51
|
Safe S, Qin C, McDougal A. Development of selective aryl hydrocarbon receptor modulators for treatment of breast cancer. Expert Opin Investig Drugs 2005; 8:1385-96. [PMID: 15992156 DOI: 10.1517/13543784.8.9.1385] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] [Imported: 08/29/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a basic helix-loop-helix DNA-binding protein that forms a transcriptionally-active heterodimer with the AhR nuclear translocator (Arnt) protein. The nuclear AhR complex is a ligand-induced transcription factor and the environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a high affinity ligand for the AhR. TCDD induces a diverse spectrum of tissue-, sex- and species-specific biochemical and toxic responses in Ah-responsive cells/tissues including the inhibition of 17beta-oestradiol (E2)-induced gene expression in the rodent uterus and mammary and in human breast cancer cell lines. TCDD also inhibits spontaneous and carcinogen-induced mammary tumour formation and growth in rodent models. Research in this laboratory has utilised the AhR as a target for developing anticancer drugs for treatment of breast cancer and two different structural classes of selective AhR modulators (SAhRMs) have been developed. Alternate-substituted (1,3,6,8- and 2,4,6,8-) alkyl polychlorinated dibenzofurans (PCDFs) and substituted diindolylmethanes (DIMs) bind the AhR and induce a pattern of AhR-oestrogen receptor (ER) inhibitory cross-talk similar to that observed for TCDD including inhibition of mammary tumour growth at doses < 1.0 mg/kg/day. In contrast, effective doses of these compounds do not induce hepatic CYP1A1-dependent activity or other AhR-mediated toxic responses induced by TCDD. These results indicate that SAhRMs may be an important new class of drugs for clinical treatment of breast cancer via AhR-ER inhibitory cross-talk.
Collapse
|
Journal Article |
19 |
53 |
52
|
Yoon K, Lee SO, Cho SD, Kim K, Khan S, Safe S. Activation of nuclear TR3 (NR4A1) by a diindolylmethane analog induces apoptosis and proapoptotic genes in pancreatic cancer cells and tumors. Carcinogenesis 2011; 32:836-42. [PMID: 21362629 DOI: 10.1093/carcin/bgr040] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] [Imported: 08/29/2023] Open
Abstract
NR4A1 (Nur77, TR3) is overexpressed in pancreatic tumors and activation of TR3 by 1,1-bis(3'-indolyl)-1-(p-methoxyphenyl)methane (DIM-C-pPhOCH(3)) inhibits cell and tumor growth and induces apoptosis. Microarray analysis demonstrates that in L3.6pL pancreatic cancer cells DIM-C-pPhOCH(3) induces genes associated with metabolism, homeostasis, signal transduction, transcription, stress, transport, immune responses, growth inhibition and apoptosis. Among the most highly induced growth inhibitory and proapoptotic genes including activating transcription factor 3 (ATF3), p21, cystathionase, dual specificity phosphatase 1 and growth differentiation factor 15, RNA interference studies demonstrated that induction of all but the later gene by DIM-C-pPhOCH(3) were TR3-dependent. We also observed that DIM-C-pPhOCH(3) induced Fas ligand and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and induction of TRAIL was ATF3 dependent. Results of this and previous studies demonstrate that TR3 is unique among nuclear receptors since nuclear TR3 is activated or deactivated by diindolylmethane derivatives to induce different apoptotic and growth inhibitory pathways that inhibit pancreatic cancer cell and tumor growth.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
53 |
53
|
Safe S, Jayaraman A, Chapkin RS, Howard M, Mohankumar K, Shrestha R. Flavonoids: structure-function and mechanisms of action and opportunities for drug development. Toxicol Res 2021; 37:147-162. [PMID: 33868973 DOI: 10.1007/s43188-020-00080-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022] [Imported: 08/29/2023] Open
Abstract
Flavonoids are polyphenolic phytochemicals produced in fruits, nuts and vegetables and dietary consumption of these structurally diverse compounds is associated with multiple health benefits including increased lifespan, decreased cardiovascular problems and low rates of metabolic diseases. Preclinical studies with individual flavonoids demonstrate that these compounds exhibit anti-inflammatory and anticancer activities and they enhance the immune system. Their effectiveness in both chemoprevention and chemotherapy is associated with their targeting of multiple genes/pathways including nuclear receptors, the aryl hydrocarbon receptor (AhR), kinases, receptor tyrosine kinases and G protein-coupled receptors. However, despite the remarkable preclinical activities of flavonoids, their clinical applications have been limited and this is due, in part, to problems in drug delivery and poor bioavailability and these problems are being addressed. Further improvements that will expand clinical applications of flavonoids include mechanism-based precision medicine approaches which will identify critical mechanisms of action of individual flavonoids with optimal activities that can be used in combination therapies.
