1
|
Wang S, Zheng Y, Yang F, Zhu L, Zhu XQ, Wang ZF, Wu XL, Zhou CH, Yan JY, Hu BY, Kong B, Fu DL, Bruns C, Zhao Y, Qin LX, Dong QZ. The molecular biology of pancreatic adenocarcinoma: translational challenges and clinical perspectives. Signal Transduct Target Ther 2021; 6:249. [PMID: 34219130 PMCID: PMC8255319 DOI: 10.1038/s41392-021-00659-4] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/27/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] [Imported: 08/29/2023] Open
Abstract
Pancreatic cancer is an increasingly common cause of cancer mortality with a tight correspondence between disease mortality and incidence. Furthermore, it is usually diagnosed at an advanced stage with a very dismal prognosis. Due to the high heterogeneity, metabolic reprogramming, and dense stromal environment associated with pancreatic cancer, patients benefit little from current conventional therapy. Recent insight into the biology and genetics of pancreatic cancer has supported its molecular classification, thus expanding clinical therapeutic options. In this review, we summarize how the biological features of pancreatic cancer and its metabolic reprogramming as well as the tumor microenvironment regulate its development and progression. We further discuss potential biomarkers for pancreatic cancer diagnosis, prediction, and surveillance based on novel liquid biopsies. We also outline recent advances in defining pancreatic cancer subtypes and subtype-specific therapeutic responses and current preclinical therapeutic models. Finally, we discuss prospects and challenges in the clinical development of pancreatic cancer therapeutics.
Collapse
|
Review |
4 |
168 |
2
|
Sun J, Zhou C, Zhao Y, Zhang X, Chen W, Zhou Q, Hu B, Gao D, Raatz L, Wang Z, Nelson PJ, Jiang Y, Ren N, Bruns CJ, Zhou H. Quiescin sulfhydryl oxidase 1 promotes sorafenib-induced ferroptosis in hepatocellular carcinoma by driving EGFR endosomal trafficking and inhibiting NRF2 activation. Redox Biol 2021; 41:101942. [PMID: 33770521 PMCID: PMC8024711 DOI: 10.1016/j.redox.2021.101942] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/20/2021] [Accepted: 03/08/2021] [Indexed: 01/01/2023] [Imported: 08/29/2023] Open
Abstract
Sorafenib is a first-line molecular-target drug for advanced hepatocellular carcinoma (HCC), but its clinical effects are still limited. In this study we identify Quiescin sulfhydryl oxidase 1 (QSOX1) acting as a cellular pro-oxidant, specifically in the context of sorafenib treatment of HCC. QSOX1 disrupts redox homoeostasis and sensitizes HCC cells to oxidative stress by inhibiting activation of the master antioxidant transcription factor NRF2. A negative correlation between QSOX1 and NRF2 expression was validated in tumor tissues from 151 HCC patients. Mechanistically, QSOX1 restrains EGF-induced EGFR activation by promoting ubiquitination-mediated degradation of EGFR and accelerating its intracellular endosomal trafficking, leading to suppression of NRF2 activity. Additionally, QSOX1 potentiates sorafenib-induced ferroptosis by suppressing NRF2 in vitro and in vivo. In conclusion, the data presented identify QSOX1 as a novel candidate target for sorafenib-based combination therapeutic strategies in HCC or other EGFR-dependent tumor types.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
111 |
3
|
Zhao J, Schlößer HA, Wang Z, Qin J, Li J, Popp F, Popp MC, Alakus H, Chon SH, Hansen HP, Neiss WF, Jauch KW, Bruns CJ, Zhao Y. Tumor-Derived Extracellular Vesicles Inhibit Natural Killer Cell Function in Pancreatic Cancer. Cancers (Basel) 2019; 11:cancers11060874. [PMID: 31234517 PMCID: PMC6628179 DOI: 10.3390/cancers11060874] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] [Imported: 08/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies. Tumor-derived extracellular vesicles (EVs) induce pre-metastatic niche formation to promote metastasis. We isolated EVs from a highly-metastatic pancreatic cancer cell line and patient-derived primary cancer cells by ultracentrifugation. The protein content of EVs was analyzed by mass spectrometry. The effects of PDAC-derived EVs on natural kill (NK) cells were investigated by flow cytometry. The serum EVs' TGF-β1 levels were quantified by ELISA. We found that integrins were enriched in PDAC-derived EVs. The expression of NKG2D, CD107a, TNF-α, and INF-γ in NK cells was significantly downregulated after co-culture with EVs. NK cells also exhibited decreased levels of CD71 and CD98, as well as impaired glucose uptake ability. In addition, NK cell cytotoxicity against pancreatic cancer stem cells was attenuated. Moreover, PDAC-derived EVs induced the phosphorylation of Smad2/3 in NK cells. Serum EVs' TGF-β1 was significantly increased in PDAC patients. Our findings emphasize the immunosuppressive role of PDAC-derived EVs and provide new insights into our understanding of NK cell dysfunction regarding pre-metastatic niche formation in PDAC.
