1
|
Choudhary RK, Capuco AV. In vitro expansion of the mammary stem/progenitor cell population by xanthosine treatment. BMC Cell Biol 2012; 13:14. [PMID: 22698263 PMCID: PMC3407777 DOI: 10.1186/1471-2121-13-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 06/14/2012] [Indexed: 11/17/2022] [Imported: 01/11/2025] Open
Abstract
BACKGROUND Mammary stem cells are critical for growth and maintenance of the mammary gland and therefore are of considerable interest for improving productivity and efficiency of dairy animals. Xanthosine treatment has been demonstrated to promote expansion of putative mammary stem cells in vivo, and hepatic and hair follicle stem cells in vitro. In the latter, xanthosine promoted the symmetrical division of hepatic and hair follicle stem cells. The objective of this study was to determine if treating primary cultures of bovine mammary epithelial cells (MEC) with xanthosine increases the stem/progenitor cell population by promoting symmetrical division of mammary stem cells. RESULTS In vitro treatment with xanthosine increased the population of MEC during the exponential phase of cell growth, reducing the doubling time from 86 h in control cultures to 60 h in xanthosine-treated cultures. The bromodeoxyuridine (BrdU) labeling index and the proportion of MEC in S-phase both were increased by xanthosine treatment, indicating that increased cell accretion was due to increased cell proliferation. Analysis of daughter-pairs indicated that xanthosine promoted a shift from asymmetric to symmetric cell division. Moreover, the 30 % increase in symmetric cell division was concomitant with an increase in the proportion of MEC that were positive for a putative stem cell marker (FNDC3B) and a trend toward increased telomerase activity. These results suggest that xanthosine treatment in vitro can increase cell proliferation, promote symmetric cell division and enhance stem/progenitor cell activity. CONCLUSIONS Xanthosine treatment increased the proliferation rate of bovine MEC in vitro. This was likely to be mediated by an increase in the proportion of stem/progenitor cells in the MEC population due to promotion of symmetrical stem cell division by xanthosine.
Collapse
|
research-article |
13 |
21 |
2
|
Choudhary RK, Li RW, Evock-Clover CM, Capuco AV. Comparison of the transcriptomes of long-term label retaining-cells and control cells microdissected from mammary epithelium: an initial study to characterize potential stem/progenitor cells. Front Oncol 2013; 3:21. [PMID: 23423481 PMCID: PMC3573348 DOI: 10.3389/fonc.2013.00021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 01/25/2013] [Indexed: 12/16/2022] [Imported: 01/11/2025] Open
Abstract
BACKGROUND Previous molecular characterizations of mammary stem cells (MaSC) have utilized fluorescence-activated cell sorting or in vitro cultivation of cells from enzymatically dissociated tissue to enrich for MaSC. These approaches result in the loss of all histological information pertaining to the in vivo locale of MaSC and progenitor cells. Instead, we used laser microdissection to excise putative progenitor cells and control cells from their in situ locations in cryosections and characterized the molecular properties of these cells. MaSC/progenitor cells were identified based on their ability to retain bromodeoxyuridine for an extended period. RESULTS We isolated four categories of cells from mammary epithelium of female calves: bromodeoxyuridine label retaining epithelial cells (LREC) from basal (LRECb) and embedded layers (LRECe), and epithelial control cells from basal and embedded layers. Enriched expression of genes in LRECb was associated with stem cell attributes and identified WNT, TGF-β, and MAPK pathways of self renewal and proliferation. Genes expressed in LRECe revealed retention of some stem-like properties along with up-regulation of differentiation factors. CONCLUSION Our data suggest that LREC in the basal epithelial layer are enriched for MaSC, as these cells showed increased expression of genes that reflect stem cell attributes; whereas LREC in suprabasal epithelial layers are enriched for more committed progenitor cells, expressing some genes that are associated with stem cell attributes along with those indicative of cell differentiation. Our results support the use of DNA label retention to identify MaSC and also provide a molecular profile and novel candidate markers for these cells. Insights into the biology of stem cells will be gained by confirmation and characterization of candidate MaSC markers identified in this study.