Collapse
|
Review |
3 |
51 |
54
|
Karki K, Hedrick E, Kasiappan R, Jin UH, Safe S. Piperlongumine Induces Reactive Oxygen Species (ROS)-Dependent Downregulation of Specificity Protein Transcription Factors. Cancer Prev Res (Phila) 2017; 10:467-477. [PMID: 28673967 PMCID: PMC6357769 DOI: 10.1158/1940-6207.capr-17-0053] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/19/2017] [Accepted: 06/20/2017] [Indexed: 01/08/2023] [Imported: 08/29/2023]
Abstract
Piperlongumine is a natural product found in the plant species Piper longum, and this compound exhibits potent anticancer activity in multiple tumor types and has been characterized as an inducer of reactive oxygen species (ROS). Treatment of Panc1 and L3.6pL pancreatic, A549 lung, 786-O kidney, and SKBR3 breast cancer cell lines with 5 to 15 μmol/L piperlongumine inhibited cell proliferation and induced apoptosis and ROS, and these responses were attenuated after cotreatment with the antioxidant glutathione. Piperlongumine also downregulated expression of Sp1, Sp3, Sp4, and several pro-oncogenic Sp-regulated genes, including cyclin D1, survivin, cMyc, EGFR and hepatocyte growth factor receptor (cMet), and these responses were also attenuated after cotreatment with glutathione. Mechanistic studies in Panc1 cells showed that piperlongumine-induced ROS decreased expression of cMyc via an epigenetic pathway, and this resulted in downregulation of cMyc-regulated miRNAs miR-27a, miR-20a, and miR-17 and induction of the transcriptional repressors ZBTB10 and ZBTB4. These repressors target GC-rich Sp-binding sites to decrease transactivation. This pathway observed for piperlongumine in Panc1 cells has previously been reported for other ROS-inducing anticancer agents and shows that an important underlying mechanism of action of piperlongumine is due to downregulation of Sp1, Sp3, Sp4, and pro-oncogenic Sp-regulated genes. Cancer Prev Res; 10(8); 467-77. ©2017 AACR.
Collapse
|
research-article |
7 |
50 |
55
|
Hedrick E, Crose L, Linardic CM, Safe S. Histone Deacetylase Inhibitors Inhibit Rhabdomyosarcoma by Reactive Oxygen Species-Dependent Targeting of Specificity Protein Transcription Factors. Mol Cancer Ther 2015; 14:2143-53. [PMID: 26162688 DOI: 10.1158/1535-7163.mct-15-0148] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/25/2015] [Indexed: 11/16/2022] [Imported: 08/29/2023]
Abstract
The two major types of rhabdomyosarcoma (RMS) are predominantly diagnosed in children, namely embryonal (ERMS) and alveolar (ARMS) RMS, and patients are treated with cytotoxic drugs, which results in multiple toxic side effects later in life. Therefore, development of innovative chemotherapeutic strategies is imperative, and a recent genomic analysis suggested the potential efficacy of reactive oxygen species (ROS)-inducing agents. Here, we demonstrate the efficacy of the potent histone deacetylase (HDAC) inhibitors, panobinostat and vorinostat, as agents that inhibit RMS tumor growth in vivo, induce apoptosis, and inhibit invasion of RD and Rh30 RMS cell lines. These effects are due to epigenetic repression of cMyc, which leads to decreased expression of cMyc-regulated miRs-17, -20a, and -27a; upregulation of ZBTB4, ZBTB10, and ZBTB34; and subsequent downregulation of Sp transcription factors. We also show that inhibition of RMS cell growth, survival and invasion, and repression of Sp transcription factors by the HDAC inhibitors are independent of histone acetylation but reversible after cotreatment with the antioxidant glutathione. These results show a novel ROS-dependent mechanism of antineoplastic activity for panobinostat and vorinostat that lies outside of their canonical HDAC-inhibitory activity and demonstrates the potential clinical utility for treating RMS patients with ROS-inducing agents.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
49 |
56
|
Chadalapaka G, Jutooru I, Safe S. Celastrol decreases specificity proteins (Sp) and fibroblast growth factor receptor-3 (FGFR3) in bladder cancer cells. Carcinogenesis 2012; 33:886-94. [PMID: 22334592 DOI: 10.1093/carcin/bgs102] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] [Imported: 08/29/2023] Open
Abstract
Celastrol (CSL) is a naturally occurring triterpenoid acid that exhibits anticancer activity, and in KU7 and 253JB-V bladder cells, CSL induced apoptosis, inhibited growth, colony formation and migration and CSL decreased bladder tumor growth in vivo. CSL also decreased expression of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 and several Sp-regulated genes/proteins including vascular endothelial growth factor, survivin and cyclin D1 and fibroblast growth factor receptor-3, a potential drug target for bladder cancer therapy, has now been characterized as an Sp-regulated gene downregulated by CSL. The mechanism of Sp downregulation by CSL was cell context-dependent due to activation of proteosome-dependent (KU7) and -independent (253JB-V) pathways. In 253JB-V cells, CSL induced reactive oxygen species (ROS) and inhibitors of ROS blocked CSL-induced growth inhibition and repression of Sp1, Sp3 and Sp4. This response was due to induction of the Sp repressors ZBTB10 and ZBTB4 and downregulation of miR-27a and miR-20a/17-5p, respectively, which regulate expression of these transcriptional repressors. Thus, the anticancer activity of CSL in 253JB-V cells is due to induction of ROS and ROS-mediated induction of Sp repressors (ZBTB4/ZBTB10) through downregulation of miR-27a and miR-20a/17-5p.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
48 |
57
|
