1
|
Liao W, Yu Z, Lin Z, Lei Z, Ning Z, Regenstein JM, Yang J, Ren J. Biofunctionalization of Selenium Nanoparticle with Dictyophora Indusiata Polysaccharide and Its Antiproliferative Activity through Death-Receptor and Mitochondria-Mediated Apoptotic Pathways. Sci Rep 2015; 5:18629. [PMID: 26686000 PMCID: PMC4685659 DOI: 10.1038/srep18629] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/16/2015] [Indexed: 12/23/2022] [Imported: 01/21/2025] Open
Abstract
Bio-functionalized nanoparticles with semiconducting/metallic core encapsulated in a bio- or bio-derived materials are promising for applications in biology and especially in cancer diagnostic and healing. In this report, we report a facile, single-step, first-time synthesis and in-situ functionalization strategy for the preparation of monodispersed selenium nanoparticles (SeNPs) functionalized using a novel polysaccharide (DP1) extracted from Dictyophora indusiata (a fungus). The DP1 functionalized SeNPs (DP1-SeNPs), where DP1 is attached to the surface via Se-O bond as well as physic-sorption had, an average diameter of 89 nm, and were highly uniform, extremely stable compared to bare SeNPs. Detailed investigation of the biological properties of DP1-SeNP illustrated that they exhibit unprecedented, enhanced, and selective antiproliferative activity through inducing cell apoptosis confirmed by nuclear condensation, DNA cleavage, and accumulation of S phase cell arrest. The mechanism of the induced apoptosis was found to be a combination of the activation of caspases 3, 8, and 9, the Fas-associated death domain protein (FADD), reactive oxygen species (ROS) overproduction, as well as mitochondrial dysfunction. It is envisioned that the reported DP1-SeNPs will offer a new phase space for high-efficiency anticancer treatment with little side effect.
Collapse
|
research-article |
10 |
80 |
2
|
Zhang J, Ye Z, Liu G, Liang L, Wen C, Liu X, Li Y, Ji T, Liu D, Ren J, Xu X. Subcritical Water Enhanced with Deep Eutectic Solvent for Extracting Polysaccharides from Lentinus edodes and Their Antioxidant Activities. Molecules 2022; 27:3612. [PMID: 35684548 PMCID: PMC9182456 DOI: 10.3390/molecules27113612] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022] [Imported: 08/29/2023] Open
Abstract
In the present study, subcritical water extraction (SWE) assisted with deep eutectic solvent (DES) is used to extract Lentinus edodes polysaccharides (LEP). In addition, the antioxidant activity of the polysaccharide samples was also investigated. Based on a single factor test and response surface test, the optimal extraction factors were a liquid-solid solvent of 40:1 mL/g, extraction temperature of 147.23 °C, water content of 39.76% and extraction time of 17.58 min. Under these extraction conditions, the yield of LEP was 6.26 ± 0.08%. Compared with the SWE and hot water extraction (HWE), it improved by 19.24% and 17.01%, respectively. In addition, the results of monosaccharide composition, molecular weight, FT-IR, UV and SEM confirmed that the extracts had the features of polysaccharides. Interestingly, the polysaccharides obtained with the SWE assisted with the DES procedure showed a higher DPPH scavenging activity, hydroxyl radical scavenging activity and hydrogen peroxide scavenging activity, which indicated that the polysaccharides with this method had a stronger antioxidant activity. These findings demonstrated that the SWE-assisted DES is a strong method to obtain polysaccharides from Lentinus edodes for food, biopharmaceutical and other industrial production.