Collapse
|
research-article |
12 |
19 |
3
|
Choudhary RK, Choudhary S, Kaur H, Pathak D. Expression of Putative Stem Cell Marker, Hepatocyte Nuclear Factor 4 Alpha, in Mammary Gland of Water Buffalo. Anim Biotechnol 2016; 27:182-189. [PMID: 27092988 DOI: 10.1080/10495398.2016.1164179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] [Imported: 01/11/2025]
Abstract
Buffaloes account for more than 56% of total milk production in India. Cyclic remodeling of mammary glands of human, mice, cow, sheep, and goat is determined by mammary stem cells. It is logical to assume that buffalo mammary gland will have mammary stem/progenitor cells. Thus far, no report exists on identification of buffalo mammary stem cells. Hepatocyte nuclear factor 4 alpha (HNF4A) is a candidate marker for hepatic progenitor cells and has recently been suggested as a marker of bovine mammary stem/progenitor cells. We hypothesized that ( 1 ) HNF4A identifies putative buffalo mammary stem/progenitor cells and ( 2 ) the number of HNF4A-positive cells increases during mastitis. Sixteen buffalo mammary samples were collected from a local slaughterhouse. Hematoxylin and eosin staining were performed on 5-micron thick sections and on the basis of gross examination and histomorphology of the mammary glands, physiological stages of the animals were estimated as non-lactating (n = 4), mastitis (n = 9), and prepubertal (n = 3). In total, 24048 cells were counted (5-10 microscopic fields/animal; n = 16 animals) of which, 40% cells were mammary epithelial cells (MEC) and 60% cells were the stromal cells. The percentage of MEC in non-lactating animals was higher compared to mastitic animals (47.3% vs. 37.3%), which was likely due to loss of MEC in mastitis. HNF4A staining was observed in nuclei of MEC of ducts, alveoli, and stromal cells. Basal location and low frequency of HNF4A-positive MEC (ranges from 0.4-4.5%) were consistent with stem cell characteristics. Preliminary study showed coexpression of HNF4A with MSI1 (a mammary stem cell marker in sheep), suggesting HNF4A was likely to be a putative mammary stem/progenitor cell marker in buffalo. HNF4A-positive MEC (basal and luminal; light and dark stained) tended to be higher in non-lactating than the mastitic animals (8.73 ± 1.71% vs. 4.29 ± 1.19%; P = 0.07). The first hypothesis that HNF4A identify putative mammary stem/progenitor cells was confirmed but the second hypothesis that the number of mammary stem/progenitor cells decreases during mastitis was unsupported. This is the first report outlining the expression of HNF4A and identification of putative mammary stem/progenitor cells in buffalo mammary gland.
Collapse
|
|
9 |
9 |
4
|
Choudhary RK, Daniels KM, Evock-Clover CM, Garrett W, Capuco AV. Technical note: A rapid method for 5-bromo-2'-deoxyuridine (BrdU) immunostaining in bovine mammary cryosections that retains RNA quality. J Dairy Sci 2010; 93:2574-2579. [PMID: 20494166 DOI: 10.3168/jds.2009-2837] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 02/01/2010] [Indexed: 11/19/2022] [Imported: 01/11/2025]
Abstract
A rapid method of 5-bromo-2'-deoxyuridine (BrdU) immunostaining was developed in cryosections of bovine mammary tissue while preserving RNA quality of the stained section. A thymidine analog that is incorporated into DNA of proliferating cells, BrdU serves as a proliferation marker. Immunostaining of BrdU-labeled cells within a histological section requires heat, enzymatic or chemical-mediated antigen retrieval to open double-stranded DNA, and exposure to the BrdU antigen. Although these established treatments permit staining, they preclude use of cells within the tissue section for further gene expression experiments. Additionally, long antibody incubations and washing steps lead to extensive RNA degradation and elution. A protocol was developed for immunolocalization of BrdU-labeled cells in cryosections of bovine mammary tissue, which does not require harsh DNA denaturation and preserved RNA integrity and quantity. This protocol used an initial acetone:polyethylene glycol 300 [9:1 (vol/vol)] fixation (2 min) followed by staining with methyl green (0.5% aqueous; 2 min) to stabilize macromolecules, antigen retrieval with deionized formamide (70% in nuclease-free phosphate buffered saline; 4 min incubation), antibody incubation in the presence of RNase inhibitors (5 min), and minimal washing to facilitate recovery of RNA from cells from the stained sections. Applicability of this protocol to other nuclear antigens was evaluated by testing its suitability for staining estrogen receptor alpha and Ki-67 antigen. In both cases, use of the protocol provided good immunostaining and tissue morphology. The RNA quality of estrogen receptor alpha- and Ki-67-stained sections was not evaluated. Quality of the isolated RNA from BrdU-stained sections was evaluated by micro-fluidic electrophoresis and its utility was confirmed using quantitative reverse transcription-PCR. Staining intensity obtained with this labeling protocol was similar to that obtained using conventional immunohistochemistry protocols. When coupled with laser microdissection and RNA or cDNA amplification, this immunostaining protocol provided a means for future transcriptome analysis of BrdU-labeled cells within a complex tissue.
