1
|
Zhou J, Bi C, Cheong LL, Mahara S, Liu SC, Tay KG, Koh TL, Yu Q, Chng WJ. The histone methyltransferase inhibitor, DZNep, up-regulates TXNIP, increases ROS production, and targets leukemia cells in AML. Blood 2011; 118:2830-2839. [PMID: 21734239 DOI: 10.1182/blood-2010-07-294827] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] [Imported: 04/08/2025] Open
Abstract
Recent studies have shown that 3-Deazaneplanocin A (DZNep), a histone methyltransferase inhibitor, disrupts polycomb-repressive complex 2 (PRC2), and preferentially induces apoptosis in cancer cells, including acute myeloid leukemia (AML). However, the underlying molecular mechanisms are not well understood. The present study demonstrates that DZNep induces robust apoptosis in AML cell lines, primary cells, and targets CD34(+)CD38(-) leukemia stem cell (LSC)-enriched subpopulations. Using RNA interference (RNAi), gene expression profiling, and ChIP, we identified that TXNIP, a major redox control molecule, plays a crucial role in DZNep-induced apoptosis. We show that disruption of PRC2, either by DZNep treatment or EZH2 knockdown, reactivates TXNIP, inhibits thioredoxin activity, and increases reactive oxygen species (ROS), leading to apoptosis. Furthermore, we show that TXNIP is down-regulated in AML and is a direct target of PRC2-mediated gene silencing. Consistent with the ROS accumulation on DZNep treatment, we also see a signature of endoplasmic reticulum (ER) stress-regulated genes, commonly associated with cell survival, down-regulated by DZNep. Taken together, we uncover a novel molecular mechanism of DZNep-mediated apoptosis and propose that EZH2 may be a potential new target for epigenetic treatment in AML.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/pharmacology
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carrier Proteins/antagonists & inhibitors
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Proliferation
- Chromatin Immunoprecipitation
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Enhancer of Zeste Homolog 2 Protein
- Enzyme Inhibitors/pharmacology
- Epigenomics
- Female
- Gene Expression Profiling
- Gene Silencing
- Histone Methyltransferases
- Histone-Lysine N-Methyltransferase/antagonists & inhibitors
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Oligonucleotide Array Sequence Analysis
- Polycomb Repressive Complex 2
- Polycomb-Group Proteins
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Reactive Oxygen Species/metabolism
- Repressor Proteins/antagonists & inhibitors
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tumor Cells, Cultured
Collapse
|
Comparative Study |
14 |
174 |
2
|
Zhou J, Ng SB, Chng WJ. LIN28/LIN28B: an emerging oncogenic driver in cancer stem cells. Int J Biochem Cell Biol 2013; 45:973-978. [PMID: 23420006 DOI: 10.1016/j.biocel.2013.02.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/31/2013] [Accepted: 02/07/2013] [Indexed: 10/27/2022] [Imported: 08/29/2023]
Abstract
LIN28 (LIN28A) is a reprogramming factor and conserved RNA-binding protein. LIN28B is the only homolog of LIN28 in humans, sharing structure and certain function. LIN28/LIN28B has been identified to be overexpressed in a wide range of solid tumors and hematological malignancies. Blockage of let-7 miRNA biogensis and subsequent derepression of let-7 miRNA target genes by LIN28/LIN28B play important roles in cancer progression and metastasis. We will first provide an overview of LIN28/LIN28B gene and protein structures, followed by summary of the studies that showed their aberrant expression in primary human cancers and relevant clinical significance with emphasis on their roles in formation of cancer stem cells. Next, we will highlight the current knowledge of LIN28/LIN28B regulators and molecular mechanisms of LIN28/LIN28B-mediated oncogenesis. The potential medical applications for targeting LIN28/LIN28B will also be discussed in this review.
Collapse
|
Review |
12 |
139 |
3
|
Zhou J, Chng WJ. Roles of thioredoxin binding protein (TXNIP) in oxidative stress, apoptosis and cancer. Mitochondrion 2013; 13:163-169. [PMID: 22750447 DOI: 10.1016/j.mito.2012.06.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/08/2012] [Accepted: 06/19/2012] [Indexed: 02/07/2023] [Imported: 08/29/2023]
Abstract
Thioredoxin binding protein (TXNIP) has multiple functions and plays an important role in redox homeostasis. TXNIP increases the production of reactive oxygen species (ROS), and oxidative stress, resulting in cellular apoptosis. It has been identified as a tumor suppressor gene (TSG) in various solid tumors and hematological malignancies. In the present review, we will first provide an overview of TXNIP protein and function, followed by a summary of the major studies that have demonstrated the frequent repression of TXNIP in cancers. Functional characterization of TXNIP knockout mouse model is summarized. We will then discuss the use of small molecular inhibitors to reactivate TXNIP expression as a novel anticancer strategy.