Collapse
|
research-article |
3 |
20 |
3
|
Liao W, Zhang R, Dong C, Yu Z, Ren J. Novel walnut peptide-selenium hybrids with enhanced anticancer synergism: facile synthesis and mechanistic investigation of anticancer activity. Int J Nanomedicine 2016; 11:1305-1321. [PMID: 27143875 PMCID: PMC4841427 DOI: 10.2147/ijn.s92257] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] [Imported: 08/29/2023] Open
Abstract
This contribution reports a facile synthesis of degreased walnut peptides (WP1)-functionalized selenium nanoparticles (SeNPs) hybrids with enhanced anticancer activity and a detailed mechanistic evaluation of its superior anticancer activity. Structural and chemical characterizations proved that SeNPs are effectively capped with WP1 via physical absorption, resulting in a stable hybrid structure with an average diameter of 89.22 nm. A panel of selected human cancer cell lines demonstrated high susceptibility toward WP1-SeNPs and displayed significantly reduced proliferative behavior. The as-synthesized WP1-SeNPs exhibited excellent selectivity between cancer cells and normal cells. The targeted induction of apoptosis in human breast adenocarcinoma cells (MCF-7) was confirmed by the accumulation of arrested S-phase cells, nuclear condensation, and DNA breakage. Careful investigations revealed that an extrinsic apoptotic pathway can be attributed to the cell apoptosis and the same was confirmed by activation of the Fas-associated with death domain protein and caspases 3, 8, and 9. In addition, it was also understood that intrinsic apoptotic pathways including reactive oxygen species generation, as well as the reduction in mitochondrial membrane potential, are also involved in the WP1-SeNP-induced apoptosis. This suggested the involvement of multiple apoptosis pathways in the anticancer activity. Our results indicated that WP1-SeNP hybrids with Se core encapsulated in a WP1 shell could be a highly effective method to achieve anticancer synergism. Moreover, the great potential exhibited by WP1-SeNPs could make them an ideal candidate as a chemotherapeutic agent for human cancers, especially for breast cancer.
Collapse
|
research-article |
9 |
18 |
4
|
Hu X, Yang X, Wu Q, Li L, Wu Y, Chen S, Li R, Ren J. Purification and Identification of Antioxidant Peptides from Schizochytrium Limacinum Hydrolysates by Consecutive Chromatography and Electrospray Ionization-Mass Spectrometry. Molecules 2019; 24:3004. [PMID: 31430953 PMCID: PMC6719025 DOI: 10.3390/molecules24163004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/18/2019] [Indexed: 11/17/2022] [Imported: 01/21/2025] Open
Abstract
Schizochytrium limacinum residue was hydrolyzed with various proteases (papain, trypsin, Flavourzyme, Protamex, and Alcalase 2.4L) to obtain antioxidative peptides. The results showed that the S. limacinum hydrolysates (SLHs) prepared with compound proteases (Protamex and Alcalase 2.4L) had the highest antioxidant activity, which was measured using methods such as 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging ability (IC50 = 1.28 mg/mL), hydroxyl radical scavenging ability (IC50 = 1.66 mg/mL), and reducing power (1.42 at 5.0 mg/mL). The hydrolysates were isolated and purified by ultrafiltration, gel filtration chromatography, and reverse-phase high-performance liquid chromatography (RP-HPLC). Through analysis of electrospray ionization-mass spectrometer (ESI-MS/MS), the purified antioxidant peptide was identified as Pro-Tyr-Lys (406 Da). Finally, the identified peptide was synthesized for evaluating its antioxidant activity. The •OH scavenging ability and reducing power of Pro-Tyr-Lys were comparable to those of reduced L-glutathione (GSH). These results demonstrated that the antioxidant peptides from SLHs could potentially be used as effective antioxidants.