Hedrick E, Lee SO, Doddapaneni R, Singh M, Safe S. Nuclear receptor 4A1 as a drug target for breast cancer chemotherapy. Endocr Relat Cancer 2015; 22:831-40. [PMID: 26229035 DOI: 10.1530/erc-15-0063] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/30/2015] [Indexed: 12/26/2022] [Imported: 08/29/2023]
Abstract
The orphan nuclear receptor 4A1 (NR4A1) is overexpressed in mammary tumors and breast cancer cell lines. The functional activity of this receptor was investigated by RNA interference with oligonucleotides targeted to NR4A1 (siNR4A1) and by treatment with NR4A1 antagonists. Breast cancer cells were treated with NR4A1 antagonists or transfected with siNR4A. Effects on cell proliferation and apoptosis as well as specific genes associated with these responses were investigated in MCF-7, SKBR3, and MDA-MB-231 cells, and in athymic nude mice bearing MDA-MB-231 cells as xenografts. Transfection of MCF-7, MDA-MB-231, and SKBR3 breast cancer cells with siNR4A1 decreased cell proliferation and induced apoptosis in these cell lines. Transfection of breast cancer cells with siNR4A1 also decreased expression of Sp-regulated genes including survivin, bcl-2, and epidermal growth factor receptor, inhibited mTOR signaling in MCF-7 cells that express WT p53, and activated oxidative and endoplasmic reticulum stress through downregulation of thioredoxin domain-containing 5 and isocitrate dehydrogenase 1. 1,1-Bis(3'-indolyl)-1-(p-substituted phenyl)methanes (C-DIMs) are NR4A1 ligands that act as NR4A1 antagonists. Treatment with selected analogs also inhibited breast cancer cell and tumor growth and induced apoptosis. The effects of C-DIM/NR4A1 antagonists were comparable to those observed after NR4A1 knockdown. Results with siNR4A1 or C-DIMs/NR4A1 antagonists in breast cancer cells and tumors were similar to those previously reported in pancreatic, lung, and colon cancer cells. They demonstrate the potential clinical applications of NR4A1 antagonists in patients with tumors that overexpress this receptor.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Blotting, Western
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Proliferation/drug effects
- Endoplasmic Reticulum Stress/drug effects
- Female
- Humans
- Indoles/pharmacology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Nuclear Receptor Subfamily 4, Group A, Member 1/antagonists & inhibitors
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Phenols/pharmacology
- RNA, Small Interfering/genetics
- Reactive Oxygen Species/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
|
Research Support, N.I.H., Extramural |
9 |
48 |
58
|
Kim K, Chadalapaka G, Pathi SS, Jin UH, Lee JS, Park YY, Cho SG, Chintharlapalli S, Safe S. Induction of the transcriptional repressor ZBTB4 in prostate cancer cells by drug-induced targeting of microRNA-17-92/106b-25 clusters. Mol Cancer Ther 2012; 11:1852-62. [PMID: 22752225 DOI: 10.1158/1535-7163.mct-12-0181] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] [Imported: 08/29/2023]
Abstract
Androgen-insensitive DU145 and PC3 human prostate cancer cells express high levels of specificity protein (Sp) transcription factors Sp1, Sp3, and Sp4, and treatment of cells with methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate (CDODA-Me) inhibited cell growth and downregulated Sp1, Sp3, and Sp4 expression. CDODA-Me (15 mg/kg/d) was a potent inhibitor of tumor growth in a mouse xenograft model (PC3 cells) and also decreased expression of Sp transcription factors in tumors. CDODA-Me-mediated downregulation of Sp1, Sp3, and Sp4 was due to induction of the transcriptional repressor ZBTB4, which competitively binds and displaces Sp transcription factors from GC-rich sites in Sp1-, Sp3-, Sp4-, and Sp-regulated gene promoters. ZBTB4 levels are relatively low in DU145 and PC3 cells due to suppression by miR paralogs that are members of the miR-17-92 (miR-20a/17-5p) and miR-106b-25 (miR-106b/93) clusters. Examination of publically available prostate cancer patient array data showed an inverse relationship between ZBTB4 and miRs-20a/17-5p/106b/93 expression, and increased ZBTB4 in patients with prostate cancer was a prognostic factor for increased survival. CDODA-Me induces ZBTB4 in prostate cancer cells through disruption of miR-ZBTB4 interactions, and this results in downregulation of pro-oncogenic Sp transcription factors and Sp-regulated genes.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
47 |
59
|
NR4A1 Antagonists Inhibit β1-Integrin-Dependent Breast Cancer Cell Migration. Mol Cell Biol 2016; 36:1383-94. [PMID: 26929200 DOI: 10.1128/mcb.00912-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/24/2016] [Indexed: 12/30/2022] [Imported: 08/29/2023] Open
Abstract
Overexpression of the nuclear receptor 4A1 (NR4A1) in breast cancer patients is a prognostic factor for decreased survival and increased metastasis, and this has been linked to NR4A1-dependent regulation of transforming growth factor β (TGF-β) signaling. Results of RNA interference studies demonstrate that basal migration of aggressive SKBR3 and MDA-MB-231 breast cancer cells is TGF-β independent and dependent on regulation of β1-integrin gene expression by NR4A1 which can be inhibited by the NR4A1 antagonists 1,1-bis(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH) and a related p-carboxymethylphenyl [1,1-bis(3'-indolyl)-1-(p-carboxymethylphenyl)methane (DIM-C-pPhCO2Me)] analog. The NR4A1 antagonists also inhibited TGF-β-induced migration of MDA-MB-231 cells by blocking nuclear export of NR4A1, which is an essential step in TGF-β-induced cell migration. We also observed that NR4A1 regulates expression of both β1- and β3-integrins, and unlike other β1-integrin inhibitors which induce prometastatic β3-integrin, NR4A1 antagonists inhibit expression of both β1- and β3-integrin, demonstrating a novel mechanism-based approach for targeting integrins and integrin-dependent breast cancer metastasis.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