Collapse
|
|
15 |
9 |
5
|
Choudhary RK. Mammary stem cells: expansion and animal productivity. J Anim Sci Biotechnol 2014; 5:36. [PMID: 25057352 PMCID: PMC4107933 DOI: 10.1186/2049-1891-5-36] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 07/04/2014] [Indexed: 12/12/2022] [Imported: 08/29/2023] Open
Abstract
Identification and characterization of mammary stem cells and progenitor cells from dairy animals is important in the understanding of mammogenesis, tissue turnover, lactation persistency and regenerative therapy. It has been realized by many investigators that altered lactation, long dry periods (non-milking period between two consecutive lactation cycles), abrupt cessation of lactation (common in water buffaloes) and disease conditions like mastitis, greatly reduce milk yield thus render huge financial losses within the dairy sector. Cellular manipulation of specialized cell types within the mammary gland, called mammary stem cells (MaSCs)/progenitor cells, might provide potential solutions to these problems and may improve milk production. In addition, MaSCs/progenitor cells could be used in regenerative therapy against tissue damage caused by mastitis. This review discusses methods of MaSC/progenitor cell manipulation and their mechanisms in bovine and caprine animals. Author believes that intervention of MaSCs/progenitor cells could lessen the huge financial losses to the dairy industry globally.
Collapse
|
Review |
11 |
7 |
6
|
Choudhary RK, Kaur H, Choudhary S, Verma R. Distribution and Analysis of Milk Fat Globule and Crescent in Murrah Buffalo and Crossbred Cow. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, INDIA SECTION B: BIOLOGICAL SCIENCES 2017; 87:167-172. [DOI: 10.1007/s40011-015-0606-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] [Imported: 01/11/2025]
|
|
8 |
4 |
7
|
Choudhary RK, Choudhary S, Mukhopadhyay CS, Pathak D, Verma R. Deciphering the transcriptome of prepubertal buffalo mammary glands using RNA sequencing. Funct Integr Genomics 2019; 19:349-362. [PMID: 30467802 DOI: 10.1007/s10142-018-0645-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023] [Imported: 01/11/2025]
Abstract
Although water buffaloes are the main milk-producing animals in Indian subcontinent, only limited attempts have been made to identify canonical pathways and gene regulatory networks operating within the mammary glands of these animals. Such information is important for identifying unique transcriptome signatures in the mammary glands of diseased animals. In this report, we analyzed the transcription profile of 3 prepubertal buffalo mammary glands and identified common genes (mean FPKM > 0.2 in all samples) operating in the glands. Among 19,994 protein coding genes, 14,678 genes expressed and 5316 unique genes did not express in prepubertal buffalo mammary glands. Of these 14,678 expressed genes, 79% comprised a ubiquitous transcriptome that was dominated by very lowly expressed genes (51%). The percentage of rarely, moderately, and abundantly expressed genes was 25%, 2%, and 1%, respectively. Gene Ontology (GO) terms reflected in the expression of common genes (mean FPKM > 5.0) for molecular function were related to binding and catalytic activity. Products of these genes were involved in metabolic and cellular processes and belong to nucleic acid binding proteins. The canonical pathways for growth of mammary glands included integrin signaling, inflammation, GnRH and Wnt pathways. KEGG enriched pathways revealed many pathways of cancer including ribosome, splisosome, endocytosis, and ubiquitin-mediated proteolysis, pathways for viral infection, and bacterial invasion of epithelial. Highly expressed genes (mean FPKM > 500 included beta-actin (ACTB), beta-2 microglobulin (B2M), caseins (CSN2, CNS3), collagens (COL1A1, COL3A1), translation elongation factors (EEF1A1, EEF1G, EEF2), keratins (KRT15, KRT19), major histocompatibility complex genes (CD74, JSP.1), vimentin (VIM), and osteopontin (SPP1). Interestingly, expression of milk protein genes in prepubertal glands opens possible roles of these genes in development of mammary glands. We report the whole transcriptomic signature of prepubertal buffalo mammary gland and indicated its molecular signature is similar to cancer type.