Collapse
|
Journal Article |
6 |
100 |
4
|
Wu X, Li J, Gassa A, Buchner D, Alakus H, Dong Q, Ren N, Liu M, Odenthal M, Stippel D, Bruns C, Zhao Y, Wahba R. Circulating tumor DNA as an emerging liquid biopsy biomarker for early diagnosis and therapeutic monitoring in hepatocellular carcinoma. Int J Biol Sci 2020; 16:1551-1562. [PMID: 32226301 PMCID: PMC7097921 DOI: 10.7150/ijbs.44024] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] [Imported: 08/29/2023] Open
Abstract
As one of the most common malignant tumors worldwide, hepatocellular carcinoma (HCC) is known for its poor prognosis due to diagnosis only in advanced stages. Nearly 50% of the patients with the first diagnosis of HCC die within a year. Currently, the advancements in the integration of omics information have begun to transform the clinical management of cancer patients. Molecular profiling for HCC patients is in general obtained from resected tumor materials or biopsies. However, the resected tumor tissue is limited and can only be obtained through surgery, so that dynamic monitoring of patients cannot be performed. Compared to invasive procedures, circulating tumor DNA (ctDNA) has been proposed as an alternative source to perform molecular profiling of tumor DNA in cancer patients. The detection of abnormal forms of circulating cell-free DNA (cfDNA) that originate from cancer cells (ctDNA) provides a novel tool for cancer detection and disease monitoring. This may also be an opportunity to optimize the early diagnosis of HCC. In this review, we summarized the updated methods, materials, storage of sampling, detection techniques for ctDNA and the comparison of the applications among different biomarkers in HCC patients. In particular, we analyzed ctDNA studies dealing with copy number variations, gene integrity, mutations (RAS, TERT, CTNNB1, TP53 and so on), DNA methylation alterations (DBX2, THY1, TGR5 and so on) for the potential utility of ctDNA in the diagnosis and management of HCC. The biological functions and correlated signaling pathways of ctDNA associated genes (including MAPK/RAS pathway, p53 signaling pathway and Wnt-β catenin pathway) are also discussed and highlighted. Thus, exploration of ctDNA/cfDNA as potential biomarkers may provide a great opportunity in future liquid biopsy applications for HCC.
Collapse
|
Review |
5 |
96 |
5
|
Targeting cancer stem cells and their niche: perspectives for future therapeutic targets and strategies. Semin Cancer Biol 2018; 53:139-155. [PMID: 30081228 DOI: 10.1016/j.semcancer.2018.08.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023] [Imported: 08/29/2023]
Abstract
A small subpopulation of cells within the bulk of tumors share features with somatic stem cells, in that, they are capable of self-renewal, they differentiate, and are highly resistant to conventional therapy. These cells have been referred to as cancer stem cells (CSCs). Recent reports support the central importance of a cancer stem cell-like niche that appears to help foster the generation and maintenance of CSCs. In response to signals provided by this microenvironment, CSCs express the tumorigenic characteristics that can drive tumor metastasis by the induction of epithelial-mesenchymal-transition (EMT) that in turn fosters the migration and recolonization of the cells as secondary tumors within metastatic niches. We summarize here recent advances in cancer stem cell research including the characterization of their genetic and epigenetic features, metabolic specialities, and crosstalk with aging-associated processes. Potential strategies for targeting CSCs, and their niche, by regulating CSCs plasticity, or therapeutic sensitivity is discussed. Finally, it is hoped that new strategies and related therapeutic approaches as outlined here may help prevent the formation of the metastatic niche, as well as counter tumor progression and metastatic growth.