Collapse
Grants
- CARS-50, 31301454, 2017A030313164, NYJG201402, NYJG201706, 2015YT02H109 the China Agriculture Research System, the National Natural Science Foundation of China, the Natural Science Foundation of Guangdong Province, China, the Fund of Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, Chin
Collapse
|
research-article |
6 |
11 |
5
|
Hu Y, Li Z, Zhang Y, Wu Y, Liu Z, Zeng J, Hao Z, Li J, Ren J, Yao M. The Evolution of Tumor Microenvironment in Gliomas and Its Implication for Target Therapy. Int J Biol Sci 2023; 19:4311-4326. [PMID: 37705736 PMCID: PMC10496508 DOI: 10.7150/ijbs.83531] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/03/2023] [Indexed: 09/15/2023] [Imported: 01/21/2025] Open
Abstract
Gliomas develop in unique and complicated environments that nourish tumor cells. The tumor microenvironment (TME) of gliomas comprises heterogeneous cells, including brain-resident cells, immune cells, and vascular cells. Reciprocal interactions among these cells are involved in the evolution of the TME. Moreover, the study of attractive therapeutic strategies that target the TME is transitioning from basic research to the clinic. Mouse models are indispensable tools for dissecting the processes and mechanisms leading to TME evolution. In this review, we overview the paradoxical roles of the TME, as well as the recent progress of mouse models in TME research. Finally, we summarize recent advances in TME-targeting therapeutic strategies.
Collapse
|
Review |
2 |
9 |
6
|
Xiao L, Sha W, Tao C, Hou C, Xiao G, Ren J. Effect on purine releasement of Lentinus edodes by different food processing techniques. Food Chem X 2022; 13:100260. [PMID: 35498996 PMCID: PMC9040045 DOI: 10.1016/j.fochx.2022.100260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/24/2022] [Imported: 01/21/2025] Open
Abstract
Lentinus edodes (LE) is very popular in the world and also considered as high purine food. However, few focuses on purine types and its change during food processing. Here, we first compared 3 drying techniques, including roast-drying, freeze-drying, sun-drying on purine contents of LE by using acidolysis and HPLC. It showed that adenine decreased significantly after roast-drying (120 °C), which may be caused by thermal damage of DNA. Total purine decreased significantly after freeze-drying, while roast-dried and sun-dried LE remained unchanged. The effect of moist heat (boiling) on LE purine were also evaluated. Total purine increased due to xanthine increasement (331.72 ± 50.07%). And purine contents transferred into boiled liquid was higher than that in boiled solid. Compared with sun-dry and roast-dry processing, freeze-drying could notably affect the purine release from LE and decrease purine contents. Therefore, freeze-drying is recommended for process techniques for hyperuricemia and gouts populations.
Collapse
|
research-article |
3 |
8 |
7
|
Yuan E, Nie S, Liu L, Ren J. Study on the interaction of Hericium erinaceus mycelium polysaccharides and its degradation products with food additive silica nanoparticles. Food Chem X 2021; 12:100172. [PMID: 34901828 PMCID: PMC8639428 DOI: 10.1016/j.fochx.2021.100172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022] [Imported: 08/29/2023] Open
Abstract
Gastric mucosal injury is a common gastrointestinal disorder. Hericium erinaceus polysaccharide, the major active ingredient in Hericium erinaceus, can reduce gastric mucosal damage to some extent. In this study, two different products HMP-Vc and HMP-Ce were obtained by Vitamin C and cellulase degradation of Hericium erinaceus mycelium polysaccharide (HMP). The gastroprotective activity of polysaccharides and its interaction products with food additives silica nanoparticles (nSiO2) were studied in GES-1 cells. It was found that gastroprotective activity of HMP was significantly higher than that of degradation products, and the addition of nSiO2 could enhance this activity of HMP. The greatest difference between the degradation products and HMP was the reduction of the triple helix structure, which might be the reason of the gastroprotective activity was less than that of HMP. Moreover, nSiO2 might interact with HMP through hydrogen bonding to enhance its activity.
