1
|
Hu YW, Guo FX, Xu YJ, Li P, Lu ZF, McVey DG, Zheng L, Wang Q, Ye JH, Kang CM, Wu SG, Zhao JJ, Ma X, Yang Z, Fang FC, Qiu YR, Xu BM, Xiao L, Wu Q, Wu LM, Ding L, Webb TR, Samani NJ, Ye S. Long noncoding RNA NEXN-AS1 mitigates atherosclerosis by regulating the actin-binding protein NEXN. J Clin Invest 2019; 129:1115-1128. [PMID: 30589415 PMCID: PMC6391138 DOI: 10.1172/jci98230] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/18/2018] [Indexed: 02/05/2023] [Imported: 08/29/2023] Open
Abstract
Noncoding RNAs are emerging as important players in gene regulation and disease pathogeneses. Here, we show that a previously uncharacterized long noncoding RNA, nexilin F-actin binding protein antisense RNA 1 (NEXN-AS1), modulates the expression of the actin-binding protein NEXN and that NEXN exerts a protective role against atherosclerosis. An expression microarray analysis showed that the expression of both NEXN-AS1 and NEXN was reduced in human atherosclerotic plaques. In vitro experiments revealed that NEXN-AS1 interacted with the chromatin remodeler BAZ1A and the 5' flanking region of the NEXN gene and that it also upregulated NEXN expression. Augmentation of NEXN-AS1 expression inhibited TLR4 oligomerization and NF-κB activity, downregulated the expression of adhesion molecules and inflammatory cytokines by endothelial cells, and suppressed monocyte adhesion to endothelial cells. These inhibitory effects of NEXN-AS1 were abolished by knockdown of NEXN. In vivo experiments using ApoE-knockout mice fed a Western high-fat diet demonstrated that NEXN deficiency promoted atherosclerosis and increased macrophage abundance in atherosclerotic lesions, with heightened expression of adhesion molecules and inflammatory cytokines, whereas augmented NEXN expression deterred atherosclerosis. Patients with coronary artery disease were found to have lower blood NEXN levels than healthy individuals. These results indicate that NEXN-AS1 and NEXN represent potential therapeutic targets in atherosclerosis-related diseases.
Collapse
|
research-article |
6 |
97 |
2
|
Tao J, Jin YF, Yang Z, Wang LC, Gao XR, Lui L, Ma H. Reduced arterial elasticity is associated with endothelial dysfunction in persons of advancing age: comparative study of noninvasive pulse wave analysis and laser Doppler blood flow measurement. Am J Hypertens 2004; 17:654-9. [PMID: 15288882 DOI: 10.1016/j.amjhyper.2004.03.678] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2003] [Revised: 07/17/2003] [Accepted: 03/23/2004] [Indexed: 11/19/2022] [Imported: 03/19/2025] Open
Abstract
BACKGROUND Endothelial dysfunction is the earliest marker for age-related abnormalities in vascular function, and examination of endothelial function has important clinical relevance. The present study was performed to evaluate effects of aging on arterial elasticity by using pulse waveform analysis and to investigate whether the changes in arterial elasticity might be used as a noninvasive measure for endothelial dysfunction. METHODS A total of 24 healthy male volunteers were divided into young (n = 12) and elderly (n = 12) groups. Endothelial function was evaluated by delivering acetylcholine (Ach) and sodium nitroprusside (SNP) to the forearm vessels using iontophoresis, respectively, and measured blood flow using laser Doppler fluximetry. Large and small artery elasticity indices were noninvasively assessed using pulse wave analysis. RESULTS Basal blood flow was similar between the young and elderly groups (14.58 +/- 3.4 v 13.52 +/- 3.41 PU, P = NS). Peak blood flow induced by Ach was significantly reduced in the elderly group compared with the young group (83.4 +/- 11.9 v 93.75 +/- 10.87 PU, P < .05). However, peak blood flow induced by SNP was similar in the two groups (119.17 +/- 16.76 v 128.33 +/- 21.29 PU, P = NS). In parallel, C1 large artery elasticity and C2 small artery elasticity indices were significantly reduced in the elderly group compared with the young group (11.42 +/- 1.67 v 16.75 +/- 2.09 mL/mm Hg x 10, P < .001; and 7.67 +/- 1.56 v 10.75 +/- 1.86 mL/mm Hg x 100, P < .001, respectively). The Ach-induced peak blood flow correlated with C1 large and C2 small artery elasticity indices. CONCLUSIONS Advancing age is associated with endothelial dysfunction and reduced arterial elasticity. Reduced arterial elasticity parallels changes in impaired endothelium dependent vasodilation. It appears that reduced arterial elasticity may be used as a noninvasive measure for the determination of endothelial function.