Collapse
|
Review |
7 |
91 |
6
|
Wang Z, Liu F, Fan N, Zhou C, Li D, Macvicar T, Dong Q, Bruns CJ, Zhao Y. Targeting Glutaminolysis: New Perspectives to Understand Cancer Development and Novel Strategies for Potential Target Therapies. Front Oncol 2020; 10:589508. [PMID: 33194749 PMCID: PMC7649373 DOI: 10.3389/fonc.2020.589508] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] [Imported: 08/29/2023] Open
Abstract
Metabolism rewiring is an important hallmark of cancers. Being one of the most abundant free amino acids in the human blood, glutamine supports bioenergetics and biosynthesis, tumor growth, and the production of antioxidants through glutaminolysis in cancers. In glutamine dependent cancer cells, more than half of the tricarboxylic/critic acid (TCA) metabolites are derived from glutamine. Glutaminolysis controls the process of converting glutamine into TCA cycle metabolites through the regulation of multiple enzymes, among which the glutaminase shows the importance as the very first step in this process. Targeting glutaminolysis via glutaminase inhibition emerges as a promising strategy to disrupt cancer metabolism and tumor progression. Here, we review the regulation of glutaminase and the role of glutaminase in cancer metabolism and metastasis. Furthermore, we highlight the glutaminase inhibitor based metabolic therapy strategy and their potential applications in clinical scenarios.
Collapse
|
Review |
5 |
74 |
7
|
Ju F, Atyah MM, Horstmann N, Gul S, Vago R, Bruns CJ, Zhao Y, Dong QZ, Ren N. Characteristics of the cancer stem cell niche and therapeutic strategies. Stem Cell Res Ther 2022; 13:233. [PMID: 35659296 PMCID: PMC9166529 DOI: 10.1186/s13287-022-02904-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 05/16/2022] [Indexed: 12/27/2022] [Imported: 08/29/2023] Open
Abstract
Distinct regions harboring cancer stem cells (CSCs) have been identified within the microenvironment of various tumors, and as in the case of their healthy counterparts, these anatomical regions are termed “niche.” Thus far, a large volume of studies have shown that CSC niches take part in the maintenance, regulation of renewal, differentiation and plasticity of CSCs. In this review, we summarize and discuss the latest findings regarding CSC niche morphology, physical terrain, main signaling pathways and interactions within them. The cellular and molecular components of CSCs also involve genetic and epigenetic modulations that mediate and support their maintenance, ultimately leading to cancer progression. It suggests that the crosstalk between CSCs and their niche plays an important role regarding therapy resistance and recurrence. In addition, we updated diverse therapeutic strategies in different cancers in basic research and clinical trials in this review. Understanding the complex heterogeneity of CSC niches is a necessary pre-requisite for designing superior therapeutic strategies to target CSC-specific factors and/or components of the CSC niche.