Collapse
|
|
6 |
3 |
8
|
Choudhary RK, Choudhary S, Verma R. In vivo response of xanthosine on mammary gene expression of lactating Beetal goat. Mol Biol Rep 2018; 45:581-590. [PMID: 29804277 DOI: 10.1007/s11033-018-4196-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/21/2018] [Indexed: 12/21/2022] [Imported: 01/11/2025]
Abstract
Xanthosine is hypothesized to increase stem cell number by promoting symmetrical cell division. Stem cells, in particular mammary stem/progenitor cells are important for gland growth and tissue repair. Molecular mechanism of xanthosine effects on mammary tissue is very limited therefore, a detailed study is warranted. The objective of this study was to evaluate transcriptomic changes in mammary gland infused/not infused with xanthosine of lactating goat. Seven primiparous Beetal goats on day 5 after kidding, were selected for the study. One gland of each goat was infused with xanthosine (TRT gland) twice daily for 3 days while the other gland did not receive any xanthosine and served as control (CON gland). Biopsy of mammary tissues was taken from TRT and CON glands, 2 days after the last day of treatment that is on day 10 after kidding. Illumina RNA-sequencing (RNA-seq) was performed for global gene expression analysis of contralateral glands. Of 382 differentially expressed genes (DEGs), 372 genes were annotated to the goat genome. Gene ontology analyses revealed majority of the DEGs to be associated with metabolic pathways (glycan and lipid metabolism), biosynthesis of antibiotics and peroxisome proliferator-activated receptor signalling pathways. These molecular pathways are either directly or indirectly involved with lipid metabolism in mammary tissue and host adaptive immune response. Expression of stem cell marker namely aldehyde dehydrogenase enzymes (ALDH1A1, ALDH3B1) were upregulated in the treatment gland. Real-time quantitative PCR (RT-qPCR) analyses of selected DEGs showed their expression profiles to be in agreement with results of RNA-seq. To our knowledge, this is the first study that describes effects of xanthosine on transcriptomic changes of mammary tissue. This information can be used further to dissect the molecular mechanisms underlying effects of xanthosine to improve production potential and udder health.
Collapse
|
|
7 |
3 |
9
|
Choudhary RK, Choudhary S, Pathak D, Udehiya R, Verma R, Kaswan S, Sharma A, Gupta D, Honparkhe M, Capuco AV. Evaluation of xanthosine treatment on gene expression of mammary glands in early lactating goats. J DAIRY RES 2018; 85:288-294. [PMID: 30156522 DOI: 10.1017/s0022029918000493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] [Imported: 01/11/2025]
Abstract
This study examined the hypothesis that xanthosine (XS) treatment would promote mammary-specific gene expression and stem cell transcripts and have a positive influence on milk yield of dairy goats. Seven primiparous Beetal goats were assigned to the study. Five days after kidding, one gland (either left or right) was infused with XS (TRT) twice daily for 3 d and the other gland with no XS infusion served as a control (CON). Mammary biopsies were collected at 10 d and RNA was isolated. Gene expression analysis of milk synthesis genes, mammary stem/progenitor cell markers, cell proliferation and differentiation markers were performed using real time quantitative PCR (RT-qPCR). Results showed that the transcripts of milk synthesis genes (BLG4, CSN2, LALBA, FABP3, CD36) and mammary stem/progenitor cell markers (ALDH1 and NR5A2) were increased in as a result of XS treatment. Average milk yield in TRT glands was increased marginally (approximately ~2% P = 0·05, paired t-test) per gland relative to CON gland until 7 wk. After 7 wk, milk yield of TRT and CON glands did not differ. Analysis of milk composition revealed that protein, lactose, fat and solids-not-fat percentages remained the same in TRT and CON glands. These results suggest that XS increases expression of milk synthesis genes, mammary stem/progenitor cells and has a small effect on milk yield.