Collapse
|
Clinical Trial |
21 |
77 |
3
|
Cheng F, Wang Y, Li J, Su C, Wu F, Xia WH, Yang Z, Yu BB, Qiu YX, Tao J. Berberine improves endothelial function by reducing endothelial microparticles-mediated oxidative stress in humans. Int J Cardiol 2012; 167:936-42. [PMID: 22465347 DOI: 10.1016/j.ijcard.2012.03.090] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 01/12/2012] [Accepted: 03/03/2012] [Indexed: 12/19/2022] [Imported: 03/19/2025]
Abstract
BACKGROUND Circulating endothelial microparticles (EMPs) lead to endothelial dysfunction by increasing oxidative stress. Berberine has a beneficial effect on endothelial function, but no data are available on the EMP-mediated oxidative stress. The present study tests the hypothesis that berberine contributes to the improvement of endothelial function in humans via inhibiting EMP-mediated oxidative stress in vascular endothelium. METHODS Twelve healthy subjects received a 1-month berberine therapy and eleven healthy subjects served as control. Endothelium-dependent and -independent function in the brachial artery was assessed by flow-mediated vasodilation (FMD) and sublingual nitroglyceride-mediated vasodilation (NMD). Circulating EMPs and serum malondialdehyde (MDA) were measured before and after therapy. Furthermore, in vitro human umbilical vein endothelial cells (HUVECs) were stimulated by EMPs with or without presence of anti-oxidant compound apocynin or berberine. Intracellular reactive oxygen species (ROS), nitric oxide (NO) production and NADPH oxidase 4 (Nox4) protein expressions were examined, respectively. RESULTS The levels of serum MDA and circulating CD31+/CD42- MPs were significantly reduced in the berberine group compared with the control group, which were associated with improvement of FMD. The EMPs in vitro facilitated ROS production and Nox4 protein expression and reduced NO synthesis in HUVECs. These alterations can be reversed by the presence of apocynin or berberine, respectively. CONCLUSION The present study demonstrated for the first time that EMP-induced upregulation of Nox4 expression may enhance ROS production in HUVECs. Berberine treatment contributes to the amelioration of endothelial function through a partially reducing oxidative stress of vascular endothelium induced by circulating CD31+/CD42- microparticles in humans.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
75 |
4
|
Xia WH, Yang Z, Xu SY, Chen L, Zhang XY, Li J, Liu X, Qiu YX, Shuai XT, Tao J. Age-related decline in reendothelialization capacity of human endothelial progenitor cells is restored by shear stress. Hypertension 2012; 59:1225-31. [PMID: 22547440 DOI: 10.1161/hypertensionaha.111.179820] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] [Imported: 03/19/2025]
Abstract
Aging is associated with dysfunction of endothelial progenitor cells (EPCs), and shear stress has a beneficial impact on EPC function; however, the effects of aging and shear stress on the endothelial repair capacity of EPCs after arterial injury have not been reported. Here we investigated the influence of aging and shear stress on the reendothelialization capacity of human EPCs and the related molecular mechanism. Compared with EPCs isolated from young subjects, EPCs from the elderly displayed an impaired migration and adhesion in vitro and demonstrated a significantly reduced reendothelialization capacity in vivo after transplantation into nude mice with carotid artery denudation injury. Shear stress pretreatment enhances the migration, adhesion, and reendothelialization capacity in both young and elderly EPCs; however, it was to a greater extent in EPCs from the elderly. Although basal CXC chemokine receptor 4 (CXCR4) expression was similar in EPCs from the 2 age groups, the stromal cell derived factor 1-induced CXCR4 and Janus kinase 2 phosphorylations were much lower in the elderly than in young EPCs. Shear stress treatment upregulated CXCR4 expression and phosphorylation and, importantly, restored the stromal cell-derived factor 1/CXCR4-dependent Janus kinase 2 phosphorylation in the elderly EPCs. Furthermore, short hairpin RNA-mediated knockdown of CXCR4 expression or pretreatment with Janus kinase 2 inhibitor diminished the enhancement in the migration, adhesion, and reendothelialization capacity of the elderly EPCs from shear stress treatments. Thus, our study demonstrates that upregulation of the CXCR4/Janus kinase 2 pathway by shear stress contributes to the enhanced reendothelialization capacity of EPCs from elderly men.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
71 |
5
|
Yang Z, Wang JM, Chen L, Luo CF, Tang AL, Tao J. Acute exercise-induced nitric oxide production contributes to upregulation of circulating endothelial progenitor cells in healthy subjects. J Hum Hypertens 2007; 21:452-60. [PMID: 17344910 DOI: 10.1038/sj.jhh.1002171] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] [Imported: 03/19/2025]
Abstract
Exercise has been proved to promote the number and activity of circulating endothelial progenitor cells (EPCs) in humans, which contributes to improvement in endothelial function and maintenance of cardiovascular homoeostasis. However, the mechanism underlying the effect of exercise on circulating EPCs in healthy subjects is not completely understood. Here, we investigated whether the regulation of acute exercise on circulating EPCs is associated with nitric oxide (NO), vascular endothelial growth factors (VEGF) and granulocyte macrophage colony stimulating factor (GM-CSF) known to modulate circulating EPCs in healthy subjects. A total of 16 healthy male volunteers underwent a modified Bruce treadmill acute exercise protocol. The number and activity of circulating EPCs, as well as the levels of NO-VEGF and GM-CSF in plasma and culture medium before and after exercise in healthy subjects were measured. The number and activity of circulating EPCs after acute exercise were significantly higher than those before exercise in healthy subjects. In parallel, acute exercise significantly enhanced plasma NO level in healthy subjects. There is a significant linear regression relationship between the enhanced plasma NO level and increased number or activity of circulating EPCs. However, no change of plasma VEGF and GM-CSF level was observed after acute exercise. The secretion of NO-VEGF and GM-CSF by cultured EPCs remained unchanged in response to acute exercise. The present study demonstrates for the first time that acute exercise-induced NO production contributes to upregulation of circulating EPCs in healthy subjects, which suggests that NO plays an important role in the regulation of exercise on circulating EPCs.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