Collapse
|
research-article |
4 |
5 |
8
|
Liu G, Chu M, Nie S, Xu X, Ren J. Effects of Ilisha elongata protein, soy protein and whey protein on growth characteristics and adhesion of probiotics. Curr Res Food Sci 2022; 5:2125-2134. [PMID: 36387603 PMCID: PMC9649368 DOI: 10.1016/j.crfs.2022.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/08/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] [Imported: 01/21/2025] Open
Abstract
The effects of different food source proteins on the growth characteristics and intestinal adhesion of Lactobacillus plantarum 45 (LP45) were investigated by adding Ilisha elongata protein, soy protein and whey protein to the probiotic bacteria in vitro and using a probiotic adhesion model based on mouse intestinal tissues. Ilisha elongata protein and soy protein significantly reduced the growth time of LP45 and increased the total number of colonies fermented by LP45; whey protein only reduced the growth time of LP45; the effect of the three food source proteins on the acid production capacity of LP45 was small. These showed that the three food-derived proteins promoted the proliferation and adhesion of probiotics in the intestine, which were beneficial to the active role of intestinal probiotics and improved the intestinal microenvironment.
Collapse
|
research-article |
3 |
|
9
|
Xu Z, Amakye WK, Ren Z, Xu Y, Liu W, Gong C, Wong C, Gao L, Zhao Z, Wang M, Yan T, Ye Z, Zhong J, Hou C, Zhao M, Qiu C, Tan J, Xu X, Liu G, Yao M, Ren J. Soy Peptide Supplementation Mitigates Undernutrition through Reprogramming Hepatic Metabolism in a Novel Undernourished Non-Human Primate Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306890. [PMID: 38816931 PMCID: PMC11304262 DOI: 10.1002/advs.202306890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/23/2024] [Indexed: 06/01/2024] [Imported: 01/21/2025]
Abstract
In spite of recent advances in the field of undernutrition, current dietary therapy relying on the supply of high protein high calorie formulas is still plagued with transient recovery of impaired organs resulting in significant relapse of cases. This is partly attributed to the inadequacy of current research models in recapitulating clinical undernutrition for mechanistic exploration. Using 1636 Macaca fascicularis monkeys, a human-relevant criterion for determining undernutrition weight-for-age z-score (WAZ), with a cutoff point of ≤ -1.83 is established as the benchmark for identifying undernourished nonhuman primates (U-NHPs). In U-NHPs, pathological anomalies in multi-organs are revealed. In particular, severe dysregulation of hepatic lipid metabolism characterized by impaired fatty acid oxidation due to mitochondria dysfunction, but unlikely peroxisome disorder, is identified as the anchor metabolic aberration in U-NHPs. Mitochondria dysfunction is typified by reduced mito-number, accumulated long-chain fatty acids, and disruption of OXPHOS complexes. Soy peptide-treated U-NHPs increase in WAZ scores, in addition to attenuated mitochondria dysfunction and restored OXPHOS complex levels. Herein, innovative criteria for identifying U-NHPs are developed, and unknown molecular mechanisms of undernutrition are revealed hitherto, and it is further proved that soypeptide supplementation reprogramed mitochondrial function to re-establish lipid metabolism balance and mitigated undernutrition.
Collapse
|
research-article |
1 |
|
10
|
Liu G, Chu M, Xu P, Nie S, Xu X, Ren J. Effects of Ilisha elongata proteins on proliferation and adhesion of Lactobacillus plantarum. Food Chem X 2022; 13:100206. [PMID: 35499024 PMCID: PMC9039923 DOI: 10.1016/j.fochx.2022.100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 12/01/2022] [Imported: 01/21/2025] Open
Abstract
The effects of aquatic proteins on the proliferation and adhesion of intestinal probiotic bacteria were investigated by in vitro fermentation and mouse in vitrointestinal tissue models. Compared with the control group, the Illisha elongata protein reduced the growth time of Lactobacillus plantarum (LP45) by 34.25% and increased the total number of colonies by 6.61%. The Ilisha elongata salt-solubale protein performed better than water-soluble protein in vitro proliferation of LP45. Ilisha elongata salt-soluble protein significantly increased the number of viable bacteria adhering to intestinal, and caused changes in the amount of polysaccharides, proteins and biofilms in the intestinal tissue model. These results indicate that the Ilisha elongata protein is beneficial to the proliferation and adhesion of probiotics in the intestinal, and can be used as an active protein beneficial to intestinal health.
