1
|
Di A, Brown ME, Deriy LV, Li C, Szeto FL, Chen Y, Huang P, Tong J, Naren AP, Bindokas V, Palfrey HC, Nelson DJ. CFTR regulates phagosome acidification in macrophages and alters bactericidal activity. Nat Cell Biol 2006; 8:933-44. [PMID: 16921366 DOI: 10.1038/ncb1456] [Citation(s) in RCA: 384] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 07/12/2006] [Indexed: 02/07/2023] [Imported: 09/07/2023]
Abstract
Acidification of phagosomes has been proposed to have a key role in the microbicidal function of phagocytes. Here, we show that in alveolar macrophages the cystic fibrosis transmembrane conductance regulator Cl- channel (CFTR) participates in phagosomal pH control and has bacterial killing capacity. Alveolar macrophages from Cftr-/- mice retained the ability to phagocytose and generate an oxidative burst, but exhibited defective killing of internalized bacteria. Lysosomes from CFTR-null macrophages failed to acidify, although they retained normal fusogenic capacity with nascent phagosomes. We hypothesize that CFTR contributes to lysosomal acidification and that in its absence phagolysosomes acidify poorly, thus providing an environment conducive to bacterial replication.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
384 |
2
|
Naren AP, Cobb B, Li C, Roy K, Nelson D, Heda GD, Liao J, Kirk KL, Sorscher EJ, Hanrahan J, Clancy JP. A macromolecular complex of beta 2 adrenergic receptor, CFTR, and ezrin/radixin/moesin-binding phosphoprotein 50 is regulated by PKA. Proc Natl Acad Sci U S A 2003; 100:342-6. [PMID: 12502786 PMCID: PMC140971 DOI: 10.1073/pnas.0135434100] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2002] [Indexed: 11/18/2022] [Imported: 09/13/2023] Open
Abstract
It has been demonstrated previously that both the cystic fibrosis transmembrane conductance regulator (CFTR) and beta(2) adrenergic receptor (beta(2)AR) can bind ezrinradixinmoesin-binding phosphoprotein 50 (EBP50, also referred to as NHERF) through their PDZ motifs. Here, we show that beta(2) is the major adrenergic receptor isoform expressed in airway epithelia and that it colocalizes with CFTR at the apical membrane. beta(2)AR stimulation increases CFTR activity, in airway epithelial cells, that is glybenclamide sensitive. Deletion of the PDZ motif from CFTR uncouples the channel from the receptor both physically and functionally. This uncoupling is specific to the beta(2)AR receptor and does not affect CFTR coupling to other receptors (e.g., adenosine receptor pathway). Biochemical studies demonstrate the existence of a macromolecular complex involving CFTR-EBP50-beta(2)AR through PDZ-based interactions. Assembly of the complex is regulated by PKA-dependent phosphorylation. Deleting the regulatory domain of CFTR abolishes PKA regulation of complex assembly. This report summarizes a macromolecular signaling complex involving CFTR, the implications of which may be relevant to CFTR-dysfunction diseases.
Collapse
|
research-article |
22 |
167 |
3
|
Li C, Krishnamurthy PC, Penmatsa H, Marrs KL, Wang XQ, Zaccolo M, Jalink K, Li M, Nelson DJ, Schuetz JD, Naren AP. Spatiotemporal coupling of cAMP transporter to CFTR chloride channel function in the gut epithelia. Cell 2008; 131:940-51. [PMID: 18045536 DOI: 10.1016/j.cell.2007.09.037] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 07/17/2007] [Accepted: 09/13/2007] [Indexed: 12/12/2022] [Imported: 09/07/2023]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel localized at apical cell membranes and exists in macromolecular complexes with a variety of signaling and transporter molecules. Here, we report that the multidrug resistance protein 4 (MRP4), a cAMP transporter, functionally and physically associates with CFTR. Adenosine-stimulated CFTR-mediated chloride currents are potentiated by MRP4 inhibition, and this potentiation is directly coupled to attenuated cAMP efflux through the apical cAMP transporter. CFTR single-channel recordings and FRET-based intracellular cAMP dynamics suggest that a compartmentalized coupling of cAMP transporter and CFTR occurs via the PDZ scaffolding protein, PDZK1, forming a macromolecular complex at apical surfaces of gut epithelia. Disrupting this complex abrogates the functional coupling of cAMP transporter activity to CFTR function. Mrp4 knockout mice are more prone to CFTR-mediated secretory diarrhea. Our findings have important implications for disorders such as inflammatory bowel disease and secretory diarrhea.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
150 |
4
|