Collapse
|
Review |
3 |
52 |
8
|
Wang Z, Qin J, Zhao J, Li J, Li D, Popp M, Popp F, Alakus H, Kong B, Dong Q, Nelson PJ, Zhao Y, Bruns CJ. Inflammatory IFIT3 renders chemotherapy resistance by regulating post-translational modification of VDAC2 in pancreatic cancer. Theranostics 2020; 10:7178-7192. [PMID: 32641986 PMCID: PMC7330856 DOI: 10.7150/thno.43093] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/20/2020] [Indexed: 02/07/2023] [Imported: 08/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers worldwide and effective therapy remains a challenge. IFIT3 is an interferon-stimulated gene with antiviral and pro-inflammatory functions. Our previous work has shown that high expression of IFIT3 is correlated with poor survival in PDAC patients who receive chemotherapy suggesting a link between IFIT3 and chemotherapy resistance in PDAC. However, the exact role and molecular mechanism of IFIT3 in chemotherapy resistance in PDAC has been unclear. Methods: A group of transcriptome datasets were downloaded and analyzed for the characterization of IFIT3 in PDAC. Highly metastatic PDAC cell line L3.6pl and patient-derived primary cell TBO368 were used and IFIT3 knockdown and the corresponding knockin cells were established for in vitro studies. Chemotherapy-induced apoptosis, ROS production, confocal immunofluorescence, subcellular fractionation, chromatin-immunoprecipitation, co-immunoprecipitation and mass spectrometry analysis were determined to further explore the biological role of IFIT3 in chemotherapy resistance of PDAC. Results: Based on PDAC transcriptome data, we show that IFIT3 expression is associated with the squamous molecular subtype of PDAC and an increase in inflammatory response and apoptosis pathways. We further identify a crucial role for IFIT3 in the regulation of mitochondria-associated apoptosis during chemotherapy. Knockdown of IFIT3 attenuates the chemotherapy resistance of PDAC cells to gemcitabine, paclitaxel, and FOLFIRINOX regimen treatments, independent of individual chemotherapy regimens. While IFIT3 overexpression was found to promote drug resistance. Co-immunoprecipitation identified a direct interaction between IFIT3 and the mitochondrial channel protein VDAC2, an important regulator of mitochondria-associated apoptosis. It was subsequently found that IFIT3 regulates the post-translational modification-O-GlcNAcylation of VDAC2 by stabilizing the interaction of VDAC2 with O-GlcNAc transferase. Increased O-GlcNAcylation of VDAC2 protected PDAC cells from chemotherapy induced apoptosis. Conclusions: These results effectively demonstrate a central mechanism by which IFIT3 expression can affect chemotherapy resistance in PDAC. Targeting IFIT3/VDAC2 may represent a novel strategy to sensitize aggressive forms of pancreatic cancer to conventional chemotherapy regimens.
Collapse
|
research-article |
5 |
29 |
9
|
Zhao Y, Li J, Li D, Wang Z, Zhao J, Wu X, Sun Q, Lin PP, Plum P, Damanakis A, Gebauer F, Zhou M, Zhang Z, Schlösser H, Jauch KW, Nelson PJ, Bruns CJ. Tumor biology and multidisciplinary strategies of oligometastasis in gastrointestinal cancers. Semin Cancer Biol 2019; 60:334-343. [PMID: 31445220 DOI: 10.1016/j.semcancer.2019.08.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022] [Imported: 08/29/2023]
Abstract
More than 70% of gastrointestinal (GI) cancers are diagnosed with metastases, leading to poor prognosis. For some cancer patients with limited sites of metastatic tumors, the term oligometastatic disease (OMD) has been coined as opposed to systemic polymetastasis (PMD) disease. Stephan Paget first described an organ-specific pattern of metastasis in 1889, now known as the "seed and soil" theory where distinct cancer types are found to metastasize to different tumor-specific sites. Our understanding of the biology of tumor metastasis and specifically the molecular mechanisms driving their formation are still limited, in particular, as it relates to the genesis of oligometastasis. In the following review, we discuss recent advances in general understanding of this metastatic behavior including the role of specific signaling pathways, various molecular features and biomarkers, as well as the interaction of carcinoma cells with their tissue microenvironments (both primary and metastatic niches). The unique features that underlie OMD provide potential targets for localized therapy. As it relates to clinical practice, OMD is emerging as treatable with surgical resection and/or other local therapy options. Strategies currently being applied in the clinical management of OMD will be discussed including surgical, radiation-based therapy, ablation procedures, and the results of emerging clinical trials involving immunotherapy.