Collapse
|
research-article |
3 |
|
11
|
Amakye WK, Bozovic S, Faraque A, Yao M, Ren J. Nutrition education in medical school: the case of international medical students in China. BMJ Nutr Prev Health 2020; 3:308-319. [PMID: 33521542 PMCID: PMC7841843 DOI: 10.1136/bmjnph-2020-000117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/20/2020] [Accepted: 11/10/2020] [Indexed: 11/27/2022] [Imported: 01/21/2025] Open
Abstract
OBJECTIVE To assess the knowledge on country-specific nutrition situation, perceptions of the nutrition curricula and factors influencing capacity to offer nutrition guidance among medical students studying internationally in China compared with their home-country counterparts. DESIGN Cross-sectional study. SETTINGS China, Ghana, India and Montenegro. PARTICIPANTS International medical students in China and medical students studying in their home countries of Ghana, India and Montenegro. MAIN MEASURE An online semistructured questionnaire was administered using WeChat for international students and Microsoft Forms for home-country medical students to assess students' perceived knowledge and significance of nutrition, knowledge of country-specific nutrition situation, perceptions of the nutrition curricula and perceived capacity to offer nutrition counselling. RESULT In all, 190 medical students responded to the survey: 110 international students studying in China and 80 home-country students from Ghana (40), India (20) and Montenegro (20). Home-country students rated the importance of nutrition in health and disease development higher than international students (p<0.05). International students reported not having any specific nutrition courses while home-country students had nutrition courses as part of their curriculum. Only 8.2% of international students and 13.8% of home-country students were able to correctly mention any specific national nutrition guidelines of their home countries. Home-country students were more likely to provide correct nutrition recommendations for infants (χ²(3)=26.349; p=0.001), pregnancy (χ²(3)=9.793; p=0.007), lactating mothers (χ²(3)=9.112; p=0.011), diabetes (χ²(3)=13.619; p=0.001), hypertension (χ²(3)=12.022; p=0.002), overweight/obesity (χ²(3)=8.896; p=0.012) and undernutrition (χ²(3)=7.670; p=0.022) compared with international students. Practical nutrition courses, hours of nutrition education and how often students were asked nutrition-related questions tended to affect and predict the adequacy of nutrition education received and the perceived confidence for nutrition counselling. CONCLUSION International medical students in China are less familiar with the nutrition context in their respective home countries compared with their home-country counterparts. Medical schools in China that train significant numbers of international students need to support these students to become familiar with their respective countries' nutrition contexts.
Collapse
|
research-article |
5 |
|
12
|
Gao L, Gou N, Amakye WK, Wu J, Ren J. Bioactivity guided isolation and identification of phenolic compounds from Citrus aurantium L. with anti-colorectal cancer cells activity by UHPLC-Q-TOF/MS. Curr Res Food Sci 2022; 5:2251-2260. [PMID: 36425596 PMCID: PMC9678966 DOI: 10.1016/j.crfs.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/19/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] [Imported: 08/29/2023] Open
Abstract
Natural plants are rich sources of various bioactive compounds. Consequently, the efficiently isolation of these bioactive components has always attracted considerable attention. Our work aims to demonstrate a framework for bioactivity guided isolation of potential effective compounds from the complex food materials. We demonstrated its application for isolation of phenolic compounds with anti-proliferative activity against colorectal cancer cells (CRCs) from Citrus aurantium L. Firstly, phenolic rich fraction was successfully identified as the main effective components that could simultaneously suppress the growth of CRCs and inhibit Wnt signaling. In order to obtain the bioactive phenolic constituents, a detailed study was performed by optimizing the purification conditions. Two phenolic rich fractions (40% and 60% ethanol elution fractions) were then obtained by AB-8 macroporous resins under optimized condition. Finally, the main components (65 compounds) were tentatively identified from the 40% ethanol eluant by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) analysis. Notably, there were five of the phytochemicals (Feruloylagmatine, Haploside C, Sagittatin A, Linderagalactone C and Koparin-2'-methyl ether) which were hitherto unidentified in Citrus aurantium L. fruit. In conclusion, this study showed that under the principle of bioactivity guided strategy, phenolic constituents with potential anti-CRCs activity were isolated from Citrus aurantium L.