Collapse
|
Review |
12 |
128 |
4
|
Zhou J, Goldwasser MA, Li A, Dahlberg SE, Neuberg D, Wang H, Dalton V, McBride KD, Sallan SE, Silverman LB, Gribben JG. Quantitative analysis of minimal residual disease predicts relapse in children with B-lineage acute lymphoblastic leukemia in DFCI ALL Consortium Protocol 95-01. Blood 2007; 110:1607-1611. [PMID: 17485550 PMCID: PMC1975844 DOI: 10.1182/blood-2006-09-045369] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2006] [Accepted: 04/16/2007] [Indexed: 11/20/2022] [Imported: 04/08/2025] Open
Abstract
In a prospective trial in 284 children with B-lineage acute lymphoblastic leukemia (ALL), we assessed the clinical utility of real-time quantitative polymerase chain reaction analysis of antigen receptor gene rearrangements for detection of minimal residual disease (MRD) to identify children at high risk of relapse. At the end of induction therapy, the 5-year risk of relapse was 5% in 176 children with no detectable MRD and 44% in 108 children with detectable MRD (P < .001), with a linear association of the level of MRD and subsequent relapse. Recursive partitioning and clinical characteristics identified that the optimal cutoff level of MRD to predict outcome was 10(-3). The 5-year risk of relapse was 12% for children with MRD less than one leukemia cell per 10(3) normal cells (low MRD) but 72% for children with MRD levels greater than this level (high MRD) (P < .001) and children with high MRD had a 10.5-fold greater risk of relapse. Based upon these results we have altered our treatment regimen for children with B-lineage ALL and children with MRD levels greater than or equal to 10(-3) at the end of 4 weeks of multiagent induction chemotherapy now receive intensified treatment to attempt to decrease their risk of subsequent relapse.
Collapse
|
Multicenter Study |
18 |
93 |
5
|
Zhou J, Yu Q, Chng WJ. TXNIP (VDUP-1, TBP-2): a major redox regulator commonly suppressed in cancer by epigenetic mechanisms. Int J Biochem Cell Biol 2011; 43:1668-1673. [PMID: 21964212 DOI: 10.1016/j.biocel.2011.09.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 01/08/2023] [Imported: 08/29/2023]
Abstract
TXNIP (also named as VDUP-1 or TBP-2) was originally isolated in HL60 cells treated with Vitamin D3. Subsequently, it has been identified as a major redox regulator and a Tumor Suppressor Gene (TSG) in various solid tumors and hematological malignancies. In the present review, we will first provide an overview of TXNIP gene and protein structures, followed by a summary of the studies that have demonstrated its frequent repression in human cancers and relevant clinical significance, as well as functional characterization in animal models. We will then highlight our current knowledge of TXNIP signaling and biological functions. Next, we will discuss the evidence that clearly have demonstrated that the epigenetic silencing of TXNIP in cancer through various molecular mechanisms. The therapeutic use of small molecular inhibitors to reactivate TXNIP expression for cancer treatment will also be discussed in this review.
Collapse
|
Review |
14 |
90 |
6
|
Zhou J, Ching YQ, Chng WJ. Aberrant nuclear factor-kappa B activity in acute myeloid leukemia: from molecular pathogenesis to therapeutic target. Oncotarget 2015; 6:5490-5500. [PMID: 25823927 PMCID: PMC4467382 DOI: 10.18632/oncotarget.3545] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/15/2015] [Indexed: 02/07/2023] [Imported: 04/08/2025] Open
Abstract
The overall survival of patients with acute myeloid leukemia (AML) has not been improved significantly over the last decade. Molecularly targeted agents hold promise to change the therapeutic landscape in AML. The nuclear factor kappa B (NF-κB) controls a plethora of biological process through switching on and off its long list of target genes. In AML, constitutive NF-κB has been detected in 40% of cases and its aberrant activity enable leukemia cells to evade apoptosis and stimulate proliferation. These facts suggest that NF-κB signaling pathway plays a fundamental role in the development of AML and it represents an attractive target for the intervention of AML. This review summarizes our current knowledge of NF-κB signaling transduction including canonical and non-canonical NF-κB pathways. Then we specifically highlight what factors contribute to the aberrant activation of NF-κB activity in AML, followed by an overview of 8 important clinical trials of the first FDA approved proteasome inhibitor, Bortezomib (Velcade), which is a NF-κB inhibitor too, in combination with other therapeutic agents in patients with AML. Finally, this review discusses the future directions of NF-κB inhibitor in treatment of AML, especially in targeting leukemia stem cells (LSCs).
Collapse
|
Review |
10 |
85 |
7
|
Zhou J, Bi C, Ching YQ, Chooi JY, Lu X, Quah JY, Toh SHM, Chan ZL, Tan TZ, Chong PSY, Chng WJ. Inhibition of LIN28B impairs leukemia cell growth and metabolism in acute myeloid leukemia. J Hematol Oncol 2017; 10:138. [PMID: 28693523 PMCID: PMC5504806 DOI: 10.1186/s13045-017-0507-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/29/2017] [Indexed: 02/08/2023] [Imported: 04/08/2025] Open
Abstract
BACKGROUND Current conventional chemotherapy for acute myeloid leukemia (AML) can achieve remission in over 70% of patients, but a majority of them will relapse within 5 years despite continued treatment. The relapse is postulated to be due to leukemia stem cells (LSCs), which are different from normal hematopoietic stem cells (HSCs). LIN28B is microRNA regulator and stem cell reprogramming factor. Overexpression of LIN28B has been associated with advance human malignancies and cancer stem cells (CSCs), including AML. However, the molecular mechanism by which LIN28B contributes to the development of AML remains largely elusive. METHODS We modulated LIN28B expression in AML and non-leukemic cells and investigated functional consequences in cell proliferation, cell cycle, and colony-forming assays. We performed a microarray-based analysis for LIN28B-silencing cells and interrogated gene expression data with different bioinformatic tools. AML mouse xenograft model was used to examine the in vivo function of LIN28B. RESULTS We demonstrated that targeting LIN28B in AML cells resulted in cell cycle arrest, inhibition of cell proliferation and colony formation, which was induced by de-repression of let-7a miRNA. On the other hand, overexpression of LIN28B promoted cell proliferation. Data point to a mechanism where that inhibition of LIN28B induces metabolic changes in AML cells. IGF2BP1 was confirmed to be a novel downstream target of LIN28B via let-7 miRNA in AML. Notably, ectopic expression of LIN28B increased tumorigenicity, while silencing LIN28B led to slow tumor growth in vivo. CONCLUSIONS In sum, these results uncover a novel mechanism of an important regulatory signaling, LIN28B/let-7/IGF2BP1, in leukemogenesis and provide a rationale to target this pathway as effective therapeutic strategy.