Li C, Dandridge KS, Di A, Marrs KL, Harris EL, Roy K, Jackson JS, Makarova NV, Fujiwara Y, Farrar PL, Nelson DJ, Tigyi GJ, Naren AP. Lysophosphatidic acid inhibits cholera toxin-induced secretory diarrhea through CFTR-dependent protein interactions. ACTA ACUST UNITED AC 2006; 202:975-86. [PMID: 16203867 PMCID: PMC2213164 DOI: 10.1084/jem.20050421] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] [Imported: 09/07/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel localized primarily at the apical or luminal surfaces of epithelial cells that line the airway, gut, and exocrine glands; it is well established that CFTR plays a pivotal role in cholera toxin (CTX)-induced secretory diarrhea. Lysophosphatidic acid (LPA), a naturally occurring phospholipid present in blood and foods, has been reported to play a vital role in a variety of conditions involving gastrointestinal wound repair, apoptosis, inflammatory bowel disease, and diarrhea. Here we show, for the first time, that type 2 LPA receptors (LPA2) are expressed at the apical surface of intestinal epithelial cells, where they form a macromolecular complex with Na+/H+ exchanger regulatory factor–2 and CFTR through a PSD95/Dlg/ZO-1–based interaction. LPA inhibited CFTR-dependent iodide efflux through LPA2-mediated Gi pathway, and LPA inhibited CFTR-mediated short-circuit currents in a compartmentalized fashion. CFTR-dependent intestinal fluid secretion induced by CTX in mice was reduced substantially by LPA administration; disruption of this complex using a cell-permeant LPA2-specific peptide reversed LPA2-mediated inhibition. Thus, LPA-rich foods may represent an alternative method of treating certain forms of diarrhea.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
19 |
127 |
5
|
Li C, Naren AP. Macromolecular complexes of cystic fibrosis transmembrane conductance regulator and its interacting partners. Pharmacol Ther 2005; 108:208-23. [PMID: 15936089 DOI: 10.1016/j.pharmthera.2005.04.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 04/12/2005] [Indexed: 01/12/2023] [Imported: 09/07/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is the product of the gene mutated in patients with cystic fibrosis (CF). CFTR is a cAMP-regulated chloride channel localized primarily at the apical or luminal surfaces of epithelial cells lining the airway, gut, exocrine glands, etc., where it is responsible for transepithelial salt and water transport. CFTR chloride channel belongs to the superfamily of the ATP-binding cassette (ABC) transporters, which bind ATP and use the energy to drive the transport of a wide variety of substrates across extra- and intracellular membranes. A growing number of proteins have been reported to interact directly or indirectly with CFTR chloride channel, suggesting that CFTR might regulate the activities of other ion channels, receptors, or transporters, in addition to its role as a chloride conductor. The molecular assembly of CFTR with these interacting proteins is of great interest and importance because several human diseases are attributed to altered regulation of CFTR, among which cystic fibrosis is the most serious one. Most interactions primarily occur between the opposing terminal tails (N- or C-) of CFTR and its binding partners, either directly or mediated through various PDZ domain-containing proteins. These dynamic interactions impact the channel function as well as the localization and processing of CFTR protein within cells. This review focuses on the recent developments in defining the assembly of CFTR-containing complexes in the plasma membrane and its interacting proteins.
Collapse
|
Review |
20 |
106 |
6
|
Li C, Naren AP. CFTR chloride channel in the apical compartments: spatiotemporal coupling to its interacting partners. Integr Biol (Camb) 2010; 2:161-77. [PMID: 20473396 DOI: 10.1039/b924455g] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] [Imported: 09/07/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel located primarily at the apical or luminal surfaces of epithelial cells in the airway, intestine, pancreas, kidney, sweat gland, as well as male reproductive tract, where it plays a crucial role in transepithelial fluid homeostasis. CFTR dysfunction can be detrimental and may result in life-threatening disorders. CFTR hypofunctioning because of genetic defects leads to cystic fibrosis, the most common lethal genetic disease in Caucasians, whereas CFTR hyperfunctioning resulting from various infections evokes secretory diarrhea, the leading cause of mortality in early childhood. Therefore, maintaining a dynamic balance between CFTR up-regulating processes and CFTR down-regulating processes is essential for maintaining fluid and body homeostasis. Accumulating evidence suggests that protein-protein interactions play a critical role in the fine-tuned regulation of CFTR function. A growing number of proteins have been reported to interact directly or indirectly with CFTR chloride channel, suggesting that CFTR might be coupled spatially and temporally to a wide variety of interacting partners including ion channels, receptors, transporters, scaffolding proteins, enzyme molecules, signaling molecules, and effectors. Most interactions occur primarily between the opposing terminal tails (amino or carboxyl) of CFTR protein and its binding partners, either directly or mediated through various PDZ scaffolding proteins. These dynamic interactions impact the channel function, as well as localization and processing of CFTR protein within cells. This article reviews the most recent progress and findings about the interactions between CFTR and its binding partners through PDZ scaffolding proteins, as well as the spatiotemporal regulation of CFTR-containing macromolecular signaling complexes in the apical compartments of polarized cells lining the secretory epithelia.