65 |
6
|
Tao J, Wang Y, Yang Z, Tu C, Xu MG, Wang JM. Circulating endothelial progenitor cell deficiency contributes to impaired arterial elasticity in persons of advancing age. J Hum Hypertens 2006; 20:490-5. [PMID: 16496018 DOI: 10.1038/sj.jhh.1001996] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] [Imported: 03/19/2025]
Abstract
Reduced arterial elasticity is a hallmark of ageing in healthy humans and appears to occur independently of coexisting disease processes. Endothelial-cell injury and dysfunction may be responsible for this fall in arterial elasticity. We hypothesized that circulating endothelial progenitor cells (EPCs) are involved in endothelial repair and that lack of EPCs contributes to impaired arterial elasticity. A total of 56 healthy male volunteers were divided into young (n=26) and elderly (n=30) groups. Large and small artery elasticity indices were noninvasively assessed using pulse wave analysis. The number of circulating EPCs was measured by using flow cytometry. Cells demonstrating DiI-acLDL and FITC-ulex lectin double-positive fluorescence were identified as EPCs. C1 large artery elasticity and C2 small artery elasticity indices were significantly reduced in the elderly group compared with the young group (11.73+/-1.45 vs 16.88+/-1.69 ml/mm Hg x 10, P<0.001; 8.40+/-1.45 vs 10.58+/-1.18 ml/mm Hg x 100, P<0.001, respectively). In parallel, the number of circulating EPCs was significantly reduced in the elderly group compared with the young group (0.13+/-0.02 vs 0.17+/-0.04%, P<0.05). The number of circulating EPCs correlated with C1 large and C2 small artery elasticity indices (r=0.47, P<0.01; r=0.4, P<0.01). The present findings suggest that the fall in circulating EPCs with subsequently impaired endothelial-cell repair and function contributes to reduced arterial elasticity in humans with ageing. The decrease in circulating EPCs may serve as a surrogate biologic measure of vascular function and human age.
Collapse
|
|
19 |
65 |
7
|
Wang JM, Su C, Wang Y, Huang YJ, Yang Z, Chen L, Wu F, Xu SY, Tao J. Elevated circulating endothelial microparticles and brachial-ankle pulse wave velocity in well-controlled hypertensive patients. J Hum Hypertens 2008; 23:307-15. [PMID: 19037229 DOI: 10.1038/jhh.2008.137] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] [Imported: 03/19/2025]
Abstract
Vascular dysfunction in hypertensive condition is characterized by impaired endothelial function and reduced artery elasticity. Circulating endothelial microparticles (EMPs) and brachial-ankle pulse wave velocity (baPWV) are novel evaluation parameters for vascular function. However, their changes in patients with well-controlled blood pressure (BP) have not been fully acquired. To address this issue, circulating EMPs, defined as CD31+/CD42- MPs and baPWV were detected in 30 healthy subjects, 30 uncontrolled hypertensive (UCHT) patients and 23 well-controlled hypertensive (WCHT) patients. UCHT patients displayed elevated baPWV (P<0.01) and circulating EMPs (P<0.01) compared with healthy subjects. In WCHT patients, vascular damage represented by these two parameters constantly existed (P<0.01). Values of circulating EMPs were positively related to baPWV (P<0.01). Multivariate regression defined circulating EMPs as an independent contributor to the increase of baPWV value (P<0.05). Our study indicated that though BP was controlled, impaired endothelial function and arterial elasticity continued. The optimal therapy for patients with hypertension should include not only lowering BP but also improvement of vascular injury in parallel.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
61 |
8
|
Xia WH, Li J, Su C, Yang Z, Chen L, Wu F, Zhang YY, Yu BB, Qiu YX, Wang SM, Tao J. Physical exercise attenuates age-associated reduction in endothelium-reparative capacity of endothelial progenitor cells by increasing CXCR4/JAK-2 signaling in healthy men. Aging Cell 2012; 11:111-9. [PMID: 22018014 DOI: 10.1111/j.1474-9726.2011.00758.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] [Imported: 03/19/2025] Open
Abstract
Endothelial progenitor cells (EPCs) play an important role in repairing endothelial injury. Aging is associated with EPC dysfunction. Physical exercise has a beneficial impact on EPC activity. However, whether physical exercise can enhance the endothelial repair capacity of EPCs in healthy men with aging is not clear. Here, we investigated the effects of physical exercise on reendothelialization capacity and CXC chemokine receptor four (CXCR4) signaling in human EPCs. Before and after 12-week exercise, EPCs were isolated from elderly and young men. In vitro function and in vivo reendothelialization capacity of EPCs in a mouse model of carotid artery injury were measured. The expression of CXCR4 and its downstream signaling target Janus kinase-2 (JAK-2) were determined. Before exercise, in vitro function and in vivo reendothelialization capacity of EPCs were significantly reduced in elderly men compared with young men. After exercise intervention, in vitro function and in vivo reendothelialization capacity of EPCs from elderly men were markedly enhanced. Physical exercise increased a higher CXCR4 protein expression and higher JAK-2 phosphorylation levels of EPCs. The augmentation in reendothelialization capacity of EPCs was closely correlated with the upregulation of CXCR4/JAK-2 signaling and improvement of endothelial function. This study demonstrates for the first time that physical exercise attenuates age-associated reduction in endothelium-reparative capacity of EPCs by increasing CXCR4/JAK-2 signaling. Our findings provide insight into the novel mechanisms of physical exercise as a lifestyle intervention strategy to promote vascular health in aging population.
