1
|
Wei D, Wang L, Zuo X, Bresalier RS. Vitamin D: Promises on the Horizon and Challenges Ahead for Fighting Pancreatic Cancer. Cancers (Basel) 2021; 13:2716. [PMID: 34072725 DOI: 10.3390/cancers13112716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] [Imported: 08/29/2023] Open
Abstract
Simple Summary Pancreatic cancer is an almost universally lethal cancer, largely due to its late diagnosis, early metastasis, and therapeutic resistance. This highlights the need to develop novel and effective intervention strategies to improve the outcomes of patients with pancreatic cancer. Vitamin D is one of the hottest topics in cancer research and clinics because of its pleiotropic functions on the hallmarks of cancer. Here we critically review past and current efforts that define the effects of vitamin D on the risk, incidence, patient survival, and mortality of pancreatic cancer. We also provide overviews on the opportunities and challenges associated with vitamin D as an economic adjunct to improve the efficacy of immunotherapy and chemo- or radiotherapy for pancreatic cancer. Abstract Pancreatic cancer has a dismal prognosis, while its incidence is increasing. This is attributed, in part, to a profound desmoplastic and immunosuppressive tumor microenvironment associated with this cancer and resistance to current available therapies. Novel and effective intervention strategies are urgently needed to improve the outcomes of patients with pancreatic cancer. Vitamin D has pleiotropic functions beyond calcium–phosphate homeostasis and has been extensively studied both in the laboratory and clinic as a potential preventive agent or adjunct to standard therapies. Accumulating evidence from ecological, observational, and randomized controlled trials suggests that vitamin D has beneficial effects on risk, survival, and mortality in pancreatic cancer, although controversies still exist. Recent advances in demonstrating the important functions of vitamin D/vitamin D receptor (VDR) signaling in the regulation of stromal reprogramming, the microbiome, and immune response and the emergence of checkpoint immunotherapy provide opportunities for using vitamin D or its analogues as an adjunct for pancreatic cancer intervention. Many challenges lie ahead before the benefits of vitamin D can be fully realized in pancreatic cancer. These challenges include the need for randomized controlled trials of vitamin D to assess its impact on the risk and survival of pancreatic cancer, optimizing the timing and dosage of vitamin D or its analogues as an adjunct for pancreatic cancer intervention and elucidating the specific role of vitamin D/VDR signaling in the different stages of pancreatic cancer. Nevertheless, vitamin D holds great promise for reducing risk and improving outcomes of this disease.
Collapse
|
2
|
Abstract
Acinar-to-ductal metaplasia (ADM) of the pancreas is a process that pancreatic acinar cells differentiate into ductal-like cells with ductal cell traits. The metaplasia of pancreatic acinar cells manifests their ability to adapt to the genetic and environmental pressure they encounter. However, with oncogenic genetic insults and/or sustained environmental stress, ADM may lead to pancreatic intraepithelial neoplasia (PanIN), which is a common precancerous lesion that precedes pancreatic cancer. Understanding the intermediate states of ADM and important molecules that regulate ADM formation may help the development of novel preventive strategies that could be translated to the clinic to benefit the people with high risk of pancreatic cancer. Mouse model is widely used in both in vivo and ex vivo studies of ADM. In this chapter, we describe detailed protocols of injury models of the adult mouse pancreas that can function as a tool to study mechanisms of ADM formation.
Collapse
Affiliation(s)
- Liang Wang
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dacheng Xie
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daoyan Wei
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Liu Y, Colby JK, Zuo X, Jaoude J, Wei D, Shureiqi I. The Role of PPAR-δ in Metabolism, Inflammation, and Cancer: Many Characters of a Critical Transcription Factor. Int J Mol Sci 2018; 19:E3339. [PMID: 30373124 DOI: 10.3390/ijms19113339] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023] [Imported: 08/29/2023] Open
Abstract
Peroxisome proliferator-activated receptor-delta (PPAR-δ), one of three members of the PPAR group in the nuclear receptor superfamily, is a ligand-activated transcription factor. PPAR-δ regulates important cellular metabolic functions that contribute to maintaining energy balance. PPAR-δ is especially important in regulating fatty acid uptake, transport, and β-oxidation as well as insulin secretion and sensitivity. These salutary PPAR-δ functions in normal cells are thought to protect against metabolic-syndrome-related diseases, such as obesity, dyslipidemia, insulin resistance/type 2 diabetes, hepatosteatosis, and atherosclerosis. Given the high clinical burden these diseases pose, highly selective synthetic activating ligands of PPAR-δ were developed as potential preventive/therapeutic agents. Some of these compounds showed some efficacy in clinical trials focused on metabolic-syndrome-related conditions. However, the clinical development of PPAR-δ agonists was halted because various lines of evidence demonstrated that cancer cells upregulated PPAR-δ expression/activity as a defense mechanism against nutritional deprivation and energy stresses, improving their survival and promoting cancer progression. This review discusses the complex relationship between PPAR-δ in health and disease and highlights our current knowledge regarding the different roles that PPAR-δ plays in metabolism, inflammation, and cancer.