Collapse
|
Review |
15 |
103 |
7
|
Sheth P, Seth A, Atkinson K, Gheyi T, Kale G, Giorgianni F, Desiderio D, Li C, Naren A, Rao R. Acetaldehyde dissociates the PTP1B-E-cadherin-beta-catenin complex in Caco-2 cell monolayers by a phosphorylation-dependent mechanism. Biochem J 2007; 402:291-300. [PMID: 17087658 PMCID: PMC1798442 DOI: 10.1042/bj20060665] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] [Imported: 09/07/2023]
Abstract
Interactions between E-cadherin, beta-catenin and PTP1B (protein tyrosine phosphatase 1B) are crucial for the organization of AJs (adherens junctions) and epithelial cell-cell adhesion. In the present study, the effect of acetaldehyde on the AJs and on the interactions between E-cadherin, beta-catenin and PTP1B was determined in Caco-2 cell monolayers. Treatment of cell monolayers with acetaldehyde induced redistribution of E-cadherin and beta-catenin from the intercellular junctions by a tyrosine phosphorylation-dependent mechanism. The PTPase activity associated with E-cadherin and beta-catenin was significantly reduced and the interaction of PTP1B with E-cadherin and beta-catenin was attenuated by acetaldehyde. Acetaldehyde treatment resulted in phosphorylation of beta-catenin on tyrosine residues, and abolished the interaction of beta-catenin with E-cadherin by a tyrosine kinase-dependent mechanism. Protein binding studies showed that the treatment of cells with acetaldehyde reduced the binding of beta-catenin to the C-terminal region of E-cadherin. Pairwise binding studies using purified proteins indicated that the direct interaction between E-cadherin and beta-catenin was reduced by tyrosine phosphorylation of beta-catenin, but was unaffected by tyrosine phosphorylation of E-cadherin-C. Treatment of cells with acetaldehyde also reduced the binding of E-cadherin to GST (glutathione S-transferase)-PTP1B. The pairwise binding study showed that GST-E-cadherin-C binds to recombinant PTP1B, but this binding was significantly reduced by tyrosine phosphorylation of E-cadherin. Acetaldehyde increased the phosphorylation of beta-catenin on Tyr-331, Tyr-333, Tyr-654 and Tyr-670. These results show that acetaldehyde induces disruption of interactions between E-cadherin, beta-catenin and PTP1B by a phosphorylation-dependent mechanism.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
73 |
8
|
Li J, Zhu Y, Hazeldine ST, Li C, Oupický D. Dual-function CXCR4 antagonist polyplexes to deliver gene therapy and inhibit cancer cell invasion. Angew Chem Int Ed Engl 2012; 51:8740-3. [PMID: 22855422 PMCID: PMC3517087 DOI: 10.1002/anie.201203463] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/03/2012] [Indexed: 11/08/2022] [Imported: 09/07/2023]
Abstract
A bicyclam-based biodegradable polycation with CXCR4 antagonistic activity was developed with potential for combined drug/gene cancer therapies. The dual-function polycation prevents cancer cell invasion by inhibiting CXCL12 stimulated CXCR4 activation, while at the same time efficiently and safely delivers plasmid DNA into cancer cells.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
73 |
9
|
Penmatsa H, Zhang W, Yarlagadda S, Li C, Conoley VG, Yue J, Bahouth SW, Buddington RK, Zhang G, Nelson DJ, Sonecha MD, Manganiello V, Wine JJ, Naren AP. Compartmentalized cyclic adenosine 3',5'-monophosphate at the plasma membrane clusters PDE3A and cystic fibrosis transmembrane conductance regulator into microdomains. Mol Biol Cell 2010; 21:1097-110. [PMID: 20089840 PMCID: PMC2836961 DOI: 10.1091/mbc.e09-08-0655] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] [Imported: 09/07/2023] Open
Abstract
Formation of multiple-protein macromolecular complexes at specialized subcellular microdomains increases the specificity and efficiency of signaling in cells. In this study, we demonstrate that phosphodiesterase type 3A (PDE3A) physically and functionally interacts with cystic fibrosis transmembrane conductance regulator (CFTR) channel. PDE3A inhibition generates compartmentalized cyclic adenosine 3',5'-monophosphate (cAMP), which further clusters PDE3A and CFTR into microdomains at the plasma membrane and potentiates CFTR channel function. Actin skeleton disruption reduces PDE3A-CFTR interaction and segregates PDE3A from its interacting partners, thus compromising the integrity of the CFTR-PDE3A-containing macromolecular complex. Consequently, compartmentalized cAMP signaling is lost. PDE3A inhibition no longer activates CFTR channel function in a compartmentalized manner. The physiological relevance of PDE3A-CFTR interaction was investigated using pig trachea submucosal gland secretion model. Our data show that PDE3A inhibition augments CFTR-dependent submucosal gland secretion and actin skeleton disruption decreases secretion.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
53 |
10
|
Li C, Roy K, Dandridge K, Naren AP. Molecular assembly of cystic fibrosis transmembrane conductance regulator in plasma membrane. J Biol Chem 2004; 279:24673-84. [PMID: 15060073 DOI: 10.1074/jbc.m400688200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] [Imported: 09/07/2023] Open
Abstract