Collapse
MESH Headings
- Animals
- Cell Cycle Checkpoints
- Cell Line, Tumor
- Cell Proliferation
- Female
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA Interference
- RNA, Small Interfering/genetics
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
Collapse
|
research-article |
8 |
58 |
8
|
Zhou J, Bi C, Chng WJ, Cheong LL, Liu SC, Mahara S, Tay KG, Zeng Q, Li J, Guo K, Tan CPB, Yu H, Albert DH, Chen CS. PRL-3, a metastasis associated tyrosine phosphatase, is involved in FLT3-ITD signaling and implicated in anti-AML therapy. PLoS One 2011; 6:e19798. [PMID: 21589872 PMCID: PMC3093398 DOI: 10.1371/journal.pone.0019798] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 04/13/2011] [Indexed: 02/06/2023] [Imported: 04/08/2025] Open
Abstract
Combination with other small molecule drugs represents a promising strategy to improve therapeutic efficacy of FLT3 inhibitors in the clinic. We demonstrated that combining ABT-869, a FLT3 inhibitor, with SAHA, a HDAC inhibitor, led to synergistic killing of the AML cells with FLT3 mutations and suppression of colony formation. We identified a core gene signature that is uniquely induced by the combination treatment in 2 different leukemia cell lines. Among these, we showed that downregulation of PTP4A3 (PRL-3) played a role in this synergism. PRL-3 is downstream of FLT3 signaling and ectopic expression of PRL-3 conferred therapeutic resistance through upregulation of STAT (signal transducers and activators of transcription) pathway activity and anti-apoptotic Mcl-1 protein. PRL-3 interacts with HDAC4 and SAHA downregulates PRL-3 via a proteasome dependent pathway. In addition, PRL-3 protein was identified in 47% of AML cases, but was absent in myeloid cells in normal bone marrows. Our results suggest such combination therapies may significantly improve the therapeutic efficacy of FLT3 inhibitors. PRL-3 plays a potential pathological role in AML and it might be a useful therapeutic target in AML, and warrant clinical investigation.
Collapse
|
research-article |
14 |
58 |
9
|
Zhou J, Quah JY, Ng Y, Chooi JY, Toh SHM, Lin B, Tan TZ, Hosoi H, Osato M, Seet Q, Ooi AL, Lindmark B, McHale M, Chng WJ. ASLAN003, a potent dihydroorotate dehydrogenase inhibitor for differentiation of acute myeloid leukemia. Haematologica 2020; 105:2286-2297. [PMID: 33054053 PMCID: PMC7556493 DOI: 10.3324/haematol.2019.230482] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 11/05/2019] [Indexed: 11/09/2022] [Imported: 04/08/2025] Open
Abstract
Differentiation therapies achieve remarkable success in acute promyelocytic leukemia, a subtype of acute myeloid leukemia. However, excluding acute promyelocytic leukemia, clinical benefits of differentiation therapies are negligible in acute myeloid leukemia except for mutant isocitrate dehydrogenase 1/2. Dihydroorotate dehydrogenase catalyses the fourth step of the de novo pyrimidine synthesis pathway. ASLAN003 is a highly potent dihydroorotate dehydrogenase inhibitor that induces differentiation, as well as reduces cell proliferation and viability, of acute myeloid leukemia cell lines and primary acute myeloid leukemia blasts including in chemo-resistant cells. Apoptotic pathways are triggered by ASLAN003, and it also significantly inhibits protein synthesis and activates AP-1 transcription, contributing to its differentiation promoting capacity. Finally, ASLAN003 substantially reduces leukemic burden and prolongs survival in acute myeloid leukemia xenograft mice and acute myeloid leukemia patient-derived xenograft models. Notably, the drug has no evident effect on normal hematopoietic cells and exhibits excellent safety profiles in mice, even after a prolonged period of administration. Our results, therefore, suggest that ASLAN003 is an agent targeting dihydroorotate dehydrogenase with potential in the treatment of acute myeloid leukemia. ASLAN003 is currently being evaluated in phase 2a clinical trial in acute myeloid leukemia patients.
Collapse
|
research-article |
5 |
55 |
10
|
Zhou J, Goh BC, Albert DH, Chen CS. ABT-869, a promising multi-targeted tyrosine kinase inhibitor: from bench to bedside. J Hematol Oncol 2009; 2:33. [PMID: 19642998 PMCID: PMC2729745 DOI: 10.1186/1756-8722-2-33] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 07/30/2009] [Indexed: 12/12/2022] [Imported: 04/08/2025] Open
Abstract
Tyrosine Kinase Inhibitors (TKI) have significantly changed the landscape of current cancer therapy. Understanding of mechanisms of aberrant TK signaling and strategies to inhibit TKs in cancer, further promote the development of novel agents.ABT-869, a novel ATP-competitive receptor tyrosine kinase inhibitor is a potent inhibitor of members of the vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF) receptor families. ABT-869 showed potent antiproliferative and apoptotic properties in vitro and in animal cancer xenograft models using tumor cell lines that were "addicted" to signaling of kinases targeted by ABT-869. When given together with chemotherapy or mTOR inhibitors, ABT-869 showed at least additive therapeutic effects. The phase I trial for ABT-869 was recently completed and it demonstrated respectable efficacy in solid tumors including lung and hepatocellular carcinoma with manageable side effects. Tumor cavitation and reduction of contrast enhancement after ABT-869 treatment supported the antiangiogenic activity. The correlative laboratory studies conducted with the trial also highlight potential biomarkers for future patient selection and treatment outcome.Parallel to the clinical development, in vitro studies on ABT-869 resistance phenotype identified novel resistance mechanism that may be applicable to other TKIs. The future therapeutic roles of ABT-869 are currently been tested in phase II trials.