Collapse
|
4
|
Wang L, Shen F, Stroehlein JR, Wei D. Context-dependent functions of KLF4 in cancers: Could alternative splicing isoforms be the key? Cancer Lett 2018; 438:10-16. [PMID: 30217565 DOI: 10.1016/j.canlet.2018.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/10/2018] [Accepted: 09/02/2018] [Indexed: 01/15/2023] [Imported: 08/29/2023]
Abstract
Krüppel-like factor 4 (KLF4) is an important transcription factor that is expressed in a variety of tissues and regulates many critical physiologic and cellular processes, including cell proliferation, differentiation, stem cell reprogramming, maintenance of genomic stability, and normal tissue homeostasis. KLF4 has both tumor suppressive and oncogenic functions in gastrointestinal and other cancers. These functions are thought to be context dependent, but how KLF4 exerts these differential functions and the molecular mechanisms behind them remain poorly understood. Recent studies have shown that the KLF4 gene undergoes alternative splicing, and the protein products of certain transcripts antagonize wild-type KLF4 function, suggesting an additional layer of regulation of KLF4 function. Therefore, detailed study of KLF4 alternative splicing may not only provide new insights into the complexity of KLF4 functions but also lead to rational targeting of KLF4 for cancer prevention and therapy.
Collapse
Affiliation(s)
- Liang Wang
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Feng Shen
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John R Stroehlein
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daoyan Wei
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Abstract
Solid tumors are composed of mutually interacting cancer cells and tumor microenvironment. Many environmental components, such as extracellular matrix (ECM), mesenchymal stem cells, endothelial and immune cells, and various growth factors and cytokines, provide signals, either stimulatory or inhibitory, to cancer cells and determine their fates. Meanwhile, cancer cells can also educate surrounding cells or tissues to undergo changes that are in favorable of tumor progression. CD44, as a transmembrane receptor for hyaluronic acid (HA) and many other ECM components and a coreceptor for growth factors and cytokines, is a critical cell surface molecule that can sense, integrate, and transduce cellular microenvironmental signals to membrane-associated cytoskeletal proteins or to cell nucleus to regulate a variety of gene expressions that govern cell behaviors. Mounting evidence suggests that CD44, particularly CD44v isoforms, are cancer stem cell (CSC) markers and critical regulators of cancer stemness, including self-renewal, tumor initiation, and metastasis. Thus, CD44 is widely used alone or in combination with other cell surface markers to isolate or enrich CSCs through fluorescence-activated cell sorting of dissociated single cells that originate from the patient, xenograft tumor tissues, or tumor cell cultures. Sorted cells are cultured in a specialized culture medium for spheroid formation or inoculated into immunodeficient mice for the analysis of tumorigenic or metastatic potential. In this chapter, detailed experimental methods regarding CD44+ tumor cell isolation, spheroid culture, and characterization will be described.
Collapse
Affiliation(s)
- Liang Wang
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Unit 1466, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Xiangsheng Zuo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Unit 956, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Keping Xie
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Unit 1466, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Daoyan Wei
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Unit 1466, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Xie VK, Li Z, Yan Y, Jia Z, Zuo X, Ju Z, Wang J, Du J, Xie D, Xie K, Wei D. DNA-Methyltransferase 1 Induces Dedifferentiation of Pancreatic Cancer Cells through Silencing of Krüppel-Like Factor 4 Expression. Clin Cancer Res 2017; 23:5585-5597. [PMID: 28659310 DOI: 10.1158/1078-0432.ccr-17-0387] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/19/2017] [Accepted: 06/19/2017] [Indexed: 01/22/2023] [Imported: 08/29/2023]
Abstract
Purpose: The dismal prognosis of pancreatic cancer has been linked to poor tumor differentiation. However, molecular basis of pancreatic cancer differentiation and potential therapeutic value of the underlying molecules remain unknown. We investigated the mechanistic underexpression of Krüppel-like factor 4 (KLF4) in pancreatic cancer and defined a novel epigenetic pathway of its activation for pancreatic cancer differentiation and treatment.Experimental Design: Expressions of KLF4 and DNMT1 in pancreatic cancer tissues were determined by IHC and the genetic and epigenetic alterations of KLF4 in and KLF4's impact on differentiation of pancreatic cancer were examined using molecular biology techniques. The function of dietary 3,3'-diindolylmethane (DIM) on miR-152/DNMT1/KLF4 signaling in pancreatic cancer was evaluated using both cell culture and animal models.Results: Overexpression of DNMT1 and promoter hypermethylation contributed to decreased KLF4 expression in and associated with poor differentiation of pancreatic cancer. Manipulation of KLF4 expression significantly affected differentiation marker expressions in pancreatic cancer cells. DIM treatment significantly induced miR-152 expression, which blocked DNMT1 protein expression and its binding to KLF4 promoter region, and consequently reduced promoter DNA methylation and activated KLF4 expression in pancreatic cancer cells. In addition, DIM treatment caused significant inhibition of cell growth in vitro and tumorigenesis in animal models of pancreatic cancer.Conclusions: This is the first demonstration that dysregulated KLF4 expression associates with poor differentiation of pancreatic cancer. Epigenetic activation of miR-152/DNMT1/KLF4 signaling pathway by dietary DIM causes differentiation and significant growth inhibition of pancreatic cancer cells, highlighting its translational implications for pancreatic and other cancers. Clin Cancer Res; 23(18); 5585-97. ©2017 AACR.