Based on electrophysiological measurements, it has been argued that the active form of cystic fibrosis trans-membrane conductance regulator (CFTR) Cl(-) channel is a multimer. It has also been demonstrated that this multimerization is likely due to PDZ domain-interacting partners. Here we demonstrate that although CFTR in vitro can self-associate into multimers, which depends on PDZ-based interactions, this may not be the case in cell membrane. Using chemical cross-linking, we demonstrated that CFTR exists as a higher order complex in cell membrane. However, this higher order complex is predominantly CFTR dimers, and the PDZ-interacting partners (Na(+)/H(+) exchanger regulatory factor-1 (NHERF1) and NHERF2) constitute approximately 2% of this complex. Interestingly solubilizing membrane expressing CFTR in detergents such as Triton X-100, Nonidet P-40, deoxycholate, and SDS tended to destabilize the CFTR dimers and dissociate them into monomeric form. The dimerization of CFTR was tightly regulated by cAMP-dependent protein kinase-dependent phosphorylation and did not depend on the active form of the channel. In addition, the dimerization was not influenced by either the PDZ motif or its interacting partners (NHERF1 and NHERF2). We also demonstrated that other signaling-related proteins such as Gbeta and syntaxin 1A can be in this higher order complex of CFTR as well. Our studies provide a deeper understanding of how the CFTR assembly takes place in native cell membrane.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
53 |
11
|
Wu Y, Wang S, Farooq SM, Castelvetere MP, Hou Y, Gao JL, Navarro JV, Oupicky D, Sun F, Li C. A chemokine receptor CXCR2 macromolecular complex regulates neutrophil functions in inflammatory diseases. J Biol Chem 2011; 287:5744-55. [PMID: 22203670 DOI: 10.1074/jbc.m111.315762] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] [Imported: 09/07/2023] Open
Abstract
Inflammation plays an important role in a wide range of human diseases such as ischemia-reperfusion injury, arteriosclerosis, cystic fibrosis, inflammatory bowel disease, etc. Neutrophilic accumulation in the inflamed tissues is an essential component of normal host defense against infection, but uncontrolled neutrophilic infiltration can cause progressive damage to the tissue epithelium. The CXC chemokine receptor CXCR2 and its specific ligands have been reported to play critical roles in the pathophysiology of various inflammatory diseases. However, it is unclear how CXCR2 is coupled specifically to its downstream signaling molecules and modulates cellular functions of neutrophils. Here we show that the PDZ scaffold protein NHERF1 couples CXCR2 to its downstream effector phospholipase C (PLC)-β2, forming a macromolecular complex, through a PDZ-based interaction. We assembled a macromolecular complex of CXCR2·NHERF1·PLC-β2 in vitro, and we also detected such a complex in neutrophils by co-immunoprecipitation. We further observed that the CXCR2-containing macromolecular complex is critical for the CXCR2-mediated intracellular calcium mobilization and the resultant migration and infiltration of neutrophils, as disrupting the complex with a cell permeant CXCR2-specific peptide (containing the PDZ motif) inhibited intracellular calcium mobilization, chemotaxis, and transepithelial migration of neutrophils. Taken together, our data demonstrate a critical role of the PDZ-dependent CXCR2 macromolecular signaling complex in regulating neutrophil functions and suggest that targeting the CXCR2 multiprotein complex may represent a novel therapeutic strategy for certain inflammatory diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
53 |
12
|
Farooq SM, Boppana NB, Asokan D, Sekaran SD, Shankar EM, Li C, Gopal K, Bakar SA, Karthik HS, Ebrahim AS. C-phycocyanin confers protection against oxalate-mediated oxidative stress and mitochondrial dysfunctions in MDCK cells. PLoS One 2014; 9:e93056. [PMID: 24691130 PMCID: PMC3972226 DOI: 10.1371/journal.pone.0093056] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 03/02/2014] [Indexed: 12/04/2022] [Imported: 09/07/2023] Open
Abstract
Oxalate toxicity is mediated through generation of reactive oxygen species (ROS) via a process that is partly dependent on mitochondrial dysfunction. Here, we investigated whether C-phycocyanin (CP) could protect against oxidative stress-mediated intracellular damage triggered by oxalate in MDCK cells. DCFDA, a fluorescence-based probe and hexanoyl-lysine adduct (HEL), an oxidative stress marker were used to investigate the effect of CP on oxalate-induced ROS production and membrane lipid peroxidation (LPO). The role of CP against oxalate-induced oxidative stress was studied by the evaluation of mitochondrial membrane potential by JC1 fluorescein staining, quantification of ATP synthesis and stress-induced MAP kinases (JNK/SAPK and ERK1/2). Our results revealed that oxalate-induced cells show markedly increased ROS levels and HEL protein expression that were significantly decreased following pre-treatment with CP. Further, JC1 staining showed that CP pre-treatment conferred significant protection from mitochondrial membrane permeability and increased ATP production in CP-treated cells than oxalate-alone-treated cells. In addition, CP treated cells significantly decreased the expression of phosphorylated JNK/SAPK and ERK1/2 as compared to oxalate-alone-treated cells. We concluded that CP could be used as a potential free radical-scavenging therapeutic strategy against oxidative stress-associated diseases including urolithiasis.