Collapse
|
|
13 |
61 |
9
|
Wang JM, Wang Y, Huang JY, Yang Z, Chen L, Wang LC, Tang AL, Lou ZF, Tao J. C-Reactive protein-induced endothelial microparticle generation in HUVECs is related to BH4-dependent NO formation. J Vasc Res 2007; 44:241-8. [PMID: 17351328 DOI: 10.1159/000100558] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 12/25/2006] [Indexed: 11/19/2022] [Imported: 03/19/2025] Open
Abstract
BACKGROUND C-reactive protein (CRP) has been proven to facilitate endothelial injury via reduced NO production. Endothelial microparticles (EMPs) have emerged as a novel marker of endothelial injury. METHODS In vitro cultured human umbilical vein endothelial cells (HUVECs) were incubated with CRP (20 mg/l) for 24 h. The numbers of EMPs with CD31- and CD51-positive staining were assessed flow-cytometrically, and NO production was measured using the Griess reaction in the presence or absence of tetrahydrobiopterin (BH(4)), respectively. RESULTS The number of EMPs was significantly increased in HUVECs stimulated by CRP compared with the control group and, in parallel, NO production was decreased (p < 0.05). In the presence of CRP, pretreatment with BH(4) decreased EMP counts and restored NO production to baseline levels (p < 0.05) while pretreatment with 2,4-diamino-6-hydroxypyrimidine (DAHP), a BH(4) synthesis inhibitor, further prompted EMP formation and decreased NO production (p < 0.05). However, adding exogenous BH(4) after pretreatment with DAHP suppressed EMP formation and restored NO production (p < 0.05). CONCLUSIONS This study demonstrates that CRP induces EMP generation in HUVECs and this effect is, at least in part, related to impaired BH(4)-dependent NO production. Augmented EMP generation in HUVECs is suggested as a novel potential mechanism contributing to the pathogenesis of vascular injury related to CRP.
Collapse
|
|
18 |
54 |
10
|
Xiao S, Yang Z, Lv R, Zhao J, Wu M, Liao Y, Liu Q. miR-135b contributes to the radioresistance by targeting GSK3β in human glioblastoma multiforme cells. PLoS One 2014; 9:e108810. [PMID: 25265336 PMCID: PMC4181861 DOI: 10.1371/journal.pone.0108810] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 08/25/2014] [Indexed: 11/18/2022] [Imported: 03/19/2025] Open
Abstract
Radioresistance remains a major challenge in the treatment of glioblastoma multiforme (GBM). Recent data strongly suggests the important role of miRNAs in cancer progression and therapeutic response. Here, we have established a radioresistant human GBM cell line U87R derived from parental U87 and found miR-135b expression was upregulated in U87R cells. miR-135b knockdown reversed radioresistance of U87R cells, and miR-135b overexpression enhanced radioresistance of U87 cells. Mechanically, bioinformatics analysis combined with experimental analysis demonstrated GSK3β (Glycogen synthase kinase 3 beta) was a novel direct target of miR-135b. Moreover, GSK3β protein expression was downregulated in U87R cells and restored expression of GSK3β increased radiosensitivity of U87R cells. In addition, clinical data indicated that the expression of miR-135b or GSK3β was significantly association with IR resistance of GBM samples. Our findings suggest miR-135b is involved in the radioresistance of human GBM cells and miR-135b-GSK3β axis may be a novel candidate for developing rational therapeutic strategies for human GBM treatment.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
51 |
11
|
Tao J, Yang Z, Wang JM, Tu C, Pan SR. Effects of fluid shear stress on eNOS mRNA expression and NO production in human endothelial progenitor cells. Cardiology 2006; 106:82-8. [PMID: 16612074 DOI: 10.1159/000092636] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 02/07/2006] [Indexed: 12/18/2022] [Imported: 03/19/2025]
Abstract
The increases in physiological levels of fluid shear stress have beneficial effects on vascular homeostasis. Endothelial progenitor cells (EPCs) play an important role in the maintenance of endothelial integrity. We hypothesized that shear stress-mediated vascular protection is related to the upregulation of endothelial nitric oxide synthase expression in EPCs. The human EPCs exposed to in vitro shear stress levels of 5, 15 and 25 dyn/cm(2) for 4 h. In vitro shear stress, in a dose-dependent fashion, increased the endothelial nitric oxide synthase mRNA expression and the nitric oxide production in human EPCs. The present findings for the first time provide novel insights into the mechanisms of the physiological levels of fluid shear stress on the regulation of human EPC biologic phenotype as a potential factor, which might contribute to vascular protective activities in humans although evidence is indirect.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
50 |
12
|
Yang Z, Xia WH, Su C, Wu F, Zhang YY, Xu SY, Liu X, Zhang XY, Ou ZJ, Lai GH, Liao XX, Jin YF, Tao J. Regular exercise-induced increased number and activity of circulating endothelial progenitor cells attenuates age-related decline in arterial elasticity in healthy men. Int J Cardiol 2011; 165:247-54. [PMID: 21955613 DOI: 10.1016/j.ijcard.2011.08.055] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 07/22/2011] [Accepted: 08/17/2011] [Indexed: 12/21/2022] [Imported: 03/19/2025]
Abstract