8 |
47 |
60
|
Hedrick E, Lee SO, Kim G, Abdelrahim M, Jin UH, Safe S, Abudayyeh A. Nuclear Receptor 4A1 (NR4A1) as a Drug Target for Renal Cell Adenocarcinoma. PLoS One 2015; 10:e0128308. [PMID: 26035713 PMCID: PMC4452731 DOI: 10.1371/journal.pone.0128308] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/24/2015] [Indexed: 12/20/2022] [Imported: 08/29/2023] Open
Abstract
The orphan nuclear receptor NR4A1 exhibits pro-oncogenic activity in cancer cell lines. NR4A1 activates mTOR signaling, regulates genes such as thioredoxin domain containing 5 and isocitrate dehydrogenase 1 that maintain low oxidative stress, and coactivates specificity protein 1 (Sp1)-regulated pro-survival and growth promoting genes. Transfection of renal cell carcinoma (RCC) ACHN and 786-O cells with oligonucleotides that target NR4A1 results in a 40–60% decrease in cell proliferation and induction of apoptosis. Moreover, knockdown of NR4A1 in RCC cells decreased bcl-2, survivin and epidermal growth factor receptor expression, inhibited of mTOR signaling, induced oxidative and endoplasmic reticulum stress, and decreased TXNDC5 and IDH1. We have recently demonstrated that selected 1,1-bis(3'-indolyl)-1-(p-substituted phenyl)methane (C-DIM) compounds including the p-hydroxyphenyl (DIM-C-pPhOH) and p-carboxymethyl (DIM-C-pPhCO2Me) analogs bind NR4A1 and act as antagonists. Both DIM-C-pPhOH and DIM-C-pPhCO2Me inhibited growth and induced apoptosis in ACHN and 786-O cells, and the functional and genomic effects of the NR4A1 antagonists were comparable to those observed after NR4A1 knockdown. These results indicate that NR4A1 antagonists target multiple growth promoting and pro-survival pathways in RCC cells and in tumors (xenograft) and represent a novel chemotherapy for treating RCC.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blotting, Western
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/therapy
- Cell Proliferation
- Fluorescent Antibody Technique
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/pathology
- Kidney Neoplasms/therapy
- Male
- Mice
- Mice, Nude
- Nuclear Receptor Subfamily 4, Group A, Member 1/antagonists & inhibitors
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Oligonucleotides, Antisense/genetics
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
45 |
61
|
Hedrick E, Li X, Safe S. Penfluridol Represses Integrin Expression in Breast Cancer through Induction of Reactive Oxygen Species and Downregulation of Sp Transcription Factors. Mol Cancer Ther 2016; 16:205-216. [PMID: 27811009 DOI: 10.1158/1535-7163.mct-16-0451] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/14/2016] [Accepted: 10/26/2016] [Indexed: 12/21/2022] [Imported: 08/29/2023]
Abstract
It was recently demonstrated the penfluridol inhibited breast tumor growth and metastasis and this was associated with downregulation of α6- and β4-integrins. In this study, we observed the penfluridol induced reactive oxygen species (ROS) and this was the primary mechanism of action. Penfluridol-mediated growth inhibition, induction of apoptosis, and inhibition of breast cancer cell migration was attenuated after cotreatment with glutathione. Penfluridol also downregulated Sp transcription factors Sp1, Sp3, and Sp4 through epigenetic downregulation of cMyc and cMyc-regulated miRNAs (miR27a and miR20a/miR17) and induction of the miR-regulated Sp transcriptional repressors ZBTB10 and ZBTB4. α6- and β4-integrins as well as α5- and β1-integrins are Sp-regulated genes that are also coregulated by the orphan nuclear receptor NR4A1 and these integrins can be targeted by agents such as penfluridol that suppress Sp1, Sp3, and Sp4 and also by NR4A1 antagonists. Mol Cancer Ther; 16(1); 205-16. ©2016 AACR.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
41 |
62
|
Transforming Growth Factor β/NR4A1-Inducible Breast Cancer Cell Migration and Epithelial-to-Mesenchymal Transition Is p38α (Mitogen-Activated Protein Kinase 14) Dependent. Mol Cell Biol 2017; 37:MCB.00306-17. [PMID: 28674186 DOI: 10.1128/mcb.00306-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/27/2017] [Indexed: 12/19/2022] [Imported: 08/29/2023] Open
Abstract
Transforming growth factor β (TGF-β)-induced migration of triple-negative breast cancer (TNBC) cells is dependent on nuclear export of the orphan receptor NR4A1, which plays a role in proteasome-dependent degradation of SMAD7. In this study, we show that TGF-β induces p38α (mitogen-activated protein kinase 14 [MAPK14]), which in turn phosphorylates NR4A1, resulting in nuclear export of the receptor. TGF-β/p38α and NR4A1 also play essential roles in the induction of epithelial-to-mesenchymal transition (EMT) and induction of β-catenin in TNBC cells, and these TGF-β-induced responses and nuclear export of NR4A1 are blocked by NR4A1 antagonists, the p38 inhibitor SB202190, and kinase-dead [p38(KD)] and dominant-negative [p38(DN)] forms of p38α. Inhibition of NR4A1 nuclear export results in nuclear export of TGF-β-induced β-catenin, which then undergoes proteasome-dependent degradation. TGF-β-induced β-catenin also regulates NR4A1 expression through formation of the β-catenin-TCF-3/TCF-4/LEF-1 complex on the NR4A1 promoter. Thus, TGF-β-induced nuclear export of NR4A1 in TNBC cells plays an essential role in cell migration, SMAD7 degradation, EMT, and induction of β-catenin, and all of these pathways are inhibited by bis-indole-derived NR4A1 antagonists that inhibit nuclear export of the receptor and thereby block TGF-β-induced migration and EMT.