Collapse
|
Journal Article |
11 |
42 |
13
|
Disruption of GPR35 Exacerbates Dextran Sulfate Sodium-Induced Colitis in Mice. Dig Dis Sci 2018; 63:2910-2922. [PMID: 30043283 PMCID: PMC6373462 DOI: 10.1007/s10620-018-5216-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 07/18/2018] [Indexed: 12/12/2022] [Imported: 08/29/2023]
Abstract
BACKGROUND G protein-coupled receptor 35 (GPR35) is an orphan receptor and is vastly expressed in immune cells and gastrointestinal cells, suggesting the potential physiological importance of GPR35 in these cells. Here, we tested the hypothesis that the lack of GPR35 expression in the colon mucosa exacerbates the severity of dextran sulfate sodium (DSS)-induced experimental colitis in mice. METHODS Colitis was induced in GPR35 wild-type (GPR35+/+) and GPR35 knockout (GPR35-/-) mice through the administration of DSS in drinking water for 5 days followed by regular facility water for 1 day. Induction of colitis was evaluated by measuring relative body weight loss, clinical illness scores, and morphological changes in the colon. Abolition of Gpr35 gene expression in the colon mucosa of GPR35-/- mice was confirmed by quantitative real-time PCR (qPCR). Gene expressions of inflammatory and tissue remodeling cytokines were detected by qPCR. Human colorectal epithelial Caco cells were transfected with siRNA against GPR35 before treated with 1% DSS in vitro. Protein expressions were measured using Western blot. RESULTS GPR35-/- mice receiving DSS showed a significantly worsened colitis disease with profound loss of body weight and a considerable amount of severe clinical illness compared to GPR35+/+ mice that received DSS. The histology of colon sections from GPR35-/- mice showed extensive pathological changes including submucosal edema, diffuse ulcerations, and evidence of complete loss of crypts compared to wild-type mice. The mean histopathological score was significantly higher in GPR35-/- mice as compared to GPR35+/+ mice. The qPCR data revealed significant expression of pro-inflammatory and tissue remodeling cytokines in GPR35-/- colon mucosa, including IL-1β, CXCL1, CXCL2, CCL2, HMGB1, TGFβ1, TGFβ3, MMP1/9/12. The protein expressions of Zonula occludens-1, E-cadherin, Claudin1 were decreased upon knocking down GPR35 with or without 1% DSS treatment. CONCLUSIONS Our experimental data suggest that lack of GPR35 resulted in worsened disease outcome in DSS-induced experimental colitis, indicating that GPR35 could play a crucial role in protecting from colonic inflammation and serve as a therapeutic target.
Collapse
|
research-article |
7 |
42 |
14
|
CXCR2 macromolecular complex in pancreatic cancer: a potential therapeutic target in tumor growth. Transl Oncol 2013; 6:216-25. [PMID: 23544174 DOI: 10.1593/tlo.13133] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 01/28/2013] [Accepted: 01/29/2013] [Indexed: 12/22/2022] [Imported: 09/07/2023] Open
Abstract
The signaling mediated by the chemokine receptor CXC chemokine receptor 2 (CXCR2) plays an important role in promoting the progression of many cancers, including pancreatic cancer, one of the most lethal human malignancies. CXCR2 possesses a consensus PSD-95/DlgA/ZO-1 (PDZ) motif at its carboxyl termini, which might interact with potential PDZ scaffold/adaptor proteins. We have previously reported that CXCR2 PDZ motif-mediated protein interaction is an important regulator for neutrophil functions. Here, using a series of biochemical assays, we demonstrate that CXCR2 is physically coupled to its downstream effector phospholipase C-β3 (PLC-β3) that is mediated by PDZ scaffold protein Na(+)/H(+) exchange regulatory factor 1 (NHERF1) into a macromolecular signaling complex both in vitro and in pancreatic cancer cells. We also observe that disrupting the CXCR2 complex, by gene delivery or peptide delivery of exogenous CXCR2 C-tail, significantly inhibits the biologic functions of pancreatic cancer cells (i.e., proliferation and invasion) in a PDZ motif-dependent manner. In addition, using a human pancreatic tumor xenograft model, we show that gene delivery of CXCR2 C-tail sequence (containing the PDZ motif) by adeno-associated virus type 2 viral vector potently suppresses human pancreatic tumor growth in immunodeficient mice. In summary, our results suggest the existence of a physical and functional coupling of CXCR2 and PLC-β3 mediated through NHERF1, forming a macromolecular complex that is critical for efficient and specific CXCR2 signaling in pancreatic cancer progression. Disrupting this CXCR2 complex could represent a novel and effective treatment strategy against pancreatic cancer.
Collapse
|
Journal Article |
12 |
34 |
15
|
Liu J, Chen P, Wang R, Yuan Y, Wang X, Li C. Effect of Tai Chi on mononuclear cell functions in patients with non-small cell lung cancer. Altern Ther Health Med 2015; 15:3. [PMID: 25653009 PMCID: PMC4321705 DOI: 10.1186/s12906-015-0517-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 01/07/2015] [Indexed: 12/30/2022] [Imported: 09/07/2023]
Abstract
BACKGROUND Tai Chi is the Chinese traditional medicine exercise for mind-body health. The objective of this study is to investigate the effect of Tai Chi Chuan (TCC) exercise on the proliferative and cytolytic/tumoricidal activities of peripheral blood mononuclear cells (PBMCs) in postsurgical non-small cell lung cancer (NSCLC) patients. METHODS Patients (n = 27) were randomly divided into the control group (n = 13) and the TCC group (n = 14). TCC group participated in Tai Chi 24-type exercise for 16 weeks, 60-min every time, and three times a week. Peripheral blood was collected and PBMCs isolated before and after the 16-week TCC, PBMC proliferation and co-culture of PBMCs with the NSCLC cell line A549 were performed for proliferation and cell cytolysis assays. Analysis of NKT cells, NK cells, and CD123+ and CD11c + dendritic cells were also performed. RESULTS (1) After 16-week of TCC, cell proliferation increased significantly as compared with the control. (2) PBMCs from the TCC group also demonstrated enhanced cytolytic/oncolytic activity against A549 cells. (3) Significant differences were also found in NK cell percentage at t = 16 weeks, post-pre changes of NKT and DC11c between groups. CONCLUSION Regular Tai Chi exercise has the promise of enhancing PBMC proliferative and cytolytic activities in NSCLC patients. Our results affirm the value of a future trial with a larger scale and longer duration for cancer survivors. TRIAL REGISTRATION ChiCTR-TRC-11001404 .