Collapse
|
Review |
6 |
27 |
10
|
Zhou C, Fan N, Liu F, Fang N, Plum PS, Thieme R, Gockel I, Gromnitza S, Hillmer AM, Chon SH, Schlösser HA, Bruns CJ, Zhao Y. Linking Cancer Stem Cell Plasticity to Therapeutic Resistance-Mechanism and Novel Therapeutic Strategies in Esophageal Cancer. Cells 2020; 9:cells9061481. [PMID: 32560537 PMCID: PMC7349233 DOI: 10.3390/cells9061481] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 12/24/2022] [Imported: 08/29/2023] Open
Abstract
Esophageal cancer (EC) is an aggressive form of cancer, including squamous cell carcinoma (ESCC) and adenocarcinoma (EAC) as two predominant histological subtypes. Accumulating evidence supports the existence of cancer stem cells (CSCs) able to initiate and maintain EAC or ESCC. In this review, we aim to collect the current evidence on CSCs in esophageal cancer, including the biomarkers/characterization strategies of CSCs, heterogeneity of CSCs, and the key signaling pathways (Wnt/β-catenin, Notch, Hedgehog, YAP, JAK/STAT3) in modulating CSCs during esophageal cancer progression. Exploring the molecular mechanisms of therapy resistance in EC highlights DNA damage response (DDR), metabolic reprogramming, epithelial mesenchymal transition (EMT), and the role of the crosstalk of CSCs and their niche in the tumor progression. According to these molecular findings, potential therapeutic implications of targeting esophageal CSCs may provide novel strategies for the clinical management of esophageal cancer.
Collapse
|
Review |
5 |
21 |
11
|
Popp FC, Capino I, Bartels J, Damanakis AI, Li J, Datta RR, Löser H, Zhao Y, Quaas A, Lohneis P, Bruns CJ. Expression of Immune Checkpoint Regulators IDO, VISTA, LAG3, and TIM3 in Resected Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:2689. [PMID: 34072549 PMCID: PMC8198722 DOI: 10.3390/cancers13112689] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 05/20/2021] [Indexed: 01/22/2023] [Imported: 08/29/2023] Open
Abstract
Pancreatic cancer features elaborate mechanisms of immune evasion. The potential of new immune molecules was explored to restore the antitumor immune response. If these immune molecules are associated with poor survival, specific drugs could take effect. Here, we analyze the expression of VISTA, LAG3, IDO, and TIM3 on tumor-infiltrating lymphocytes (TILs) and its impact on patient survival. We analyzed 153 pancreatic cancer patients from the prospectively managed database of the multicentered PANCALYZE study. Immunohistochemistry on a tissue microarray assessed VISTA, LAG3, IDO, and TIM3 expression of TILs from the patients undergoing primary resection. Complementarily, we analyzed publicly available transcriptomic data (n = 903). Successful completion of chemotherapy, and lymph node status were independent predictors of survival in the multivariate analysis of the clinicopathologic parameters. Fifteen tumors were exclusively VISTA-positive, thirteen tumors expressed VISTA together with TIM3, and ten tumors expressed VISTA together with IDO. Patients featuring tumors with high numbers of IDO-positive TILs had better patient survival (p = 0.037). VISTA, LAG3, and TIM3 expression did not correlate with survival. The analysis of publicly available data did not show survival differences. Tumors rarely co-express more than two immune molecules at the same time, and VISTA is most frequently co-expressed. Although IDO generally inhibits T-cell proliferation, a high expression of IDO was associated with improved survival. We expect immune checkpoint inhibitors against VISTA, LAG3, and TIM3 to be inefficient in a clinical application.
Collapse
|
research-article |
4 |
14 |
12
|
Targeting Cancer Stem Cells and Their Niche: Current Therapeutic Implications and Challenges in Pancreatic Cancer. Stem Cells Int 2017; 2017:6012810. [PMID: 28845161 PMCID: PMC5563426 DOI: 10.1155/2017/6012810] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/17/2017] [Accepted: 06/20/2017] [Indexed: 02/06/2023] [Imported: 08/29/2023] Open
Abstract
Cancer stem cells (CSCs) have been identified as a subpopulation of stem-like cancer cells with the ability of self-renewal and differentiation in hematological malignancies and solid tumors. Pancreatic cancer is one of the most lethal cancers worldwide. CSCs are thought to be responsible for cancer initiation, progression, metastasis, chemoresistance, and recurrence in pancreatic cancer. In this review, we summarize the characteristics of pancreatic CSCs and discuss the mechanisms involved in resistance to chemotherapy, the interactions with the niche, and the potential role in cancer immunoediting. We propose that immunotherapy targeting pancreatic CSCs, in combination with targeting the niche components, may provide a novel treatment strategy to eradicate pancreatic CSCs and hence improve outcomes in pancreatic cancer.