Collapse
Affiliation(s)
- Victoria K Xie
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhiwei Li
- Department Gastroenterology Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yongmin Yan
- Department Gastroenterology Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhiliang Jia
- Department Gastroenterology Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiangsheng Zuo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jiawei Du
- Department of Oncology, Shanghai Tongji University East Hospital, Shanghai, P.R. China
| | - Dacheng Xie
- Department of Oncology, Shanghai Tongji University East Hospital, Shanghai, P.R. China
| | - Keping Xie
- Department Gastroenterology Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Daoyan Wei
- Department Gastroenterology Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
7
|
Yan Y, Li Z, Kong X, Jia Z, Zuo X, Gagea M, Huang S, Wei D, Xie K. KLF4-Mediated Suppression of CD44 Signaling Negatively Impacts Pancreatic Cancer Stemness and Metastasis. Cancer Res 2016; 76:2419-31. [PMID: 26880805 DOI: 10.1158/0008-5472.can-15-1691] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 01/26/2016] [Indexed: 12/31/2022] [Imported: 08/29/2023]
Abstract
KLF4 and CD44 regulate cancer cell stemness, but their precise functions and roles in metastatic progression are not well understood. In this study, we used both inducible and genetic engineering approaches to assess whether the activities of these two factors intersect in pancreatic cancer. We found that genetic ablation of Klf4 in pancreatic cancer cells isolated from Klf4(flox/flox) mice drastically increased CD44 expression and promoted the acquisition of stem-like properties, whereas tetracycline-inducible expression of KLF4 suppressed these properties in vitro and in vivo Further mechanistic investigation revealed that KLF4 bound to the CD44 promoter to negatively regulate transcription and also the expression of the CD44 variant. Moreover, in human pancreatic ductal adenocarcinoma (PDAC) tissues, the expression patterns of KLF4 and CD44 were mutually exclusive, and this inverse relationship was particularly striking in human metastatic pancreatic tumors and in autochthonous mouse models of PDAC. Taken together, our findings demonstrate that KLF4 acts as a tumor suppressor in PDAC cells that restricts metastatic behaviors through direct negative regulation of CD44, providing support for the clinical investigation of therapeutic approaches focusing on targeted KLF4 activation in advanced tumors. Cancer Res; 76(8); 2419-31. ©2016 AACR.