Collapse
|
Randomized Controlled Trial |
10 |
26 |
16
|
Holcomb J, Spellmon N, Zhang Y, Doughan M, Li C, Yang Z. Protein crystallization: Eluding the bottleneck of X-ray crystallography. AIMS BIOPHYSICS 2017; 4:557-575. [PMID: 29051919 PMCID: PMC5645037 DOI: 10.3934/biophy.2017.4.557] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] [Imported: 09/13/2023] Open
Abstract
To date, X-ray crystallography remains the gold standard for the determination of macromolecular structure and protein substrate interactions. However, the unpredictability of obtaining a protein crystal remains the limiting factor and continues to be the bottleneck in determining protein structures. A vast amount of research has been conducted in order to circumvent this issue with limited success. No single method has proven to guarantee the crystallization of all proteins. However, techniques using antibody fragments, lipids, carrier proteins, and even mutagenesis of crystal contacts have been implemented to increase the odds of obtaining a crystal with adequate diffraction. In addition, we review a new technique using the scaffolding ability of PDZ domains to facilitate nucleation and crystal lattice formation. Although in its infancy, such technology may be a valuable asset and another method in the crystallography toolbox to further the chances of crystallizing problematic proteins.
Collapse
|
Journal Article |
8 |
25 |
17
|
PNT2258, a novel deoxyribonucleic acid inhibitor, induces cell cycle arrest and apoptosis via a distinct mechanism of action: a new class of drug for non-Hodgkin's lymphoma. Oncotarget 2018; 7:42374-42384. [PMID: 27283896 PMCID: PMC5173141 DOI: 10.18632/oncotarget.9872] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 05/11/2016] [Indexed: 11/25/2022] [Imported: 09/13/2023] Open
Abstract
Current therapy for BCL-2-associated tumors such as Non-Hodgkin Lymphomas (NHL) is inadequate. The DNAi PNT2258, a 24 base single-stranded phosphodiester DNA oligodeoxynucleotide (PNT100) encapsulated in a protective liposome, was precisely designed to treat cancers that over-express BCL-2. PNT2258 strongly inhibited BCL-2 promoter activity, confirming its predicted mechanism of action. BCL-2 mRNA and protein expression were significantly downregulated in a follicular small cleaved cell lymphoma (WSU-FSCCL) cell line. 2.5μM PNT2258 induced an initial S- phase arrest followed by a gradual increase in the sub-G0 (apoptosis) compartment and a reciprocal progressive decrease of the S phase. Terminal deoxynucleotidyl transferase (TdT)-positive populations and cleaved caspase-3 and PARP were also increased. The data are consistent with the idea that BCL-2 inhibition by PNT2258 activates apoptotic pathways in WSU-FSCCL cells. This is the first report to address the distinct mechanism of action underlying the anti-BCL-2 functions of PNT2258. Growth inhibition in two other cell lines, WSU-DLCL2 and WSU-WM, supports broad applicability of BCL-2 DNAi to treatment of B-cell NHL.
Collapse
|
Journal Article |
7 |
25 |
18
|
Li C, Schuetz JD, Naren AP. Tobacco carcinogen NNK transporter MRP2 regulates CFTR function in lung epithelia: implications for lung cancer. Cancer Lett 2010; 292:246-53. [PMID: 20089353 PMCID: PMC2868381 DOI: 10.1016/j.canlet.2009.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 12/09/2009] [Accepted: 12/11/2009] [Indexed: 10/19/2022] [Imported: 09/07/2023]
Abstract
Lung cancer is the leading cause of cancer death in the United States. About 85% of all lung cancers are linked to tobacco smoke, in which more than 50 lung carcinogens have been identified and one of the most abundant is 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). The human lung epithelium constitutes the first line of defense against tobacco-specific carcinogens, in which apically-localized receptors, transporters, and ion channels in the airway may play a critical role in this native defense against tobacco smoke. Here we showed that multidrug resistance protein-2 (MRP2) and cystic fibrosis transmembrane conductance regulator (CFTR), two ATP-binding cassette (ABC) transporters, are localized to the apical surfaces of plasma membrane in polarized lung epithelial cells. We observed that there is a functional coupling between CFTR and MRP2 that may be mediated by PDZ proteins. We also observed the existence of a macromolecular complex containing CFTR, MRP2, and PDZ proteins, which might form the basis for the regulatory cooperation between these two ABC transporters. Our results have important implications for cigarette smoke-associated lung diseases (such as smoke-related emphysema, chronic obstructive pulmonary disease, and lung cancer).