Collapse
|
Journal Article |
7 |
39 |
63
|
Kasiappan R, Jutooru I, Karki K, Hedrick E, Safe S. Benzyl Isothiocyanate (BITC) Induces Reactive Oxygen Species-dependent Repression of STAT3 Protein by Down-regulation of Specificity Proteins in Pancreatic Cancer. J Biol Chem 2016; 291:27122-27133. [PMID: 27875298 DOI: 10.1074/jbc.m116.746339] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/08/2016] [Indexed: 01/05/2023] [Imported: 08/29/2023] Open
Abstract
The antineoplastic agent benzyl isothiocyanate (BITC) acts by targeting multiple pro-oncogenic pathways/genes, including signal transducer and activator of transcription 3 (STAT3); however, the mechanism of action is not well known. As reported previously, BITC induced reactive oxygen species (ROS) in Panc1, MiaPaCa2, and L3.6pL pancreatic cancer cells. This was accompanied by induction of apoptosis and inhibition of cell growth and migration, and these responses were attenuated in cells cotreated with BITC plus glutathione (GSH). BITC also decreased expression of specificity proteins (Sp) Sp1, Sp3, and Sp4 transcription factors (TFs) and several pro-oncogenic Sp-regulated genes, including STAT3 and phospho-STAT3 (pSTAT3), and GSH attenuated these responses. Knockdown of Sp TFs by RNA interference also decreased STAT3/pSTAT3 expression. BITC-induced ROS activated a cascade of events that included down-regulation of c-Myc, and it was also demonstrated that c-Myc knockdown decreased expression of Sp TFs and STAT3 These results demonstrate that in pancreatic cancer cells, STAT3 is an Sp-regulated gene that can be targeted by BITC and other ROS inducers, thereby identifying a novel therapeutic approach for targeting STAT3.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
38 |
64
|
Chadalapaka G, Jutooru I, Sreevalsan S, Pathi S, Kim K, Chen C, Crose L, Linardic C, Safe S. Inhibition of rhabdomyosarcoma cell and tumor growth by targeting specificity protein (Sp) transcription factors. Int J Cancer 2012; 132:795-806. [PMID: 22815231 DOI: 10.1002/ijc.27730] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 06/08/2012] [Indexed: 12/30/2022] [Imported: 08/29/2023]
Abstract
Specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 are highly expressed in rhabdomyosarcoma (RMS) cells. In tissue arrays of RMS tumor cores from 71 patients, 80% of RMS patients expressed high levels of Sp1 protein, whereas low expression of Sp1 was detected in normal muscle tissue. The non-steroidal anti-inflammatory drug (NSAID) tolfenamic acid (TA) inhibited growth and migration of RD and RH30 RMS cell lines and also inhibited tumor growth in vivo using a mouse xenograft (RH30 cells) model. The effects of TA were accompanied by downregulation of Sp1, Sp3, Sp4 and Sp-regulated genes in RMS cells and tumors, and the role of Sp protein downregulation in mediating inhibition of RD and RH30 cell growth and migration was confirmed by individual and combined knockdown of Sp1, Sp3 and Sp4 proteins by RNA interference. TA treatment and Sp knockdown in RD and RH30 cells also showed that four genes that are emerging as individual drug targets for treating RMS, namely c-MET, insulin-like growth factor receptor (IGFR), PDGFRα and CXCR4, are also Sp-regulated genes. These results suggest that NSAIDs such as TA may have potential clinical efficacy in drug combinations for treating RMS patients.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
34 |
65
|
Abstract
Development of breast cancer in women is dependent on diverse factors, including genetic predisposition, exposure to both exogenous and endogenous chemicals, which can modulate initiation, promotion and progression of this disease, and the timing of exposure to these agents. Several compounds--including 16 alpha-hydroxyestrone (16 alpha-OHE1), catecholestrogens, and aromatic amines--have been proposed as initiators of mammary carcinogenesis in humans; however, their role as genotoxins is unconfirmed. Lifetime exposure to estrogens has been established as an important risk factor for breast cancer, and it has been suggested that xenoestrogens may directly add to the hormonal risk or indirectly increase risk by decreasing 2-hydroxyestrone (2-OHE1)/16 alpha-OHE1 metabolite ratios. Results of recent studies suggest that chemical-induced modulation of 2-OHE1/16 alpha-OHE1 metabolite ratios is not predictive of xenoestrogens or mammary carcinogens. Moreover, based on current known dietary intakes of natural and xenoestrogenic/antiestrogenic chemicals, it is unlikely that xenoestrogens contribute significantly to a woman's overall lifetime exposure to estrogens. More information is required on the identities and serum levels of both natural and xenoendocrine active compounds, their concentrations in serum, and the mammary gland and levels of these compounds at critical periods of exposure.
Collapse
|
Review |
26 |
32 |
66
|
Chintharlapalli S, Papineni S, Lee SO, Lei P, Jin UH, Sherman SI, Santarpia L, Safe S. Inhibition of pituitary tumor-transforming gene-1 in thyroid cancer cells by drugs that decrease specificity proteins. Mol Carcinog 2011; 50:655-67. [PMID: 21268135 DOI: 10.1002/mc.20738] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 11/22/2010] [Accepted: 12/14/2010] [Indexed: 02/06/2023] [Imported: 08/29/2023]
Abstract
Methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate (CDODA-Me) and the corresponding 2-trifluoromethyl analog (CF(3)DODA-Me) are derived synthetically from the triterpenoid glycyrrhetinic acid, a major component of licorice. CDODA-Me and CF(3)DODA-Me inhibited growth of highly invasive ARO, DRO, K-18, and HTh-74 thyroid cancer cells and this was due, in part, to decreased expression of specificity protein (Sp) transcription factors Sp1, Sp3, and Sp4 that are overexpressed in these cells. CDODA-Me and CF(3)DODA-Me also decreased expression of Sp-dependent genes, such as survivin and vascular endothelial growth factor (VEGF), and induced apoptosis. In addition, pituitary tumor-transforming gene-1 (PTTG-1) protein and mRNA levels were also decreased in thyroid cancer cells treated with CDODA-Me or CF(3)DODA-Me and this was accompanied by decreased expression of PTTG-1-dependent c-Myc and fibroblast growth factor-2 (FGF-2) genes. RNA interference studies against Sp1, Sp3, and Sp4 proteins showed that in thyroid cancer cells, PTTG-1 was an Sp-dependent gene. This study demonstrates for the first time that drugs, such as CDODA-Me and CF(3)DODA-Me, that decrease Sp protein expression also downregulate PTTG-1 in thyroid cancer cells and therefore have potential for clinical treatment of thyroid cancer and other endocrine neoplasias where PTTG-1 is a major pro-oncogenic factor.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
31 |
67
|
Abstract
The article highlighted in this issue is "Bisphenol A-Induced Increase in Uterine Weight and Alterations in Uterine Morphology in Ovariectomized B6C3F1 Mice: Role of the Estrogen Receptor" by Andriana D. Papaconstantinou, Thomas H. Umbreit, Benjamin R. Fisher, Peter L. Goering, Nicholas T. Lappas, and Ken M. Brown (pp. 332-339).