Collapse
Affiliation(s)
- Yongmin Yan
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas. School of Medical Sciences and Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - Zhiwei Li
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiangyu Kong
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Gastroenterology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhiliang Jia
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiangsheng Zuo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mihai Gagea
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Suyun Huang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daoyan Wei
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Keping Xie
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
8
|
Yan Y, Zuo X, Wei D. Concise Review: Emerging Role of CD44 in Cancer Stem Cells: A Promising Biomarker and Therapeutic Target. Stem Cells Transl Med 2015; 4:1033-43. [PMID: 26136504 DOI: 10.5966/sctm.2015-0048] [Citation(s) in RCA: 372] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/26/2015] [Indexed: 12/12/2022] [Imported: 08/29/2023] Open
Abstract
UNLABELLED The reception and integration of the plethora of signals a cell receives from its microenvironment determines the cell's fate. CD44 functions as a receptor for hyaluronan and many other extracellular matrix components, as well as a cofactor for growth factors and cytokines, and thus, CD44 is a signaling platform that integrates cellular microenvironmental cues with growth factor and cytokine signals and transduces signals to membrane-associated cytoskeletal proteins or to the nucleus to regulate a variety of gene expression levels related to cell-matrix adhesion, cell migration, proliferation, differentiation, and survival. Accumulating evidence indicates that CD44, especially CD44v isoforms, are cancer stem cell (CSC) markers and critical players in regulating the properties of CSCs, including self-renewal, tumor initiation, metastasis, and chemoradioresistance. Furthermore, there is ample evidence that CD44, especially CD44v isoforms, are valuable prognostic markers in various types of tumors. Therefore, therapies that target CD44 may destroy the CSC population, and this holds great promise for the cure of life-threatening cancers. However, many challenges remain to determining how best to use CD44 as a biomarker and therapeutic target. Here we summarize the current findings concerning the critical role of CD44/CD44v in the regulation of cancer stemness and the research status of CD44/CD44v as biomarkers and therapeutic targets in cancer. We also discuss the current challenges and future directions that may lead to the best use of CD44/CD44v for clinical applications. SIGNIFICANCE Mounting evidence indicates that cancer stem cells (CSCs) are mainly responsible for cancer aggressiveness, drug resistance, and tumor relapse. CD44, especially CD44v isoforms, have been identified as CSC surface markers for isolating and enriching CSCs in different types of cancers. The current findings concerning the critical role of CD44/CD44v in regulation of cancer stemness and the research status of CD44/CD44v as biomarkers and therapeutic targets in cancer are summarized. The current challenges and future directions that may lead to best use of CD44/CD44v for clinical applications are also discussed.
Collapse
Affiliation(s)
- Yongmin Yan
- Departments of Gastroenterology, Hepatology & Nutrition and Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; School of Medical Sciences and Laboratory Medicine, Jiangsu University, Zhenjiang, People's Republic of China
| | - Xiangsheng Zuo
- Departments of Gastroenterology, Hepatology & Nutrition and Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; School of Medical Sciences and Laboratory Medicine, Jiangsu University, Zhenjiang, People's Republic of China
| | - Daoyan Wei
- Departments of Gastroenterology, Hepatology & Nutrition and Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; School of Medical Sciences and Laboratory Medicine, Jiangsu University, Zhenjiang, People's Republic of China
| |
Collapse
|
9
|
WEI DAOYAN, WANG LIWEI, KANAI MASASHI, JIA ZHILIANG, LE XIANGDONG, LI QIANG, WANG HUAMIN, XIE KEPING. KLF4α up-regulation promotes cell cycle progression and reduces survival time of patients with pancreatic cancer. Gastroenterology 2010; 139:2135-45. [PMID: 20727893 PMCID: PMC3245983 DOI: 10.1053/j.gastro.2010.08.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 07/30/2010] [Accepted: 08/06/2010] [Indexed: 01/28/2023] [Imported: 08/29/2023]
Abstract
BACKGROUND & AIMS Krüppel-like factor 4 (KLF4) is a transcription factor associated with tumor suppression and oncogenesis. KLF4 suppresses pancreatic tumorigenesis by unknown mechanisms; we investigated alterations that might affect KLF4 function and lead to tumor formation. METHODS We identified different isoforms of KLF4 in pancreatic cancer cells by reverse-transcriptase polymerase chain reaction, cloning, and DNA sequence analyses. We constructed vectors to express the isoform KLF4α and characterize its function. Using real-time polymerase chain reaction, immunoprecipitation, and immunohistochemical analyses, we assessed expression of KLF4α in pancreatic cancer cell lines and tumor tissue samples; xenograft models were used to determine the effect of KLF4α on pancreatic tumorigenesis. RESULTS We identified 4 KLF4 isoforms in human pancreatic cancer cells, designated KLF4α, KLF4β, KLF4γ, and KLF4δ. KLF4α localized primarily to the cytoplasm; its protein and messenger RNA were up-regulated in pancreatic cancer cell lines with high metastatic potential and human pancreatic tumors compared with normal pancreatic tissue. Transgenic expression of KLF4α reduced expression of p27(Kip1) and p21(Cip1), promoting cell cycle progression and in vivo tumor formation by pancreatic cancer cells. Increased expression of KLF4α in pancreatic tumor tissue was inversely correlated with overall time of survival in patients with stage II pancreatic ductal adenocarcinoma. CONCLUSIONS We identified a splice variant of KLF4 (KLF4α) that is up-regulated in aggressive pancreatic cancer cells and human pancreatic tumor tissues. Increased expression promotes growth of pancreatic tumors in mice and is associated with reduced survival times of patients.
Collapse
Affiliation(s)
- DAOYAN WEI
- Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - LIWEI WANG
- Department of Medical Oncology and Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, People's Republic of China
| | - MASASHI KANAI
- Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - ZHILIANG JIA
- Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - XIANGDONG LE
- Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - QIANG LI
- Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - HUAMIN WANG
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - KEPING XIE
- Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas,Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|