Collapse
Key Words
- 4, 5-dimethyl-2-thiazolyl, -2, 5-diphenyl-2-H-tetrazolium bromide
- BV, bed volume
- Bioactivity guided isolation
- CM, conditioned medium
- CRCs, colorectal cancer cells
- Citrus aurantium L.
- Colorectal cancer
- DMEM, dulbecco's modified Eagle's medium
- FBS, fetal bovine serum
- MTT, 3-
- PBS, phosphate-buffered saline
- Phenolic compounds
- TIC, total ion current
- TPC, total phenolic content
- UHPLC-Q-TOF/MS, ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry
- Wnt signalling
Collapse
|
research-article |
3 |
|
13
|
Liu H, Yao M, Ren J. Codonopsis pilosula-derived glycopeptide dCP1 promotes the polarization of tumor-associated macrophage from M2-like to M1 phenotype. Cancer Immunol Immunother 2024; 73:128. [PMID: 38743074 PMCID: PMC11093951 DOI: 10.1007/s00262-024-03694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/28/2024] [Indexed: 05/16/2024] [Imported: 01/21/2025]
Abstract
The majority of the immune cell population in the tumor microenvironment (TME) consists of tumor-associated macrophages (TAM), which are the main players in coordinating tumor-associated inflammation. TAM has a high plasticity and is divided into two main phenotypes, pro-inflammatory M1 type and anti-inflammatory M2 type, with tumor-suppressive and tumor-promoting functions, respectively. Considering the beneficial effects of M1 macrophages for anti-tumor and the high plasticity of macrophages, the conversion of M2 TAM to M1 TAM is feasible and positive for tumor treatment. This study sought to evaluate whether the glycopeptide derived from simulated digested Codonopsis pilosula extracts could regulate the polarization of M2-like TAM toward the M1 phenotype and the potential regulatory mechanisms. The results showed that after glycopeptide dCP1 treatment, the mRNA relative expression levels of some M2 phenotype marker genes in M2-like TAM in simulated TME were reduced, and the relative expression levels of M1 phenotype marker genes and inflammatory factor genes were increased. Analysis of RNA-Seq of M2-like TAM after glycopeptide dCP1 intervention showed that the gene sets such as glycolysis, which is associated with macrophage polarization in the M1 phenotype, were significantly up-regulated, whereas those of gene sets such as IL-6-JAK-STAT3 pathway, which is associated with polarization in the M2 phenotype, were significantly down-regulated. Moreover, PCA analysis and Pearson's correlation also indicated that M2-like TAM polarized toward the M1 phenotype at the transcriptional level after treatment with the glycopeptide dCP1. Lipid metabolomics was used to further explore the efficacy of the glycopeptide dCP1 in regulating the polarization of M2-like TAM to the M1 phenotype. It was found that the lipid metabolite profiles in dCP1-treated M2-like TAM showed M1 phenotype macrophage lipid metabolism profiles compared with blank M2-like TAM. Analysis of the key differential lipid metabolites revealed that the interconversion between phosphatidylcholine (PC) and diacylglycerol (DG) metabolites may be the central reaction of the glycopeptide dCP1 in regulating the conversion of M2-like TAM to the M1 phenotype. The above results suggest that the glycopeptide dCP1 has the efficacy to regulate the polarization of M2-like TAM to M1 phenotype in simulated TME.
Collapse
|
research-article |
1 |
|