Collapse
|
|
24 |
31 |
68
|
Cheng Y, Imanirad P, Jutooru I, Hedrick E, Jin UH, Rodrigues Hoffman A, Leal de Araujo J, Morpurgo B, Golovko A, Safe S. Role of metastasis-associated lung adenocarcinoma transcript-1 (MALAT-1) in pancreatic cancer. PLoS One 2018; 13:e0192264. [PMID: 29389953 PMCID: PMC5794178 DOI: 10.1371/journal.pone.0192264] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/12/2018] [Indexed: 12/28/2022] [Imported: 08/29/2023] Open
Abstract
Metastasis-associated lung adenocarcinoma transcript-1 (MALAT-1) is a long non-coding RNA (lncRNA) that is a negative prognostic factor for patients with pancreatic cancer and several other tumors. In this study, we show that knockdown of MALAT-1 in Panc1 and other pancreatic cancer cell lines decreases cell proliferation, survival and migration. We previously observed similar results for the lncRNAs HOTTIP and HOTAIR in Panc1 cells; however, RNAseq comparison of genes regulated by MALAT-1 shows minimal overlap with HOTTIP/HOTAIR-regulated genes. Analysis of changes in gene expression after MALAT-1 knockdown shows that this lncRNA represses several tumor suppressor-like genes including N-myc downregulated gene-1 (NDRG-1), a tumor suppressor in pancreatic cancer that is also corepressed by EZH2 (a PRC2 complex member). We also observed that Specificity proteins Sp1, Sp3 and Sp4 are overexpressed in Panc1 cells and Sp knockdown or treatment with small molecules that decrease Sp proteins expression also decrease MALAT-1 expression. We also generated Kras-overexpressing p53L/L;LSL-KrasG12DL/+;p48Cre+/- (p53L/L/KrasG12D) and p53L/+;LSLKrasG12DL/+;p48Cre+/- (p53L/+/KrasG12D) mice which are p53 homo- and heterozygous, respectively. These mice rapidly develop pancreatic ductal adenocarcinoma-like tumors and were crossed with MALAT-1-/- mice. We observed that the loss of one or two MALAT-1 alleles in these Ras overexpressing mice does not significantly affect the time to death; however, the loss of MALAT-1 in the p53-/+ (heterozygote) mice slightly increases their lifespan.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
30 |
69
|
Castro-Rivera E, Safe S. Estrogen- and antiestrogen-responsiveness of HEC1A endometrial adenocarcinoma cells in culture. J Steroid Biochem Mol Biol 1998; 64:287-95. [PMID: 9618030 DOI: 10.1016/s0960-0760(97)00202-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] [Imported: 08/29/2023]
Abstract
HEC1A endometrial cancer cells express the wild-type form of the estrogen receptor (ER) and 17beta-estradiol (E2) induces proliferation of these cells. In contrast, tamoxifen only causes a minimal increase (<20%) in cell proliferation. In HEC1A cells transiently transfected with the C3-Luc plasmid derived from the complement C3 gene, both E2 and tamoxifen exhibited ER agonist activity and tamoxifen was also a partial antagonist for this response. The relative ER agonist/antagonist activities of E2, tamoxifen and ICI 182,780 were also investigated in HEC1A1 cells transiently transfected with two E2-responsive plasmids, pCATHD-CAT and pCKB-CAT which contain 5'-promoter inserts from the cathepsin D and creatine kinase B genes, respectively. The results showed that E2 and tamoxifen induced reporter gene activity in cells transiently transfected with both constructs. ICI 182,780 exhibited partial ER agonist activity only in cells transiently transfected with pCKB-CAT and antagonized E2-induced reporter gene activity using both the CKB- and CATHD-derived constructs. These results demonstrate that HEC1A endometrial cancer cells are E2-responsive and represent a useful cell culture model for understanding hormone/antihormone-induced endometrial cell responses.