Collapse
|
|
7 |
2 |
10
|
Choudhary RK, Capuco AV. Expression of NR5A2, NUP153, HNF4A, USP15 and FNDC3B is consistent with their use as novel biomarkers for bovine mammary stem/progenitor cells. J Mol Histol 2021; 52:289-300. [PMID: 33400051 DOI: 10.1007/s10735-020-09948-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] [Imported: 01/11/2025]
Abstract
Mammary stem cells (MaSC) are essential for growth and maintenance of mammary epithelium. Previous studies have utilized morphological characteristics or retention of bromodeoxyuridine (BrdU) label to identify MaSC and progenitor cells, these approaches may not be feasible or may not identify all resident stem cells. Alternatively, these special cells may be identified by assessing protein and mRNA expression of appropriate markers. The focus of this study was to assess the staining patterns and in situ quantification of novel candidate markers for bovine MaSC/progenitor cells. The candidate markers for MaSC/progenitor cells for immunohistochemical analysis were: NR5A2, NUP153, HNF4A, USP15 and FNDC3B and for in situ transcripts quantification were HNF4A and NUP153. We also evaluated protein expression pattern of presumptive MaSC markers known from the literature namely, ALDH1, MSI1 and Notch3. We found that NR5A2, NUP153, HNF4A and USP15-labeled cells represented 2.5-6% of epithelial cells prepubertally and were distributed in a fashion consistent with the location and abundance of MaSC/progenitor cells. A transient increase (10-37%) in expression of these markers was observed at peak lactation. FNDC3B was localized mainly in the nucleus prepubertally and in the cytoplasm of myoepithelial cells and nuclei of a limited number of alveolar cells during lactation. Abundant expression (~ 48%) and luminal localization of ALDH1 precludes its use as a bovine MaSC marker but may include transamplifying progenitor cells. MSI1 staining was consistent with MaSC localization. Onset of lumen formation in mammary ducts of prepubertal gland was associated with Notch 3 expression in the apical surface of luminal cells. RNAscope analysis of HNF4A and NUP153 transcripts in calf mammary gland showed very low copy numbers in a few epithelial cells, supporting the idea that these markers are expressed by fewer cells of epithelial origin. This study suggests that NR5A2, NUP153, HNF4A, USP15 and FNDC3B are likely markers for bovine MaSC/progenitor cells. Quantification of RNA transcripts of HNF4A and NUP153 in bovine MEC as potential MaSC markers are novel. Further studies to correlate protein expression of these markers with their transcripts level using single cell analysis in larger samples in lactating cow at different physiological stages are warranted.