Collapse
|
Research Support, N.I.H., Extramural |
15 |
22 |
19
|
Chen L, Huang S, Li CY, Gao F, Zhou XL. Pyrrolizidine alkaloids from Liparis nervosa with antitumor activity by modulation of autophagy and apoptosis. PHYTOCHEMISTRY 2018; 153:147-155. [PMID: 29980107 PMCID: PMC6596299 DOI: 10.1016/j.phytochem.2018.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/18/2018] [Accepted: 06/02/2018] [Indexed: 06/08/2023] [Imported: 09/13/2023]
Abstract
Seven pyrrolizidine alkaloids, nervosine X-XV and nervosine VII N-oxide, together with a reaction product, namely chloride-(N-chloromethyl nervosine VII), were isolated from Liparis nervosa. Their structures were elucidated by extensive spectroscopic analyses. Most of these compounds were investigated for their cytotoxicity in vitro against HCT116 human cancer cell line, and the results showed that chloride-(N-chloromethyl nervosine VII) induced tumor cell death in a dose-dependent manner. Furthermore, the mechanisms underlying its cytotoxicity were investigated, including apoptosis and autophagy. Apoptosis in HCT116 cells was associated with up-regulation of caspase-3 and -9 expressions by activation of the mitochondrial pathway. The autophagy inducing effect was associated with the regulation of autophagic markers, including LC3-II, p62, and Beclin 1. Mechanistic studies showed that JNK, ERK1/2, and p38 MAPKs signaling cascades play an important role in chloride-(N-chloromethyl nervosine VII) induced autophagy and apoptosis.
Collapse
|
research-article |
7 |
20 |
20
|
Hou Y, Guan X, Yang Z, Li C. Emerging role of cystic fibrosis transmembrane conductance regulator - an epithelial chloride channel in gastrointestinal cancers. World J Gastrointest Oncol 2016; 8:282-288. [PMID: 26989463 PMCID: PMC4789613 DOI: 10.4251/wjgo.v8.i3.282] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/21/2015] [Accepted: 12/21/2015] [Indexed: 02/05/2023] [Imported: 01/11/2025] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR), a glycoprotein with 1480 amino acids, has been well established as a chloride channel mainly expressed in the epithelial cells of various tissues and organs such as lungs, sweat glands, gastrointestinal system, and reproductive organs. Although defective CFTR leads to cystic fibrosis, a common genetic disorder in the Caucasian population, there is accumulating evidence that suggests a novel role of CFTR in various cancers, especially in gastroenterological cancers, such as pancreatic cancer and colon cancer. In this review, we summarize the emerging findings that link CFTR with various cancers, with focus on the association between CFTR defects and gastrointestinal cancers as well as the underlying mechanisms. Further study of CFTR in cancer biology may help pave a new way for the diagnosis and treatment of gastrointestinal cancers.
Collapse
|
Minireviews |
9 |
20 |
21
|
Guan X, Hou Y, Sun F, Yang Z, Li C. Dysregulated Chemokine Signaling in Cystic Fibrosis Lung Disease: A Potential Therapeutic Target. Curr Drug Targets 2017; 17:1535-44. [PMID: 26648071 DOI: 10.2174/1389450117666151209120516] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 12/26/2022] [Imported: 09/13/2023]
Abstract
CF lung disease is characterized by a chronic and non-resolving activation of the innate immune system with excessive release of chemokines/cytokines including IL-8 and persistent infiltration of immune cells, mainly neutrophils, into the airways. Chronic infection and impaired immune response eventually lead to pulmonary damage characterized by bronchiectasis, emphysema, and lung fibrosis. As a complete knowledge of the pathways responsible for the exaggerated inflammatory response in CF lung disease is lacking, understanding these pathways could reveal new therapeutic targets, and lead to novel treatments. Therefore, there is a strong rationale for the identification of mechanisms and pathways underlying the exaggerated inflammatory response in CF lung disease. This article reviews the role of inflammation in the pathogenesis of CF lung disease, with a focus on the dysregulated signaling involved in the overexpression of chemokine IL-8 and excessive recruitment of neutrophils in CF airways. The findings suggest that targeting the exaggerated IL-8/IL-8 receptor (mainly CXCR2) signaling pathway in immune cells (especially neutrophils) may represent a potential therapeutic strategy for CF lung disease.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
19 |
22
|
Ray RM, Li C, Bhattacharya S, Naren AP, Johnson LR. Spermine, a molecular switch regulating EGFR, integrin β3, Src, and FAK scaffolding. Cell Signal 2012; 24:931-42. [PMID: 22227249 PMCID: PMC3334284 DOI: 10.1016/j.cellsig.2011.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 12/19/2011] [Indexed: 12/21/2022] [Imported: 09/07/2023]
Abstract