BACKGROUND Deficiency in number and activity of circulating EPCs is associated with reduced arterial elasticity in humans with advancing aging. Physical exercise can increase the number and activity of circulating EPCs in humans. Here we investigated whether regular exercise-induced enhanced circulating endothelial progenitor cells (EPCs) improves age-related decline in arterial elasticity in healthy men. METHODS In a cross-sectional study, the number and activity of circulating EPCs as well as brachial-ankle pulse wave velocity (baPWV) of young and older sedentary or endurance-trained healthy men were studied. Then we observed the effect of regular exercise on circulating EPCs and baPWV of 10 older and 10 young sedentary healthy men. RESULTS In both sedentary and endurance-trained men, the number and activity of circulating EPCs were significantly low in older men compared with young men, which was paralleled to increased baPWV. After three months of regular exercise, the number and activity of circulating EPCs increased, and the baPWV of 10 older and 10 young sedentary healthy men decreased. However, the increased number and activity of circulating EPCs and decreased baPWV of older sedentary healthy men were higher. There was a close correlation between circulating EPCs and baPWV. Multivariate analysis identified proliferative activity of circulating EPCs as an independent predictor of baPWV. CONCLUSIONS The present study demonstrates for the first time that regular physical exercise-induced enhanced circulating EPCs attenuates age-related decline in arterial elasticity in healthy men. These findings provide novel insights into the protective effects of exercise on age-related vascular injury.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
48 |
13
|
Yang Z, Tao J, Wang JM, Tu C, Xu MG, Wang Y, Pan SR. Shear stress contributes to t-PA mRNA expression in human endothelial progenitor cells and nonthrombogenic potential of small diameter artificial vessels. Biochem Biophys Res Commun 2006; 342:577-84. [PMID: 16488398 DOI: 10.1016/j.bbrc.2006.01.172] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2005] [Accepted: 01/28/2006] [Indexed: 01/25/2023] [Imported: 03/19/2025]
Abstract
Seeding endothelial progenitor cells (EPCs) onto the surface of vascular grafts has been proved to be a promising strategy to improve nonthrombogenic potentials of small diameter artificial vessels. Here, we investigated whether in vitro shear stress modulates the tissue-type plasminogen activator (t-PA) secretion and mRNA expression in human EPCs and improves patency of the EPC-seeded polyurethane small diameter vascular grafts implanted in the canine carotid artery in vivo. In vitro shear stress, in a dose-dependent manner, increased t-PA secretion and mRNA expression of human EPCs. The in vivo implantation of EPC-seeded vascular grafts remained highly patent in shear stress pretreatment compared with stationary condition. The present findings demonstrate for the first time that in vitro shear stress can enhance t-PA secretion and gene expression in human EPCs, which contributes to improvement in nonthrombogenic potentials of EPC-seeded small diameter artificial vessels with maintenance of in vivo highly patency rate.
Collapse
|
|
19 |
47 |
14
|
Tao J, Yang Z, Wang JM, Wang LC, Luo CF, Tang AL, Dong YG, Ma H. Shear stress increases Cu/Zn SOD activity and mRNA expression in human endothelial progenitor cells. J Hum Hypertens 2007; 21:353-8. [PMID: 17287843 DOI: 10.1038/sj.jhh.1002147] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] [Imported: 03/19/2025]
Abstract
Endothelial progenitor cells (EPCs) are involved in endothelial repair. However, the function of EPCs is impaired in the presence of cardiovascular risk factors. Therefore, upregulation of functional gene expression and bioactive substance production such as superoxide dismutase (SOD) activity and mRNA expression in EPCs may contribute to the maintenance of EPC-related endothelial repair. EPCs from human peripheral blood mononuclear cells were exposed to in vitro 5, 15 and 25 dyn/cm(2) shear stress for 5, 15 and 25 h, respectively. Shear stress in a dose- and time-dependent fashion increased Cu/Zn SOD activity of human EPCs. Shear stress also upregulated the Cu/Zn SOD mRNA expression of human EPCs, indicating that an increase in Cu/Zn SOD activity induced by shear stress was mediated by enhanced transcription. Our data are the first time to show that in vitro shear stress enhances mRNA expression and activity of Cu/Zn SOD in human EPCs, suggesting that shear stress can be used as a novel Means of manipulation to improve functional potential of EPCs. The augmentation in copper/zinc-containing enzyme (Cu/Zn SOD), with subsequent accelerated superoxide anion (O(2)(-)) inactivation, might increase locally nitric oxide (NO) biological availability, which contributes to EPC-related vascular protection.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
39 |
15
|
Xu MG, Wang JM, Chen L, Wang Y, Yang Z, Tao J. Berberine-induced upregulation of circulating endothelial progenitor cells is related to nitric oxide production in healthy subjects. Cardiology 2008; 112:279-86. [PMID: 18815446 DOI: 10.1159/000157336] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Accepted: 05/02/2008] [Indexed: 01/12/2023] [Imported: 03/19/2025]
Abstract
OBJECTIVES Berberine (BR) has a beneficial effect on endothelial function by increasing nitric oxide (NO), as NO plays a pivotal role in the regulation of endothelial progenitor cell (EPC) mobilization and function. The aim of the present study was to investigate whether BR-induced upregulation of circulating EPCs is related to NO production in healthy subjects. METHODS Twenty volunteers were recruited and received 400 mg of BR 3 times a day for 30 days. We assessed the number of EPC colony-forming units (EPC-CFUs), as well as the proliferative, adhesive and migratory activities of circulating EPCs before and after the 30-day BR therapy. The level of plasma NO was also measured before and after the 30-day BR therapy. RESULTS After 30 days of BR therapy, the number of EPC-CFUs was increased and the function of EPCs, including proliferation, adhesion and migration, was augmented. In parallel, BR therapy enhanced the plasma NO level. There was a significant linear regression relationship between the enhanced plasma NO level and the increased number and function of circulating EPCs. CONCLUSIONS BR-induced upregulation of the number and function of circulating EPCs in healthy subjects is related to NO production.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
36 |
16
|