Collapse
|
Evaluation Study |
16 |
50 |
11
|
Zhou J, Chng WJ. Identification and targeting leukemia stem cells: The path to the cure for acute myeloid leukemia. World J Stem Cells 2014; 6:473-484. [PMID: 25258669 PMCID: PMC4172676 DOI: 10.4252/wjsc.v6.i4.473] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/22/2014] [Accepted: 08/30/2014] [Indexed: 02/06/2023] [Imported: 08/29/2023] Open
Abstract
Accumulating evidence support the notion that acute myeloid leukemia (AML) is organized in a hierarchical system, originating from a special proportion of leukemia stem cells (LSC). Similar to their normal counterpart, hematopoietic stem cells (HSC), LSC possess self-renewal capacity and are responsible for the continued growth and proliferation of the bulk of leukemia cells in the blood and bone marrow. It is believed that LSC are also the root cause for the treatment failure and relapse of AML because LSC are often resistant to chemotherapy. In the past decade, we have made significant advancement in identification and understanding the molecular biology of LSC, but it remains a daunting task to specifically targeting LSC, while sparing normal HSC. In this review, we will first provide a historical overview of the discovery of LSC, followed by a summary of identification and separation of LSC by either cell surface markers or functional assays. Next, the review will focus on the current, various strategies for eradicating LSC. Finally, we will highlight future directions and challenges ahead of our ultimate goal for the cure of AML by targeting LSC.
Collapse
|
Review |
11 |
49 |
12
|
Zhou J, Li XL, Chen ZR, Chng WJ. Tumor-derived exosomes in colorectal cancer progression and their clinical applications. Oncotarget 2017; 8:100781-100790. [PMID: 29246022 PMCID: PMC5725064 DOI: 10.18632/oncotarget.20117] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/30/2017] [Indexed: 12/19/2022] [Imported: 04/08/2025] Open
Abstract
Colorectal cancer (CRC) ranks as the third leading cause of cancer mortality in both of men and women worldwide due to its metastatic properties and resistance to current treatment. Recent studies have shown that tumor-derived exosomes play emerging roles in the development of cancer. Exosomes are nano-sized extracellular vesicles (EVs) that contain lipids, proteins, DNAs, and RNA species (mRNA, miRNA, long non-coding RNA). These exosomal cargos can be transferred locally and systemically, after taken by recipient cells, so exosomes represent a new form of intercellular communication. There is increasing evidence demonstrating that exosomes control a wide range of pathways bolstering tumor development, metastasis and drug resistance. This review provides an in-depth and timely summary of the role of exosomes in CRC. We first describe the common features and biogenesis of exosomes. We then highlight important findings that support the emerging roles of exosomes in CRC cell growth, invasion and metastasis, as well as resistance to treatment. Finally, we discuss the clinical application of exosomes as diagnostic biomarkers, in vivo drug delivery system and the potential of novel exosome-based immunotherapy for CRC.
Collapse
|
Review |
8 |
46 |
13
|
Zhou J, Mauerer K, Farina L, Gribben JG. The role of the tumor microenvironment in hematological malignancies and implication for therapy. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2005; 10:1581-1596. [PMID: 15769648 DOI: 10.2741/1642] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] [Imported: 04/08/2025]
Abstract
The tumor microenvironment is essential for tumor cell proliferation, angiogenesis, invasion, and metastasis by providing survival signals and a sanctuary site for tumor cells, by secretion of growth factors, pro-angiogenesis factors and direct adhesion molecule interactions. Our knowledge of microenvironment is only now beginning to unfold. In this review, the morphological and molecular characteristics of microenvironment in various hematological malignancies including acute lymphoblastic leukemia, acute myeloid leukemia, myelodysplastic syndrome, lymphoma, chronic lymphocytic leukemia, and multiple myeloma are summarized and the molecular mechanisms of microenvironment contributing to leukemogenesis are elucidated. We also aim to discuss the encouraging preclinical and clinical trials for treatment of hematological malignancies by targeting the tumor microenvironment. Further understanding of the signal transduction pathways between tumor cells and microenvironment will lead to the development of novel targeted therapeutic agents and more effective combination of current drugs for fighting hematological malignancies.
Collapse
|
Review |
20 |
46 |
14
|
Zhou J, Chan ZL, Bi C, Lu X, Chong PSY, Chooi JY, Cheong LL, Liu SC, Ching YQ, Zhou Y, Osato M, Tan TZ, Ng CH, Ng SB, Wang S, Zeng Q, Chng WJ. LIN28B Activation by PRL-3 Promotes Leukemogenesis and a Stem Cell-like Transcriptional Program in AML. Mol Cancer Res 2017; 15:294-303. [PMID: 28011885 DOI: 10.1158/1541-7786.mcr-16-0275-t] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/29/2016] [Accepted: 11/18/2016] [Indexed: 12/17/2022] [Imported: 04/08/2025]
Abstract
PRL-3 (PTP4A3), a metastasis-associated phosphatase, is also upregulated in patients with acute myeloid leukemia (AML) and is associated with poor prognosis, but the underlying molecular mechanism is unknown. Here, constitutive expression of PRL-3 in human AML cells sustains leukemogenesis in vitro and in vivo Furthermore, PRL-3 phosphatase activity dependently upregulates LIN28B, a stem cell reprogramming factor, which in turn represses the let-7 mRNA family, inducing a stem cell-like transcriptional program. Notably, elevated levels of LIN28B protein independently associate with worse survival in AML patients. Thus, these results establish a novel signaling axis involving PRL-3/LIN28B/let-7, which confers stem cell-like properties to leukemia cells that is important for leukemogenesis.Implications: The current study offers a rationale for targeting PRL-3 as a therapeutic approach for a subset of AML patients with poor prognosis. Mol Cancer Res; 15(3); 294-303. ©2016 AACR.