Intracellular polyamine levels are highly regulated by the activity of ornithine decarboxylase (ODC), which catalyzes the first rate-limiting reaction in polyamine biosynthesis, producing putrescine, which is subsequently converted to spermidine and spermine. We have shown that polyamines regulate proliferation, migration, and apoptosis in intestinal epithelial cells. Polyamines regulate key signaling events at the level of the EGFR and Src. However, the precise mechanism of action of polyamines is unknown. In the present study, we demonstrate that ODC localizes in lamellipodia and in adhesion plaques during cell spreading. Spermine regulates EGF-induced migration by modulating the interaction of the EGFR with Src. The EGFR interacted with integrin β3, Src, and focal adhesion kinase (FAK). Active Src (pY418-Src) localized with FAK during spreading and migration. Spermine prevented EGF-induced binding of the EGFR with integrin β3, Src, and FAK. Activation of Src and FAK was necessary for EGF-induced migration in HEK293 cells. EGFR-mediated Src activation in live HEK293 cells using a FRET based Src reporter showed that polyamine depletion significantly increased Src kinase activity. In vitro binding studies showed that spermine directly binds Src, and preferentially interacts with the SH2 domain of Src. The physical interaction between Src and the EGFR was severely attenuated by spermine. Therefore, spermine acts as a molecular switch in regulating EGFR-Src coupling both physically and functionally. Upon activation of the EGFR, integrin β3, FAK and Src are recruited to EGFR leading to the trans-activation of both the EGFR and Src and to the Src-mediated phosphorylation of FAK. The activation of FAK induced Rho-GTPases and subsequently migration. This is the first study to define mechanistically how polyamines modulate Src function at the molecular level.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
18 |
23
|
Lu G, Wu Y, Jiang Y, Wang S, Hou Y, Guan X, Brunzelle J, Sirinupong N, Sheng S, Li C, Yang Z. Structural insights into neutrophilic migration revealed by the crystal structure of the chemokine receptor CXCR2 in complex with the first PDZ domain of NHERF1. PLoS One 2013; 8:e76219. [PMID: 24098448 PMCID: PMC3788737 DOI: 10.1371/journal.pone.0076219] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/21/2013] [Indexed: 11/17/2022] [Imported: 09/07/2023] Open
Abstract
Neutrophil plays an essential role in host defense against infection, but uncontrolled neutrophilic infiltration can cause inflammation and severe epithelial damage. We recently showed that CXCR2 formed a signaling complex with NHERF1 and PLC-2, and that the formation of this complex was required for intracellular calcium mobilization and neutrophilic transepithelial migration. To uncover the structural basis of the complex formation, we report here the crystal structure of the NHERF1 PDZ1 domain in complex with the C-terminal sequence of CXCR2 at 1.16 Å resolution. The structure reveals that the CXCR2 peptide binds to PDZ1 in an extended conformation with the last four residues making specific side chain interactions. Remarkably, comparison of the structure to previously studied PDZ1 domains has allowed the identification of PDZ1 ligand-specific interactions and the mechanisms that govern PDZ1 target selection diversities. In addition, we show that CXCR2 can bind both NHERF1 PDZ1 and PDZ2 in pulldown experiments, consistent with the observation that the peptide binding pockets of these two PDZ domains are highly structurally conserved. The results of this study therefore provide structural basis for the CXCR2-mediated neutrophilic migration and could have important clinical applications in the prevention and treatment of numerous neutrophil-dependent inflammatory disorders.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
16 |
24
|
Zhou Y, He X, Liu R, Qin Y, Wang S, Yao X, Li C, Hu Z. LncRNA CRNDE regulates the proliferation and migration of vascular smooth muscle cells. J Cell Physiol 2019; 234:16205-16214. [PMID: 30740670 DOI: 10.1002/jcp.28284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 01/24/2023] [Imported: 09/13/2023]
Abstract
Restenosis after angioplasty or stent is a major clinical problem. While long noncoding RNAs (lncRNAs) are implicated in a variety of diseases, their role in restenosis is not well understood. This study aims to investigate how dysregulated lncRNAs and messenger RNAs (mRNAs) contribute to restenosis. By microarray analysis, we identified 202 lncRNAs and 625 mRNAs (fold change > 2.0, p < 0.05) differentially expressed between the balloon-injured carotid artery and uninjured carotid artery in the rats. Among differentially expressed lncRNAs, LncRNA CRNDE had the highest fold change and the change was validated by reverse transcription polymerase chain reaction. We found that LncRNA CRNDE was significantly upregulated in injured rat carotid artery and vascular smooth muscle cells (VSMCs) stimulated by platelet-derived growth factor-BB (PDGF-BB). Knockdown of LncRNA CRNDE by small interference RNA significantly inhibited PDGF-BB stimulated proliferation and migration of VSMCs. Moreover, knockdown of LncRNA CRNDE attenuated PDGF-BB-induced phenotypic change of VSMCs. Taken together, our study reveals a novel mechanoresponsive LncRNA CRNDE which may be a therapeutic target for restenosis.
Collapse
|
|
6 |
14 |
25
|
Hou Y, Wu Y, Farooq SM, Guan X, Wang S, Liu Y, Oblak JJ, Holcomb J, Jiang Y, Strieter RM, Lasley RD, Arbab AS, Sun F, Li C, Yang Z. A critical role of CXCR2 PDZ-mediated interactions in endothelial progenitor cell homing and angiogenesis. Stem Cell Res 2015; 14:133-43. [PMID: 25622052 DOI: 10.1016/j.scr.2014.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 11/14/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022] [Imported: 09/13/2023] Open
|
|
10 |
13 |