Yang Z, Xia WH, Zhang YY, Xu SY, Liu X, Zhang XY, Yu BB, Qiu YX, Tao J. Shear stress-induced activation of Tie2-dependent signaling pathway enhances reendothelialization capacity of early endothelial progenitor cells. J Mol Cell Cardiol 2012; 52:1155-63. [PMID: 22326430 DOI: 10.1016/j.yjmcc.2012.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/09/2012] [Accepted: 01/24/2012] [Indexed: 11/19/2022] [Imported: 03/19/2025]
Abstract
Although endothelial progenitor cells (EPCs) play a pivotal role in the endothelial repair following arterial injury and shear stress has a beneficial effect on EPCs, however, the molecular mechanism underlying the influence of EPCs on the endothelial integrity and the regulation of shear stress on the EPC signaling remained to be studied. Here, we investigated the effects of laminar shear stress on the tyrosine kinase with immunoglobulin and epidermal growth factor homology domain-2 (Tie2)-dependent signaling and its relation to in vivo reendothelialization capacity of human early EPCs. The human early EPCs were treated with shear stress. Shear stress in a dose-dependent manner increased angiopoietin-2 (Ang2)-induced migratory, adhesive and proliferatory activities of EPCs. Transplantation of EPCs treated by shear stress facilitated in vivo reendothelialization in nude mouse model of carotid artery injury. In parallel, the phosphorylation of Tie2 and Akt of EPCs in response to shear stress was significantly enhanced. With treatment of Tie2 knockdown or Akt inhibition, shear stress-induced phosphorylation of Akt and endothelial nitric oxide synthase (eNOS) of EPCs was markedly suppressed. After Tie2/PI3K/Akt/eNOS signaling was blocked, the effects of shear stress on in vitro function and in vivo reendothelialization capacity of EPCs were significantly inhibited. The present findings demonstrate for the first time that Tie2/PI3k/Akt/eNOS signaling pathway is, at least in part, involved in the EPCs-mediated reendothelialization after arterial injury. The upregulation of shear stress-induced Tie2-dependent signaling contributes to enhanced in vivo reendothelialization capacity of human EPCs.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
35 |
17
|
Yang Z, Chen L, Su C, Xia WH, Wang Y, Wang JM, Chen F, Zhang YY, Wu F, Xu SY, Zhang XL, Tao J. Impaired endothelial progenitor cell activity is associated with reduced arterial elasticity in patients with essential hypertension. Clin Exp Hypertens 2010; 32:444-52. [PMID: 20939752 DOI: 10.3109/10641961003686435] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] [Imported: 03/19/2025]
Abstract
Endothelial dysfunction is related to reduced arterial elasticity in patients with essential hypertension. Circulating endothelial progenitor cells (EPCs), an important endogenous repair approach for endothelial injury, is altered in hypertensive patients. However, the association between alteration in circulating EPCs and hypertension-related reduced arterial elasticity has not been reported. The purpose of this study is to investigate the association between alteration in circulating EPCs and hypertension-related reduced arterial elasticity. We measured the artery elasticity profiles including brachial-ankle PWV (baPWV) and C1 large and C2 small artery elasticity indices in patients with essential hypertension (n = 20) and age-matched normotensive subjects (n = 21). The number and activity of circulating EPCs isolated from peripheral blood were determined. Compared to normotensive subjects, the patients with hypertension exhibited decreased C1 large and C2 small artery elasticity indices, as well as increased baPWV. The number of circulating EPCs did not differ between the two groups. The migratory and proliferative activities of circulating EPCs in hypertensive patients were lower than those in normotensive subjects. Both proliferatory and migratory activities of circulating EPCs closely correlated with arterial elasticity profiles, including baPWV and C1 large and C2 small artery elasticity indices. Multivariate analysis identified both proliferative and migratory activities of circulating EPCs as independent predictors of the artery elasticity profiles. The present study demonstrates for the first time that impaired activity of circulating EPCs is associated with reduced arterial elasticity in patients with hypertension. The fall in endogenous repair capacity of vascular endothelium may be involved in the pathogenesis of hypertension-related vascular injury.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
34 |
18
|
Wang JM, Yang Z, Xu MG, Chen L, Wang Y, Su C, Tao J. Berberine-induced decline in circulating CD31+/CD42− microparticles is associated with improvement of endothelial function in humans. Eur J Pharmacol 2009; 614:77-83. [PMID: 19401197 DOI: 10.1016/j.ejphar.2009.04.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Revised: 04/07/2009] [Accepted: 04/09/2009] [Indexed: 02/05/2023] [Imported: 03/19/2025]
|
|
16 |
31 |
19
|
Xiao S, Yang Z, Qiu X, Lv R, Liu J, Wu M, Liao Y, Liu Q. miR-29c contribute to glioma cells temozolomide sensitivity by targeting O6-methylguanine-DNA methyltransferases indirectely. Oncotarget 2016; 7:50229-50238. [PMID: 27384876 PMCID: PMC5226579 DOI: 10.18632/oncotarget.10357] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 05/28/2016] [Indexed: 11/25/2022] [Imported: 03/19/2025] Open
Abstract
Temozolomide (TMZ) is the most commonly used alkylating agent in glioma chemotherapy. However growing resistance to TMZ remains a major challenge to clinicians. The DNA repair protein O6-methylguanine-DNA methytransferase (MGMT) plays critical roles in TMZ resistance. Promoter methylation can inhibit MGMT expression and increase chemosensitivity. Here, we described a novel mechanism regulating MGMT expression. We showed that miR-29c suppressed MGMT expression indirectly via targeting specificity protein 1 (Sp1). MiR-29c overexpression increased TMZ efficacy in cultured glioma cells and in mouse xenograft models. The miR-29c levels were positively correlated with patient outcomes. Our data suggest miR-29c may be potential therapeutic targets for glioma treatment.
