overall radiochemical yield with no decay correction was about 10%, the whole synthesis time was about 52 min, and the radiochemical purity was above 95%.
Collapse
|
Evaluation Study |
22 |
16 |
23
|
Hu K, Du K, Tang G, Yao S, Wang H, Liang X, Yao B, Huang T, Zang L. Radiosynthesis and biological evaluation of N-[18F]labeled glutamic acid as a tumor metabolic imaging tracer. PLoS One 2014; 9:e93262. [PMID: 24681642 PMCID: PMC3969356 DOI: 10.1371/journal.pone.0093262] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/03/2014] [Indexed: 12/16/2022] [Imported: 08/29/2023] Open
Abstract
We have previously reported that N-(2-[18F]fluoropropionyl)-L-methionine ([18F]FPMET) selectively accumulates in tumors. However, due to the poor pharmacokinetics of [18F]FPMET in vivo, the potential clinical translation of this observation is hampered. In this study, we rationally designed and synthesized [18F] or [11C]labeled N-position L-glutamic acid analogues for tumor imaging. N-(2-[18F]fluoropropionyl)-L-glutamic acid ([18F]FPGLU) was synthesized with a 30±10% (n = 10, decay-corrected) overall radiochemical yield and a specific activity of 40±25 GBq/μmol (n = 10) after 130 min of radiosynthesis. In vitro cell experiments showed that [18F]FPGLU was primarily transported through the XAG(-) system and was not incorporated into protein. [18F]FPGLU was stable in urine, tumor tissues, and blood. We were able to use [18F]FPGLU in PET imaging and obtained high tumor to background ratios when visualizing tumors tissues in animal models.
Collapse
|
research-article |
11 |
15 |
24
|
Huang J, Fu L, Zhang X, Huang S, Dong Y, Hu K, Han Y, Zhou K, Min C, Huang Y, Tang G. Noninvasive imaging of FAP expression using positron emission tomography: A comparative evaluation of a [ 18F]-labeled glycopeptide-containing FAPI with [ 18F]FAPI-42. Eur J Nucl Med Mol Imaging 2023; 50:3363-3374. [PMID: 37266596 DOI: 10.1007/s00259-023-06282-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/20/2023] [Indexed: 06/03/2023] [Imported: 04/24/2025]
Abstract
PURPOSE Research on fibroblast activating protein (FAP)-targeting inhibitor (FAPI) has become an important focus for cancer imaging and radiotherapy. Quinoline-based tracers [68 Ga]FAPI-04 and [18F]FAPI-42 have been widely used for positron emission tomography (PET) imaging of most tumors. However, there exist some limitations of these tracers with high uptake in biliary duct system and unstable uptake in pancreas, unsuitable for abdominal tumors PET imaging. Here we developed a [18F]-labeled glycopeptide-containing FAPI tracer (named [18F]FAPT) for PET imaging of FAP in cancers. METHODS [18F]FAPT was synthesized manually and automatically. The competitive binding to FAP, cellular internalization, and efflux characteristics were examined in vitro using A549-FAP cells. Dynamic MicroPET and biodistribution studies of [18F]FAPT were then conducted in A549-FAP and U87MG xenograft tumor mouse models compared with [18F]FAPI-42. Five healthy volunteers and three patients with cancer underwent [18F]FAPT PET/CT. RESULTS Preclinical and clinical studies showed specific binding of [18F]FAPT to FAP and favorable pharmacokinetic properties with better hydrophilicity, lower uptake in biliary duct system, higher tumor uptake and longer tumor retention compared with [18F]FAPI-42. The biodistribution of [18F]FAPT in healthy volunteers and patients with cancer displayed low uptake in most normal tissues except for pancreas, thyroid and salivary gland, which could contribute to high tumor-to-background ratios in most cancers. CONCLUSION [18F]FAPT is better PET tracer than [18F]FAPI-42 for imaging of biliary duct system cancer, potentially providing a tool to examine FAP expression in most cancers with high tumor-to-background ratios.
Collapse
|
|
2 |
14 |
25
|
Zhang L, Tang G, Yin D, Tang X, Wang Y. Enantioselective synthesis of no-carrier-added (NCA) 6-[18F]fluoro-L-DOPA. Appl Radiat Isot 2002; 57:145-51. [PMID: 12150271 DOI: 10.1016/s0969-8043(02)00102-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] [Imported: 04/24/2025]
Abstract
The application of a chiral phase-transfer-catalyst (PTC) in the synthesis of N.C.A. 6-[18F]fluoro-L-DOPA has been recently developed. The 6-trimethylammoniumveratraldehyde triflate precursor and PTC (O-allyl-N-(9)-anthracenylcinchonidinium bromide) were synthesized and successful synthesis route was developed for the preparation of 6-[18F]fluoro-L-DOPA with high radiochemical yields (4-9%, decay uncorrected) and short synthesis time (80min). The radiochemical purity was over 99% and no D-isomer was detected by HPLC analysis using a chiral mobile phase.
Collapse
|
|
23 |
14 |