Collapse
|
Review |
8 |
7 |
13
|
Fan N, Wang Z, Zhou C, Bludau M, Contino G, Zhao Y, Bruns C. Comparison of outcomes between neoadjuvant chemoradiotherapy and neoadjuvant chemotherapy in patients with locally advanced esophageal cancer: A network meta-analysis. EClinicalMedicine 2021; 42:101183. [PMID: 34805809 PMCID: PMC8585620 DOI: 10.1016/j.eclinm.2021.101183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 01/17/2023] [Imported: 08/29/2023] Open
Abstract
BACKGROUND Neoadjuvant chemoradiotherapy (NCRT) or neoadjuvant chemotherapy (NCT) followed by surgery are two standard strategies in treating locally advanced esophageal cancer (EC). We aim to compare NCRT and NCT in the management of locally advanced EC patients. METHODS MEDLINE, Embase, CENTRAL, and conferences were systematically searched for clinical trials published up to September 2021. Pairwise comparisons and Bayesian network meta-analyses were conducted to compare overall survival (OS) and disease-free survival (DFS) by reporting the hazard ratio (HR) and 95% credible intervals (CrIs). The study was registered at PROSPERO (CRD42020170619). FINDINGS 25 trials with 4563 EC patients met inclusion criteria. NCRT improved OS (HR: 0·72, 95%CrI: 0·63-0·82) and DFS (HR: 0·72, 95%CrI: 0·63-0·81) compared to surgery alone. NCRT improved OS (HR: 0·83, 95%CrI: 0·69-0·99) and DFS (HR: 0·83, 95%CI: 0·69-0·99) compared to NCT. Subgroup analysis demonstrated that both NCRT (HR: 0·77, 95%CrI: 0·65-0·90) and NCT (HR: 0·81, 95%CrI: 0·67-0·99) improved OS than surgery in esophageal squamous cell carcinoma (ESCC) patients. No significant differences were observed between NCRT and NCT regarding OS (HR: 0·95, 95%CrI: 0·75-1·19) and DFS (HR: 0·90, 95%CrI: 0·50-1·62) in ESCC. The short-term outcomes were similar between NCRT and NCT. The three treatment strategies were comparable in esophageal adenocarcinoma (EAC) subpopulations. INTERPRETATION The study corroborated current guidelines in addressing the importance of analysing EC according to histopathological types. The analysis suggested that in locally advanced ESCC patients, both NCRT and NCT improved OS as compared to surgery alone, whereas no clear evidence supported the optimal strategies between NCRT and NCT. More RCTs comparing different therapeutic strategies in EAC patients are warranted. FUNDING Köln Fortune Program, University of Cologne.
Collapse
|
research-article |
4 |
7 |
14
|
Schiffmann LM, Loeser H, Jacob AS, Maus M, Fuchs H, Zhao Y, Tharun L, Essakly A, Iannos Damanakis A, Zander T, Büttner R, Schröder W, Bruns C, Quaas A, Gebauer F. Dickkopf-2 (DKK2) as Context Dependent Factor in Patients with Esophageal Adenocarcinoma. Cancers (Basel) 2020; 12:cancers12020451. [PMID: 32075129 PMCID: PMC7072714 DOI: 10.3390/cancers12020451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/16/2022] [Imported: 08/29/2023] Open
Abstract
Dickkopf-2 (DKK2) has been described as Wnt/beta-catenin pathway antagonist and its expression is mediated by micro RNA-221 (miRNA-221). So far, there is only limited data characterizing the role of DKK2 expression in esophageal cancer. A tissue micro array of 192 patients with esophageal adenocarcinoma was analyzed immunohistochemically for DKK2, miRNA-221 expression by RNA scope, and GATA6 amplification by fluorescence in-situ hybridization. The data was correlated with clinical, pathological and molecular data (TP53, HER2, c-myc, GATA6, PIK3CA, and KRAS amplifications). DKK2 expression was detectable in 21.7% and miRNA-221 expression in 33.5% of the patients. We observed no correlation between DKK2 or miRNA-221 expression and clinico-pathological data DKK2 expression was correlated with TP53 mutations and amplification of GATA6. We did not detect a survival difference in dependence of DKK2 for the total cohort, however, in patients without neoadjuvant treatment DKK2 expression correlated with a prolonged survival (median overall-survival 202 vs. 55 months, p = 0.012) which turned opposite in patients that underwent neoadjuvant treatment. High amounts of miRNA-221 were in trend associated with a prolonged overall-survival (p = 0.070). DKK2 as a Wnt antagonist is associated with prolonged survival in patients without neoadjuvant treatment and changes its prognostic value to the contrary in patients after neoadjuvant therapy. The modulatory effects of neoadjuvant treatment in connection with DKK2 expression are not fully understood, but when considering DKK2 as a tumor marker, it is necessary to see it in the context of neoadjuvant therapy.