Collapse
|
research-article |
9 |
28 |
20
|
Berberine-induced mobilization of circulating endothelial progenitor cells improves human small artery elasticity. J Hum Hypertens 2007; 22:389-93. [PMID: 18075521 DOI: 10.1038/sj.jhh.1002311] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] [Imported: 03/19/2025]
|
|
18 |
26 |
21
|
Tao J, Liu DH, Wang LC, Wang JM, Wang Y, Yang Z, Lou ZF, Tang AL. Arterial elasticity identified by pulse wave analysis and its relation to endothelial function in patients with coronary artery disease. J Hum Hypertens 2006; 21:149-53. [PMID: 17082797 DOI: 10.1038/sj.jhh.1002112] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] [Imported: 03/19/2025]
Abstract
Patients with coronary artery disease (CAD) have impaired endothelial function. Arterial elasticity is modulated by endothelial function. The association between arterial elasticity and endothelial function has not been reported in patients with CAD. The present study was designed to investigate whether endothelial dysfunction contributes to impaired arterial elasticity. Thirty patients with CAD and 30 control subjects were recruited. Large and small artery elasticity indices were non-invasively assessed using pulse wave analysis. Brachial artery endothelium-dependent and -independent function were assessed by vascular response to flow-mediated vasodilation (FMD) and sublingual nitroglyceride (NTG), respectively. C1 large artery elasticity index was not different in the CAD group compared with the control group. However, C2 small artery elasticity index was significantly reduced in the CAD group compared with the control group. Flow-mediated vasodilation (FMD) was also impaired in the CAD group compared with the control group. Flow-mediated vasodilation (FMD) in the brachial artery correlated with C2 small arterial elasticity index. But NTG-mediated brachial artery vasodilation was similar between the two groups. The present findings suggest that the patients with CAD have reduced C2 small arterial elasticity index and impaired FMD. Endothelial dysfunction is involved in diminished arterial elasticity, suggesting that C2 small arterial elasticity index is a novel surrogate measure for the clinical evaluation of endothelial function.
Collapse
|
|
19 |
25 |
22
|
Yang Z, Wang JM, Wang LC, Chen L, Tu C, Luo CF, Tang AL, Wang SM, Tao J. In vitro shear stress modulates antithrombogenic potentials of human endothelial progenitor cells. J Thromb Thrombolysis 2007; 23:121-7. [PMID: 17221326 DOI: 10.1007/s11239-006-9045-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 11/15/2006] [Indexed: 10/23/2022] [Imported: 03/19/2025]
Abstract
BACKGROUND Recent study suggested that endothelial progenitor cells (EPCs), a novel therapeutic approach for endothelial dysfunction, present limited antithrombogenic potentials. However, few attempts have been done to improve the antithrombogenic potentials of EPCs. Our previous study proved that in vitro shear stress contributes to the increase in t-PA production by human EPCs. Here, we further investigated whether in vitro shear stress contributes to the secretion of antithrombogenic substances including plasminogen activator inhibitor-1 (PAI-1) and prostaglandin I(2) (PGI(2)) by human EPCs. METHODS The peripheral blood mononuclear cells of healthy subjects were induced into EPCs. Then the human EPCs were treated with four levels of shear stress including stationary condition low media and high flow shear stress. The production of PAI-1 and 6-keto-prostaglandin F1(1alpha)(6-Keto-PGF(1alpha)) by human EPCs with shear stress treatment were measured. RESULTS In vitro medium and high flow shear stress inhibited PAI-1 secretion by human EPCs, but low flow shear stress had no effect on PAI-1 secretion by human EPCs. All levels of shear stress significantly increased 6-Keto-PGF(1alpha )production by human EPCs in a dose-dependent manner. CONCLUSIONS The present study demonstrates that in vitro shear stress can promote PGI(2 )secretion and inhibit PAI-1 secretion by human EPCs, which improves the antithrombogenic potentials of human EPCs.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
23 |
23
|
Liu X, Zhang GX, Zhang XY, Xia WH, Yang Z, Su C, Qiu YX, Xu SY, Zhan H, Tao J. Lacidipine improves endothelial repair capacity of endothelial progenitor cells from patients with essential hypertension. Int J Cardiol 2013; 168:3317-26. [PMID: 23642821 DOI: 10.1016/j.ijcard.2013.04.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 02/08/2013] [Accepted: 04/06/2013] [Indexed: 10/26/2022] [Imported: 03/19/2025]