Collapse
|
|
8 |
31 |
15
|
Zhou J, Wang S, Sun K, Chng WJ. The emerging roles of exosomes in leukemogeneis. Oncotarget 2016; 7:50698-50707. [PMID: 27191983 PMCID: PMC5226614 DOI: 10.18632/oncotarget.9333] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 05/05/2016] [Indexed: 12/21/2022] [Imported: 08/29/2023] Open
Abstract
Communication between leukemia cells and their environment is essential for the development and progression of leukemia. Exosomes are microvesicles secreted by many types of cells that contain protein and RNA and mediate intercellular communication. The involvement of exosomes has been demonstrated in the crosstalk between leukemic cells, stromal cells and endothelial cells, consequently promoting the survival of leukemic cells, protection of leukemic cells from the cytotoxic effects of chemotherapeutic drugs, angiogenesis and cell migration. At the same time, exosomes can be used for the detection and monitoring of leukemia, with some advantage over current methods of detection and surveillance. As they are involved in immune response towards leukemic cells, exosomes can also potentially be exploited to augment immunotherapy in leukemia. In this review, we first describe the general characteristics of exosomes and biogenesis of exosomes. We then highlight the emerging role of exosomes in different types of leukemia. Finally, the clinical value of exosomes as biomarkers, in vivo drug carriers and novel exosome-based immunotherapy are discussed.
Collapse
|
Review |
9 |
30 |
16
|
Zhou J, Cheong LL, Liu SC, Chong PSY, Mahara S, Bi C, Ong KOK, Zeng Q, Chng WJ. The pro-metastasis tyrosine phosphatase, PRL-3 (PTP4A3), is a novel mediator of oncogenic function of BCR-ABL in human chronic myeloid leukemia. Mol Cancer 2012; 11:72. [PMID: 22995644 PMCID: PMC3537646 DOI: 10.1186/1476-4598-11-72] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 09/14/2012] [Indexed: 11/13/2022] [Imported: 04/08/2025] Open
Abstract
BACKGROUND Resistance to tyrosine kinase inhibitors (TKIs) remains a challenge in management of patients with chronic myeloid leukemia (CML). A better understanding of the BCR-ABL signalling network may lead to better therapy. FINDINGS Here we report the discovery of a novel downstream target of BCR-ABL signalling, PRL-3 (PTP4A3), an oncogenic tyrosine phosphatase. Analysis of CML cancer cell lines and CML patient samples reveals the upregulation of PRL-3. Inhibition of BCR-ABL signalling either by Imatinib or by RNAi silencing BCR-ABL reduces PRL-3 and increases cleavage of PARP. In contrast, the amount of PRL-3 protein remains constant or even increased in response to Imatinib treatment in drug resistant cells expressing P210 T315I. Finally, analysis with specific shRNA shows PRL-3 involvement in the proliferation and self-renewal of CML cells. CONCLUSIONS These data support a role for PRL-3 in BCR-ABL signalling and CML biology and may be a potential therapeutic target downstream of BCR-ABL in TKI resistant mutant cells.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Benzamides
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl/genetics
- Gene Expression
- Gene Expression Regulation, Leukemic
- Gene Silencing
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Neoplasm Metastasis/genetics
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Piperazines/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Protein Tyrosine Phosphatases/antagonists & inhibitors
- Protein Tyrosine Phosphatases/genetics
- Pyrimidines/pharmacology
- STAT Transcription Factors/metabolism
- Signal Transduction/drug effects
Collapse
|
brief-report |
13 |
29 |
17
|
Zhou J, Chng WJ. Aberrant RNA splicing and mutations in spliceosome complex in acute myeloid leukemia. Stem Cell Investig 2017; 4:6. [PMID: 28217708 PMCID: PMC5313292 DOI: 10.21037/sci.2017.01.06] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 12/29/2016] [Indexed: 12/19/2022] [Imported: 04/08/2025]
Abstract
The spliceosome, the cellular splicing machinery, regulates RNA splicing of messenger RNA precursors (pre-mRNAs) into maturation of protein coding RNAs. Recurrent mutations and copy number changes in genes encoding spliceosomal proteins and splicing regulatory factors have tumor promoting or suppressive functions in hematological malignancies, as well as some other cancers. Leukemia stem cell (LSC) populations, although rare, are essential contributors of treatment failure and relapse. Recent researches have provided the compelling evidence that link the erratic spicing activity to the LSC phenotype in acute myeloid leukemia (AML). In this article, we describe the diverse roles of aberrant splicing in hematological malignancies, particularly in AML and their contributions to the characteristics of LSC. We review these promising strategies to exploit the addiction of aberrant spliceosomal machinery for anti-leukemic therapy with aim to eradicate LSC. However, given the complexity and plasticity of spliceosome and not fully known functions of splicing in cancer, the challenges facing the development of the therapeutic strategies targeting RAN splicing are highlighted and future directions are discussed too.