Collapse
|
|
26 |
30 |
70
|
Cheng Y, Jin UH, Davidson LA, Chapkin RS, Jayaraman A, Tamamis P, Orr A, Allred C, Denison MS, Soshilov A, Weaver E, Safe S. Editor's Highlight: Microbial-Derived 1,4-Dihydroxy-2-naphthoic Acid and Related Compounds as Aryl Hydrocarbon Receptor Agonists/Antagonists: Structure-Activity Relationships and Receptor Modeling. Toxicol Sci 2016; 155:458-473. [PMID: 27837168 DOI: 10.1093/toxsci/kfw230] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] [Imported: 08/29/2023] Open
Abstract
1,4-Dihydroxy-2-naphthoic acid (1,4-DHNA) is a bacterial-derived metabolite that binds the aryl hydrocarbon receptor (AhR) and exhibits anti-inflammatory activity in the gut. The structure-dependent AhR activity of hydroxyl/carboxy-substituted naphthoic acids (NAs) was determined in young adult mouse colonic (YAMC) cells and human Caco2 colon cancer cells using CYP1A1/CYP1B1 mRNAs as Ah-responsive genes. Compounds used in this study include 1,4-, 3,5-, and 3,7-DHNA, 1,4-dimethoxy-2-naphthoic acid (1,4-DMNA), 1- and 4-hydroxy-2-naphthoic acid (1-HNA, 4-HNA), 1- and 2-naphthoic acid (1-NA, 2-NA), and 1- and 2-naphthol (1-NOH, 2-NOH). 1,4-DHNA was the most potent compound among hydroxyl/carboxy naphthalene derivatives, and the fold induction response for CYP1A1 and CYP1B1 was similar to that observed for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in YAMC and Caco2 cells. 1- and 4-HNA were less potent than 1,4-DHNA but induced maximal (TCDD-like) response for CYP1B1 (both cell lines) and CYP1A1 (Caco2 cells). With the exception of 1- and 2-NA, all compounds significantly induced Cyp1b1 in YAMC cells and these responses were not observed in AhR-deficient YAMC cells generated using CRISPR/Cas9 technology. In addition, we also observed that 1- and 2-NOH (and 1,4-DHNA) were weak AhR agonists, and 1- and 2-NOH also exhibited partial AhR antagonist activity. Structure-activity relationship studies for CYP1A1 but not CYP1B1 were similar in both cell lines, and CYP1A1 induction required one or both 1,4-dihydroxy substituents and activity was significantly enhanced by the 2-carboxyl group. We also used computational analysis to show that 1,4-DHNA and TCDD share similar interactions within the AhR binding pocket and differ primarily due to the negatively charged group of 1,4-DHNA.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
29 |
71
|
The Role of the Aryl Hydrocarbon Receptor (AhR) and Its Ligands in Breast Cancer. Cancers (Basel) 2022; 14:cancers14225574. [PMID: 36428667 PMCID: PMC9688153 DOI: 10.3390/cancers14225574] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/27/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] [Imported: 08/29/2023] Open
Abstract
Breast cancer is a complex disease which is defined by numerous cellular and molecular markers that can be used to develop more targeted and successful therapies. The aryl hydrocarbon receptor (AhR) is overexpressed in many breast tumor sub-types, including estrogen receptor -positive (ER+) tumors; however, the prognostic value of the AhR for breast cancer patient survival is not consistent between studies. Moreover, the functional role of the AhR in various breast cancer cell lines is also variable and exhibits both tumor promoter- and tumor suppressor- like activity and the AhR is expressed in both ER-positive and ER-negative cells/tumors. There is strong evidence demonstrating inhibitory AhR-Rα crosstalk where various AhR ligands induce ER degradation. It has also been reported that different structural classes of AhR ligands, including halogenated aromatics, polynuclear aromatics, synthetic drugs and other pharmaceuticals, health promoting phytochemical-derived natural products and endogenous AhR-active compounds inhibit one or more of breast cancer cell proliferation, survival, migration/invasion, and metastasis. AhR-dependent mechanisms for the inhibition of breast cancer by AhR agonists are variable and include the downregulation of multiple genes/gene products such as CXCR4, MMPs, CXCL12, SOX4 and the modulation of microRNA levels. Some AhR ligands, such as aminoflavone, have been investigated in clinical trials for their anticancer activity against breast cancer. In contrast, several publications have reported that AhR agonists and antagonists enhance and inhibit mammary carcinogenesis, respectively, and differences between the anticancer activities of AhR agonists in breast cancer may be due in part to cell context and ligand structure. However, there are reports showing that the same AhR ligand in the same breast cancer cell line gives opposite results. These differences need to be resolved in order to further develop and take advantage of promising agents that inhibit mammary carcinogenesis by targeting the AhR.