Collapse
|
Journal Article |
5 |
6 |
15
|
Zhao Y, Dong Q, Li J, Zhang K, Qin J, Zhao J, Sun Q, Wang Z, Wartmann T, Jauch KW, Nelson PJ, Qin L, Bruns C. Corrigendum to "Targeting cancer stem cells and their niche: Perspectives for future therapeutic targets and strategies" [Semin. Cancer Biol. (2018) (August) pii: S1044-579X(18)30045-2, 139-155]. Semin Cancer Biol 2019; 57:117. [PMID: 30850316 DOI: 10.1016/j.semcancer.2018.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] [Imported: 08/29/2023]
|
Published Erratum |
6 |
3 |
16
|
Fan N, Raatz L, Chon SH, Quaas A, Bruns C, Zhao Y. Subculture and Cryopreservation of Esophageal Adenocarcinoma Organoids: Pros and Cons for Single Cell Digestion. JOURNAL OF VISUALIZED EXPERIMENTS : JOVE 2022. [PMID: 35876535 DOI: 10.3791/63281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] [Imported: 08/29/2023]
Abstract
The lack of suitable translational research models reflecting primary disease to explore tumorigenesis and therapeutic strategies is a major obstacle in esophageal adenocarcinoma (EAC). Patient-derived organoids (PDOs) have recently emerged as a remarkable preclinical model in a variety of cancers. However, there are still limited protocols available for developing EAC PDOs. Once the PDOs are established, the propagation and cryopreservation are essential for further downstream analyses. Here, two different methods have been standardized for EAC PDOs subculture and cryopreservation, i.e., with and without single cell digestion. Both methods can reliably obtain appropriate cell viability and are applicable for a diverse experimental setup. The current study demonstrated that subculturing EAC PDOs with single cell digestion is suitable for most experiments requiring cell number control, uniform density, and a hollow structure that facilitates size tracking. However, the single cell-based method shows slower growth in culture as well as after re-cultivation from frozen stocks. Besides, subculturing with single cell digestion is characterized by forming hollow structures with a hollow core. In contrast, processing EAC PDOs without single cell digestion is favorable for cryopreservation, expansion, and histological characterization. In this protocol, the advantages and disadvantages of subculturing and cryopreservation of EAC PDOs with and without single cell digestion are described to enable researchers to choose an appropriate method to process and investigate their organoids.