Collapse
|
Comment |
8 |
25 |
18
|
Zhou J, Pan M, Xie Z, Loh SL, Bi C, Tai YC, Lilly M, Lim YP, Han JH, Glaser KB, Albert DH, Davidsen SK, Chen CS. Synergistic antileukemic effects between ABT-869 and chemotherapy involve downregulation of cell cycle-regulated genes and c-Mos-mediated MAPK pathway. Leukemia 2008; 22:138-146. [PMID: 17943175 DOI: 10.1038/sj.leu.2404960] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Revised: 07/11/2007] [Accepted: 08/21/2007] [Indexed: 01/04/2023] [Imported: 04/08/2025]
Abstract
Internal tandem duplications (ITDs) of fms-like tyrosine kinase 3 (FLT3) receptor play an important role in the pathogenesis of acute myeloid leukemia (AML) and represent an attractive therapeutic target. ABT-869 has demonstrated potent effects in AML cells with FLT3-ITDs. Here, we provide further evidence that ABT-869 treatment significantly downregulates cyclins D and E but increases the expression of p21 and p27. ABT-869 induces apoptosis through downregulation of Bcl-xL and upregulation of BAK, BID and BAD. We also evaluate the combinations of ABT-869 and chemotherapy. ABT-869 demonstrates significant sequence-dependent synergism with cytarabine and doxorubicin in cell lines and primary leukemia samples. The optimal combination was validated in MV4-11 xenografts. Low-density array analysis revealed the synergistic interaction involved in downregulation of cell cycle and mitogen-activated protein kinase pathway genes. CCND1 and c-Mos were the most significantly inhibited targets on both transcriptional and translational levels. Treatment with short hairpin RNAs targeting either CCND1 or c-Mos further sensitized MV4-11 cells to ABT-869. These findings suggest that specific pathway genes were further targeted by adding chemotherapy and support the rationale of combination therapy. Thus, a clinical trial using sequence-dependent combination therapy with ABT-869 in AML is warranted.
Collapse
|
|
17 |
25 |
19
|
Zhou J, Toh SHM, Tan TK, Balan K, Lim JQ, Tan TZ, Xiong S, Jia Y, Ng SB, Peng Y, Jeyasekharan AD, Fan S, Lim ST, Ong CAJ, Ong CK, Sanda T, Chng WJ. Super-enhancer-driven TOX2 mediates oncogenesis in Natural Killer/T Cell Lymphoma. Mol Cancer 2023; 22:69. [PMID: 37032358 PMCID: PMC10084643 DOI: 10.1186/s12943-023-01767-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 03/24/2023] [Indexed: 04/11/2023] [Imported: 04/08/2025] Open
Abstract
BACKGROUND Extranodal natural killer/T-cell lymphoma (NKTL) is an aggressive type of non-Hodgkin lymphoma with dismal outcome. A better understanding of disease biology and key oncogenic process is necessary for the development of targeted therapy. Super-enhancers (SEs) have been shown to drive pivotal oncogenes in various malignancies. However, the landscape of SEs and SE-associated oncogenes remain elusive in NKTL. METHODS We used Nano-ChIP-seq of the active enhancer marker histone H3 lysine 27 acetylation (H3K27ac) to profile unique SEs NKTL primary tumor samples. Integrative analysis of RNA-seq and survival data further pinned down high value, novel SE oncogenes. We utilized shRNA knockdown, CRISPR-dCas9, luciferase reporter assay, ChIP-PCR to investigate the regulation of transcription factor (TF) on SE oncogenes. Multi-color immunofluorescence (mIF) staining was performed on an independent cohort of clinical samples. Various function experiments were performed to evaluate the effects of TOX2 on the malignancy of NKTL in vitro and in vivo. RESULTS SE landscape was substantially different in NKTL samples in comparison with normal tonsils. Several SEs at key transcriptional factor (TF) genes, including TOX2, TBX21(T-bet), EOMES, RUNX2, and ID2, were identified. We confirmed that TOX2 was aberrantly overexpressed in NKTL relative to normal NK cells and high expression of TOX2 was associated with worse survival. Modulation of TOX2 expression by shRNA, CRISPR-dCas9 interference of SE function impacted on cell proliferation, survival and colony formation ability of NKTL cells. Mechanistically, we found that RUNX3 regulates TOX2 transcription by binding to the active elements of its SE. Silencing TOX2 also impaired tumor formation of NKTL cells in vivo. Metastasis-associated phosphatase PRL-3 has been identified and validated as a key downstream effector of TOX2-mediated oncogenesis. CONCLUSIONS Our integrative SE profiling strategy revealed the landscape of SEs, novel targets and insights into molecular pathogenesis of NKTL. The RUNX3-TOX2-SE-TOX2-PRL-3 regulatory pathway may represent a hallmark of NKTL biology. Targeting TOX2 could be a valuable therapeutic intervene for NKTL patients and warrants further study in clinic.