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) play a critical role in maintaining the integrity of vascular endothelium following arterial injury. Lacidipine has a beneficial effect on endothelium of hypertensive patients, but limited data are available on EPCs-mediated endothelial protection. This study tests the hypothesis that lacidipine treatment can improve endothelial repair capacity of EPCs from hypertensive patients through increasing CXC chemokine receptor four (CXCR4) signaling. METHODS In vivo reendothelialization capacity of EPCs from hypertensive patients with or without in vitro lacidipine treatment was examined in a nude mouse model of carotid artery injury. Expression of CXCR4 and alteration in migration and adhesion functions of EPCs were evaluated. RESULTS Basal CXCR4 expression was markedly reduced in EPCs from hypertensive patients compared with normal subjects. In parallel, the phosphorylation of Janus kinase-2 (JAK-2) of EPCs, a CXCR4 downstream signaling, was also significantly decreased. Lacidipine promoted CXCR4/JAK-2 signaling expression of in vitro EPCs. Transplantation of EPCs pretreated with lacidipine significantly accelerated in vivo reendothelialization. The enhanced in vitro function and in vivo reendothelialization capacity of EPCs were inhibited by shRNA-mediated knockdown of CXCR4 expression or pretreatment with JAK-2 inhibitor AG490, respectively. In hypertensive patients, lacidipine treatment for 4 weeks also resulted in an upregulation of CXCR4/JAK-2 signaling of EPCs, which was associated with augmented EPCs-mediated reendothelialization and improved endothelial function. CONCLUSION Deterioration of CXCR4 signaling may lead to impaired EPCs-mediated reendothelialization of hypertensive patients. Lacidipine-modified EPCs via a partially CXCR4 signaling contribute to enhanced endothelial repair capacity in hypertension.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
22 |
24
|
Zeng H, Jiang Y, Tang H, Ren Z, Zeng G, Yang Z. Abnormal phosphorylation of Tie2/Akt/eNOS signaling pathway and decreased number or function of circulating endothelial progenitor cells in prehypertensive premenopausal women with diabetes mellitus. BMC Endocr Disord 2016; 16:13. [PMID: 26936372 PMCID: PMC4776390 DOI: 10.1186/s12902-016-0093-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 02/25/2016] [Indexed: 02/07/2023] [Imported: 08/29/2023] Open
Abstract
BACKGROUNDS The number and activity of circulating endothelial progenitor cells (EPCs) in prehypertension is preserved in premenopausal women. However, whether this favorable effect still exists in prehypertensive premenopausal women with diabetes is not clear. METHODS This study compared the number and functional activity of circulating EPCs in normotensive or prehypertensive premenopausal women without diabetes mellitus and normotensive or prehypertensive premenopausal women with diabetes mellitus, evaluated the vascular endothelial function in each groups, and investigated the possible underlying mechanism. RESULTS We found that compared with normotensive premenopausal women, the number and function of circulating EPCs, as well as endothelial function evaluated by flow-mediated dilatation (FMD) in prehypertensive premenopausal women were preserved. In parallel, the Tie2/Akt/eNOS signaling pathway and the plasma NO level or NO secretion of circulating EPCs in prehypertensive premenopausal women was also retained. However, in presence of normotension or prehypertension with diabetes mellitus, the number or function of circulating EPCs and FMD in premenopausal women decreased. Similarly, the phosphorylation of Tie2/Akt/eNOS signaling pathway and the plasma NO level or NO secretion of circulating EPCs was reduced in prehypertension premenopausal with diabetes mellitus. CONCLUSION The present findings firstly demonstrate that the unfavorable effects of diabetes mellitus on number and activity of circulating EPCs in prehypertension premenopausal women, which is at least partially related to the abnormal phosphorylation of Tie2/Akt/eNOS signaling pathway and subsequently reduced nitric oxide bioavailability. The Tie2/Akt/eNOS signaling pathway may be a potential target of vascular protection in prehypertensive premenopausal women with diabetes mellitus.
Collapse
|
research-article |
9 |
20 |
25
|
Huang Q, Yang Z, Zhou JP, Luo Y. HMGB1 induces endothelial progenitor cells apoptosis via RAGE-dependent PERK/eIF2α pathway. Mol Cell Biochem 2017; 431:67-74. [PMID: 28251435 DOI: 10.1007/s11010-017-2976-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/16/2017] [Indexed: 02/06/2023] [Imported: 03/19/2025]
Abstract
Studies have demonstrated that the high-mobility group 1B protein (HMGB1) could regulate endothelial progenitor cell (EPC) homing, but the effect of HMGB1 on EPC apoptosis and associated mechanisms are still unclear. The aim of this study was to investigate the effects of HMGB1 on EPC apoptosis and the possible involvement of the endoplasmic reticulum (ER) stress pathway. EPC apoptosis was determined by flow cytometry. The expressions of PERK, eIF2α, and CHOP were detected by western blotting. Additionally, the effects of PERK shRNA on the biological behaviors of EPCs were assessed. Our results showed that incubation of EPCs with HMGB1 (0.1-1 μg/ml) for 12-48 h induced apoptosis as well as activated ER stress transducers, as assessed by up-regulating PERK protein expression and eIF2α phosphorylation in a dose or time-dependent manner. Moreover, HMGB1-mediated EPC apoptosis and CHOP expression were dramatically suppressed by PERK shRNA or a specific eIF2α inhibitor (salubrinal). Importantly, a blocking antibody specifically targeted against RAGE (anti-RAGE antibody) markedly inhibited HMGB1-induced EPC apoptosis and ER stress marker protein (PERK, eIF2α, and CHOP) expression levels. Our novel findings suggest that HMGB1 triggered EPC apoptosis in a manner of RAGE-mediated activation of the PERK/eIF2α pathway.
Collapse
|
Journal Article |
8 |
18 |