Collapse
|
|
4 |
1 |
11
|
Choudhary RK, Hundal JS, Wadhwa M, Choudhary S, Neetika. Expression of lipogenic and milk protein genes in milk fat layer of goat after dietary supplementation of omega-3 rich linseed and chia oils. Small Rumin Res 2020; 185:106083. [DOI: 10.1016/j.smallrumres.2020.106083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] [Imported: 01/11/2025]
|
|
5 |
|
12
|
Choudhary RK, Olszanski L, McFadden TB, Lalonde C, Spitzer A, Shangraw EM, Rodrigues RO, Zhao FQ. Systemic and local responses of cytokines and tissue histology following intramammary lipopolysaccharide challenge in dairy cows. J Dairy Sci 2024; 107:1299-1310. [PMID: 37777007 DOI: 10.3168/jds.2023-23543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/14/2023] [Indexed: 10/02/2023] [Imported: 01/11/2025]
Abstract
During bovine mastitis, immune responses include the release of cytokines and the recruitment of leukocytes, resulting in profound structural and functional changes in the mammary gland. Our aims were to delineate systemic and local cytokine responses and to quantify histological changes in the mammary tissue of lactating cows after acute intramammary lipopolysaccharide (LPS) challenge. Ten multiparous dairy cows were paired to either treatment (TRT) or control (CON) groups. For TRT cows, one side of the udder was randomly assigned to receive treatment with LPS (50 µg in 10 mL of saline, TL) into both the front and rear quarters; the contralateral quarters received saline (10 mL). Udder-halves of CON cows were similarly assigned randomly to receive either saline (10 mL, CS) or no infusion (untreated). Temporal changes in the concentrations of 15 cytokines in the blood (0, 3, 6, 12, and 24 h relative to the LPS infusion) and in mammary tissue (0, 3, and 12 h) were determined, as were concomitant changes in mammary histology. The cytokines IL-6, IL-10, MCP-1, and MIP-1β showed a systemic response as their concentrations were significantly different in the plasma of TRT cows as compared with CON cows after LPS challenge. The cytokines IL-1α, IL-1β, IL-6, IL-8, IL-17A, IL-36RA, IP-10, MCP-1, MIP-1α, MIP-1β, TNF-α, and VEGF-A showed a local response in TL glands, and 8 cytokines, IL-1β, IL-6, IL-10, IL-17A, IL-36RA, IP-10, MIP-1β, and VEGF-A showed systemic changes in the nonchallenged mammary glands adjacent to LPS-infused glands. Endotoxin challenge evoked changes in the histology of mammary tissue that included a 5.2- and 7.2-fold increases in the number of neutrophils in alveolar lumens at 3 h and 12 h, respectively. In summary, LPS challenge induced specific local and systemic responses in cytokine induction and elicited neutrophil infiltration in bovine mammary tissue.
Collapse
|
Randomized Controlled Trial, Veterinary |
1 |
|
13
|
Choudhary RK, Zhao FQ. Stem Cells in Mammary Health and Milk Production. Curr Stem Cell Res Ther 2022; 17:207-213. [PMID: 34348628 DOI: 10.2174/1574888x16666210804111516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/30/2021] [Accepted: 06/05/2021] [Indexed: 11/22/2022] [Imported: 01/11/2025]
Abstract
Adult stem cells like mammary and mesenchymal stem cells have received significant attention because these stem cells possess therapeutic potential in treating many animal diseases. These cells can be administered in an autologous or allogenic fashion, either freshly isolated from the donor tissue or previously cultured and expanded in vitro. The expansion of adult stem cells is a prerequisite before therapeutic application because sufficient numbers are required in dosage calculation. Stem cells directly and indirectly (by secreting various growth factors and angiogenic factors called secretome) act to repair and regenerate injured tissues. Recent studies on mammary stem cells showed in vivo and in vitro expansion ability by removing the blockage of asymmetrical cell division. Compounds like purine analogs (xanthosine, xanthine, and inosine) or hormones (progesterone and bST) help increase stem cell population by promoting cell division. Such methodology of enhancing stem cell number, either in vivo or in vitro, may help in preclinical studies for translational research like treating diseases such as mastitis. The application of mesenchymal stem cells has also been shown to benefit mammary gland health due to the 'homing' property of stem cells. In addition to that, the multiple positive effects of stem cell secretome are on mammary tissue; healing and killing bacteria is novel in the production of quality milk. This systematic review discusses some of the studies on stem cells that have been useful in increasing the stem cell population and increasing mammary stem/progenitor cells. Finally, we provide insights into how enhancing mammary stem cell population could potentially increase terminally differentiated cells, ultimately leading to more milk production.
Collapse
|
Systematic Review |
3 |
|