Collapse
|
research-article |
2 |
21 |
20
|
Zhou J, Chong PSY, Lu X, Cheong LL, Bi C, Liu SC, Zhou Y, Tan TZ, Yang H, Chung TH, Zeng Q, Chng WJ. Phosphatase of regenerating liver-3 is regulated by signal transducer and activator of transcription 3 in acute myeloid leukemia. Exp Hematol 2014; 42:1041-52.e522. [PMID: 25139404 DOI: 10.1016/j.exphem.2014.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 07/17/2014] [Accepted: 08/08/2014] [Indexed: 12/22/2022] [Imported: 04/08/2025]
Abstract
Overexpression of protein-tyrosine phosphatase of regenerating liver 3 (PRL-3) has been identified in about 50% of patients with acute myeloid leukemia (AML). The mechanism of regulation of PRL-3 remains obscure. Signal transducer and activator of transcription 3 (STAT3), a latent transcriptional factor, has also been often found to be activated in AML. We first identified STAT3-consensus-binding sites in the promoter of PRL-3 genes. Then we experimentally validated the direct binding and transcriptional activation. We applied shRNA-mediated knockdown and overexpression approaches in STAT3(-/-) liver cells and leukemic cells to validate the functional regulation of PRL-3 by STAT3. A STAT3 core signature, derived through data mining from publicly available gene expression data, was employed to correlate PRL-3 expression in large AML patient samples. We discovered that STAT3 binds to the -201 to -210 region of PRL-3, which was conserved between human and mouse. Importantly, PRL-3 protein was significantly reduced in mouse STAT3-knockout liver cells compared with STAT3-wild type counterparts, and ectopic expression of STAT3 in these cells led to a pronounced increase in PRL-3 protein. We demonstrated that STAT3 functionally regulated PRL-3, and STAT3 core signature was enriched in AML with high PRL-3 expression. Targeting either STAT3 or PRL-3 reduced leukemic cell viability. Silencing PRL-3 impaired invasiveness and induced leukemic cell differentiation. In conclusion, PRL-3 was transcriptionally regulated by STAT3. The STAT3/PRL-3 regulatory loop contributes to the pathogenesis of AML, and it might represent an attractive therapeutic target for antileukemic therapy.
Collapse
MESH Headings
- Animals
- Binding Sites
- Cell Differentiation
- Cell Line, Tumor
- Conserved Sequence
- DNA Mutational Analysis
- DNA, Neoplasm/genetics
- Gene Dosage
- Gene Expression Regulation, Leukemic
- Genes, Reporter
- Humans
- Immediate-Early Proteins/biosynthesis
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/physiology
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/genetics
- Liver/metabolism
- Mice
- Mutagenesis, Site-Directed
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Promoter Regions, Genetic/genetics
- Protein Tyrosine Phosphatases/biosynthesis
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/physiology
- RNA Interference
- RNA, Small Interfering/pharmacology
- STAT3 Transcription Factor/deficiency
- STAT3 Transcription Factor/physiology
- Signal Transduction
- Species Specificity
- Transfection
Collapse
|
|
11 |
21 |
21
|
Zhou J, Khng J, Jasinghe VJ, Bi C, Neo CHS, Pan M, Poon LF, Xie Z, Yu H, Yeoh AEJ, Lu Y, Glaser KB, Albert DH, Davidsen SK, Chen CS. In vivo activity of ABT-869, a multi-target kinase inhibitor, against acute myeloid leukemia with wild-type FLT3 receptor. Leuk Res 2008; 32:1091-1100. [PMID: 18160102 DOI: 10.1016/j.leukres.2007.11.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 11/11/2007] [Accepted: 11/13/2007] [Indexed: 11/26/2022] [Imported: 04/08/2025]
Abstract
Neoangiogenesis plays an important role in leukemogenesis. We investigated the in vivo anti-leukemic effect of ABT-869 against AML with wild-type FLT3 using RFP transfected HL60 cells with in vivo imaging technology on both the subcutaneous and systemic leukemia xenograft models. ABT-869 showed a five-fold inhibition of tumor growth in comparison with vehicle control. IHC analysis revealed that ABT-869 decreased p-VEGFR1, Ki-67 labeling index, VEGF and remarkably increased apoptotic cells in the xenograft models. ABT-869 also reduced the leukemia burden and prolonged survival. Our study supports the rationale for clinically testing an anti-angiogenesis agent in AML with wild-type FLT3.
Collapse
|
|
17 |
20 |
22
|
Zhou J, Toh SHM, Chan ZL, Quah JY, Chooi JY, Tan TZ, Chong PSY, Zeng Q, Chng WJ. A loss-of-function genetic screening reveals synergistic targeting of AKT/mTOR and WTN/β-catenin pathways for treatment of AML with high PRL-3 phosphatase. J Hematol Oncol 2018; 11:36. [PMID: 29514683 PMCID: PMC5842526 DOI: 10.1186/s13045-018-0581-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/27/2018] [Indexed: 11/10/2022] [Imported: 04/08/2025] Open
Abstract
BACKGROUND Protein tyrosine phosphatase of regenerating liver 3 (PRL-3) is overexpressed in a subset of AML patients with inferior prognosis, representing an attractive therapeutic target. However, due to relatively shallow pocket of the catalytic site of PRL-3, it is difficult to develop selective small molecule inhibitor. METHODS In this study, we performed whole-genome lentiviral shRNA library screening to discover synthetic lethal target to PRL-3 in AML. We used specific small molecule inhibitors to validate the synthetic lethality in human PRL-3 high vs PRL-3 low human AML cell lines and primary bone marrow cells from AML patients. AML mouse xenograft model was used to examine the in vivo synergism. RESULTS The list of genes depleted in TF1-hPRL3 cells was particularly enriched for members involved in WNT/β-catenin pathway and AKT/mTOR signaling. These findings prompted us to explore the impact of AKT/mTOR signaling inhibition in PRL-3 high AML cells in combination with WNT/β-catenin inhibitor. VS-5584, a novel, highly selective dual PI3K/mTOR inhibitor, and ICG-001, a WNT inhibitor, were used as a combination therapy. A synthetic lethal interaction between mTOR/AKT pathway inhibition and WNT/β-catenin was validated by a variety of cellular assays. Notably, we found that treatment with these two drugs significantly reduced leukemic burden and prolonged survival of mice transplanted with human PRL-3 high AML cells, but not with PRL-3 low AML cells. CONCLUSIONS In summary, our results support the existence of cooperative signaling networks between AKT/mTOR and WNT/β-catenin pathways in PRL-3 high AML cells. Simultaneous inhibition of these two pathways could achieve robust clinical efficacy for this subtype of AML patient with high PRL-3 expression and warrant further clinical investigation.