Collapse
|
Video-Audio Media |
3 |
3 |
17
|
The IL-17A/IL-17RA Axis Is Not Related to Overall Survival and Cancer Stem Cell Modulation in Pancreatic Cancer. Int J Mol Sci 2020; 21:ijms21062215. [PMID: 32210079 PMCID: PMC7139783 DOI: 10.3390/ijms21062215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/18/2020] [Accepted: 03/21/2020] [Indexed: 11/17/2022] [Imported: 08/29/2023] Open
Abstract
(1) Background: IL-17A accelerates pancreatic intraepithelial neoplasia (PanIN) progression. In this study, we examined whether IL-17A/IL-17RA promotes pancreatic ductal adenocarcinoma (PDAC) aggressiveness in terms of survival and cancer stem cell modulation. (2) Methods: In vitro, the wound-healing assay, the sphere formation assay, and flow cytometry were applied to assess cancer stem cell features. In vivo, pancreatic tumors were induced in C57BL/6 mice using electroporation with oncogenic plasmids (P53-/- R172H; KrasG12V). Anti-IL-17 antibodies were administered as immunotherapy. We analyzed IL-17A/IL-17RA related survival using publicly available transcriptomic data (n = 903). (3) Results: IL-17A/IL-17RA expression was not related to survival in PDAC patients. IL-17A neither induces stem cell markers nor increases sphere formation and cell motility in vitro. Blocking the IL-17A/IL-17RA axis in a murine pancreatic cancer model did not improve the survival of mice, but reduced the tumor burden slightly. (4) Conclusions: IL-17A does not promote stem cell expansion in PDAC cell lines. Blocking IL-17A/IL-17RA signaling does not interfere with pancreatic cancer development and progression and may not be considered as a promising monotherapy for PDAC.
Collapse
|
Journal Article |
5 |
2 |
18
|
Hoppe S, Jonas C, Wenzel MC, Velazquez Camacho O, Arolt C, Zhao Y, Büttner R, Quaas A, Plum PS, Hillmer AM. Genomic and Transcriptomic Characteristics of Esophageal Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13174300. [PMID: 34503107 PMCID: PMC8428370 DOI: 10.3390/cancers13174300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/28/2022] [Imported: 08/29/2023] Open
Abstract
Simple Summary Cancer of the esophagus is a deadly disease. There are two main subtypes, adenocarcinoma and squamous cell carcinoma, with adenocarcinoma of the esophagus (EAC) being more common in Western countries. Barrett’s esophagus (BE) describes a change in the esophageal surface near the stomach in response to reflux of gastric acid into the esophagus. BE increases the risk of developing EAC, and the incidence of EAC has risen dramatically over recent decades. One likely reason for the poor prognosis of EAC is based on the fact that each tumor has many genes affected by mutations, and most of these genes differ across patients, hampering the efficacy of therapies that target specific cancer driver proteins. In this review, we provide an overview of the gene mutations and gene activity changes in EAC and how these features can be used to divide patients into groups that might have different clinical characteristics. Abstract Esophageal adenocarcinoma (EAC) is a deadly disease with limited options for targeted therapy. With the help of next-generation sequencing studies over the last decade, we gained an understanding of the genomic architecture of EAC. The tumor suppressor gene TP53 is mutated in 70 to 80% of tumors followed by genomic alterations in CDKN2A, KRAS, ERBB2, ARID1A, SMAD4 and a long tail of less frequently mutated genes. EAC is characterized by a high burden of point mutations and genomic rearrangements, resulting in amplifications and deletions of genomic regions. The genomic complexity is likely hampering the efficacy of targeted therapies. Barrett’s esophagus (BE), a metaplastic response of the esophagus to gastro-esophageal reflux disease, is the main risk factor for the development of EAC. Almost all EACs are derived from BE. The sequence from BE to EAC provides an opportunity to study the genomic evolution towards EAC. While the overlap of point mutations between BE and EAC within the same patient is, at times, surprisingly low, there is a correlation between the complexity of the genomic copy number profile and the development of EAC. Transcriptomic analyses separated EAC into a basal and a classical subtype, with the basal subtype showing a higher level of resistance to chemotherapy. In this review, we provide an overview of the current knowledge of the genomic and transcriptomic characteristics of EAC and their relevance for the development of the disease and patient care.
Collapse
|
Review |
4 |
1 |
19
|
Zhao Y, Kranjc Brezar S, Grigorieva EV, Skvortsova II. Editorial: Cancer cell reprogramming: Impact on carcinogenesis and cancer progression. Front Oncol 2023; 13:1152402. [PMID: 36874087 PMCID: PMC9975746 DOI: 10.3389/fonc.2023.1152402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023] [Imported: 08/29/2023] Open
|
Editorial |
2 |
|