Collapse
|
research-article |
7 |
15 |
23
|
Zhou J, Chng WJ. Resistance to FLT3 inhibitors in acute myeloid leukemia: Molecular mechanisms and resensitizing strategies. World J Clin Oncol 2018; 9:90-97. [PMID: 30254964 PMCID: PMC6153124 DOI: 10.5306/wjco.v9.i5.90] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023] [Imported: 08/29/2023] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is classified as a type III receptor tyrosine kinase, which exerts a key role in regulation of normal hematopoiesis. FLT3 mutation is the most common genetic mutation in acute myeloid leukemia (AML) and represents an attractive therapeutic target. Targeted therapy with FLT3 inhibitors in AML shows modest promising results in current ongoing clinical trials suggesting the complexity of FLT3 targeting in therapeutics. Importantly, resistance to FLT3 inhibitors may explain the lack of overwhelming response and could obstruct the successful treatment for AML. Here, we summarize the molecular mechanisms of primary resistance and acquired resistance to FLT3 inhibitors and discuss the strategies to circumvent the emergency of drug resistance and to develop novel treatment intervention.
Collapse
|
Minireviews |
7 |
14 |
24
|
Zhou J, Lu X, Tan TZ, Chng W. X-linked inhibitor of apoptosis inhibition sensitizes acute myeloid leukemia cell response to TRAIL and chemotherapy through potentiated induction of proapoptotic machinery. Mol Oncol 2018; 12:33-47. [PMID: 29063676 PMCID: PMC5748481 DOI: 10.1002/1878-0261.12146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/24/2017] [Accepted: 10/07/2017] [Indexed: 12/12/2022] [Imported: 04/08/2025] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive disease with an increasing incidence and relatively low 5-year survival rate. Unfortunately, the underlying mechanism of leukemogenesis is poorly known, and there has been little progress in the treatment for AML. Studies have shown that X-linked inhibitor of apoptosis (XIAP), one of the inhibitors of apoptosis proteins (IAPs), is highly expressed and contributes to chemoresistance in AML. Hence, a novel drug, RO6867520 (RO-BIR2), developed by Roche targeting the BIR2 domain in XIAP to reactivate blocked apoptosis, is a promising therapy for AML. The monotherapy of RO-BIR2 had minimal effect on most of the AML cell lines tested except U-937. In contrast to AML cell lines, in general, RO-BIR2 alone has been shown to inhibit the proliferation of primary AML patient samples effectively and induced apoptosis in a dose-dependent manner. A combination of RO-BIR2 with TNF-related apoptosis-inducing ligand (TRAIL) led to highly synergistic effect on AML cell lines and AML patient samples. This combination therapy is capable of inducing apoptosis, thereby leading to an increase in specific apoptotic cell population, along with the activation of caspase 3/7. A number of apoptotic-related proteins such as XIAP, cleavage of caspase 3, cleavage of caspase 7, and cleaved PARP were changed upon combination therapy. Combination of RO-BIR2 with Ara-C had similar effect as the TRAIL combination. Ara-C combination also led to synergistic effect on AML cell lines and AML patient samples with low combination indexes (CIs). We conclude that the combination of RO-BIR2 with either TRAIL or Ara-C represents a potent therapeutic strategy for AML and is warranted for further clinical trials to validate the synergistic benefits in patients with AML, especially for the elderly who are abstaining from intensive chemotherapy.
Collapse
|
research-article |
7 |
13 |
25
|
Zhou J, Chooi JY, Ching YQ, Quah JY, Toh SHM, Ng Y, Tan TZ, Chng WJ. NF-κB promotes the stem-like properties of leukemia cells by activation of LIN28B. World J Stem Cells 2018; 10:34-42. [PMID: 29707103 PMCID: PMC5919888 DOI: 10.4252/wjsc.v10.i4.34] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/21/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023] [Imported: 08/29/2023] Open
Abstract
AIM To examine whether nuclear factor kappa B (NF-κB) activity regulates LIN28B expression and their roles in leukemia stem cell (LSC)-like properties. METHODS We used pharmacological inhibitor and cell viability assays to examine the relation between NF-κB and LIN28B. Western blot and qRT-PCR was employed to determine their protein and mRNA levels. Luciferase reporter was constructed and applied to explore the transcriptional regulation of LIN28B. We manipulated LIN28B level in acute myeloid leukemia (AML) cells and investigated LSC-like properties with colony forming and serial replating assays. RESULTS This study revealed the relationship between NF-κB and LIN28B in AML cells through drug inhibition and overexpression experiments. Notably, inhibition of NF-κB by pharmacological inhibitors reduced LIN28B expression and decreased cell proliferation. We demonstrated that NF-κB binds to the -819 to -811 region of LIN28B promoter, and transcriptionally regulates LIN28B expression. LIN28B protein was significantly elevated in NFκB1 transfected cells compared to vector control. Importantly, ectopic expression of LIN28B partially rescued the self-renewal capacity impaired by pharmacological inhibition of NF-κB activity. CONCLUSION These results uncover a regulatory signaling, NF-κB/LIN28B, which plays a pivotal role in leukemia stem cell-like properties and it could serve as a promising intervening target for effective treatment of AML disease.
Collapse
|
research-article |
7 |
12 |