Collapse
|
review-article |
2 |
28 |
72
|
Sreevalsan S, Safe S. The cannabinoid WIN 55,212-2 decreases specificity protein transcription factors and the oncogenic cap protein eIF4E in colon cancer cells. Mol Cancer Ther 2013; 12:2483-93. [PMID: 24030632 DOI: 10.1158/1535-7163.mct-13-0486] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] [Imported: 08/29/2023]
Abstract
2,3-Dihydro-5-methyl-3-([morpholinyl]methyl)pyrollo(1,2,3-de)-1,4-benzoxazinyl]-[1-naphthaleny]methanone [WIN 55,212-2, (WIN)] is a synthetic cannabinoid that inhibits RKO, HT-29, and SW480 cell growth, induced apoptosis, and downregulated expression of survivin, cyclin D1, EGF receptor (EGFR), VEGF, and its receptor (VEGFR1). WIN also decreased expression of specificity protein (Sp) transcription factors Sp1, Sp3, and Sp4, and this is consistent with the observed downregulation of the aforementioned Sp-regulated genes. In addition, we also observed by RNA interference (RNAi) that the oncogenic cap protein eIF4E was an Sp-regulated gene also downregulated by WIN in colon cancer cells. WIN-mediated repression of Sp proteins was not affected by cannabinoid receptor antagonists or by knockdown of the receptor but was attenuated by the phosphatase inhibitor sodium orthovanadate or by knockdown of protein phosphatase 2A (PP2A). WIN-mediated repression of Sp1, Sp3, and Sp4 was due to PP2A-dependent downregulation of microRNA-27a (miR-27a) and induction of miR-27a-regulated ZBTB10, which has previously been characterized as an "Sp repressor." The results show that the anticancer activity of WIN is due, in part, to PP2A-dependent disruption of miR-27a:ZBTB10 and ZBTB10-mediated repression of Sp transcription factors and Sp-regulated genes, including eIF4E.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
26 |
73
|
Karki K, Wright GA, Mohankumar K, Jin UH, Zhang XH, Safe S. A Bis-Indole-Derived NR4A1 Antagonist Induces PD-L1 Degradation and Enhances Antitumor Immunity. Cancer Res 2020; 80:1011-1023. [PMID: 31911554 DOI: 10.1158/0008-5472.can-19-2314] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/20/2019] [Accepted: 01/03/2020] [Indexed: 12/31/2022] [Imported: 08/29/2023]
Abstract
PD-L1 is expressed in tumor cells and its interaction with PD-1 plays an important role in evading immune surveillance; this can be overcome using PD-L1 or PD-1 immunotherapy antibodies. This study reports a novel approach for targeting PD-L1. In human breast cancer cell lines and 4T1 mouse mammary tumor cells, PD-L1 expression was regulated by the nuclear receptor NR4A1/Sp1 complex bound to the proximal germinal center (GC)-rich region of the PD-L1 gene promoter. Treatment of breast cancer cells with bis-indole-derived NR4A1 antagonists including 1,1-bis(3'-indolyl)-1-(3-chloro-4-hydroxy-5-methoxyphenyl)methane (Cl-OCH3) decreased expression of PD-L1 mRNA, promoter-dependent luciferase activity, and protein. In in vivo studies using a syngeneic mouse model bearing orthotopically injected 4T1 cells, Cl-OCH3 decreased tumor growth and weight and inhibited lung metastasis. Cl-OCH3 also decreased expression of CD3+/CD4+/CD25+/FoxP3+ regulatory T cells and increased the Teff/Treg ratio. Therefore, the potent anticancer activities of NR4A1 antagonists are also accompanied by enhanced antitumor immunity in PD-L1-expressing triple-negative breast cancer and thus represent a novel class of drugs that mimic immunotherapy. SIGNIFICANCE: These findings show that the orphan nuclear receptor NR4A1 controls PD-L1 expression and identify a chemical probe capable of disrupting this regulatory axis.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
25 |
74
|
Wu F, Khan S, Wu Q, Barhoumi R, Burghardt R, Safe S. Ligand structure-dependent activation of estrogen receptor alpha/Sp by estrogens and xenoestrogens. J Steroid Biochem Mol Biol 2008; 110:104-15. [PMID: 18400491 PMCID: PMC2519242 DOI: 10.1016/j.jsbmb.2008.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 02/12/2008] [Accepted: 02/12/2008] [Indexed: 12/15/2022] [Imported: 08/29/2023]
Abstract
This study investigated the effects of E2, diethylstilbestrol (DES), antiestrogens, the phytoestrogen resveratrol, and the xenoestrogens octylphenol (OP), nonylphenol (NP), endosulfan, kepone, 2,3,4,5-tetrachlorobiphenyl-4-ol (HO-PCB-Cl(4)), bisphenol-A (BPA), and 2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE) on induction of luciferase activity in breast cancer cells transfected with a construct (pSp1(3)) containing three tandem GC-rich Sp binding sites linked to luciferase and wild-type or variant ERalpha. The results showed that induction of luciferase activity was highly structure-dependent in both MCF-7 and MDA-MB-231 cells. Moreover, RNA interference assays using small inhibitory RNAs for Sp1, Sp3 and Sp4 also demonstrated structure-dependent differences in activation of ERalpha/Sp1, ERalpha/Sp3 and ERalpha/Sp4. These results demonstrate for the first time that various structural classes of ER ligands differentially activate wild-type and variant ERalpha/Sp-dependent transactivation, selectively use different Sp proteins, and exhibit selective ER modulator (SERM)-like activity.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
24 |
75
|
Safe SH. Is there an association between exposure to environmental estrogens and breast cancer? ENVIRONMENTAL HEALTH PERSPECTIVES 1997; 105 Suppl 3:675-8. [PMID: 9168013 PMCID: PMC1469904 DOI: 10.1289/ehp.97105s3675] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] [Imported: 08/29/2023]
Abstract
It was initially reported that levels of polychlorinated biphenyls (PCBs) or p,p'-DDE were elevated in breast cancer patients (serum or tissue) versus controls. These results, coupled with reports that selected environmental estrogens decreased 17beta-estradiol (E2) 2-hydroxylase activity and increased the ratio of 16alpha-hydroxyestrone/2-hydroxyestrone metabolites in MCF-7 human breast cancer cells, have led to the hypothesis that xenoestrogens are a preventable cause of breast cancer. More recent studies and analysis of organochlorine levels in breast cancer patients versus controls show that these contaminants are not elevated in the latter group. Moreover, occupational exposure to relatively high levels of PCBs and DDT/DDE are not associated with an increased incidence of breast cancer. A reexamination of the radiometric E2 2-hydroxylase assay in MCF-7 cells with diverse estrogens, antiestrogens, and carcinogens showed that the mammary carcinogen benzo[a]pyrene induced this response and the antiestrogen ICI 164,384 decreased E2 2-hydroxylase activity. Thus, E2 2-hydroxylase activity and the 16alpha-hydroxyestrone/2-hydroxyestrone metabolite ratio in MCF-7 cells does not predict xenoestrogens or mammary carcinogens.
Collapse
|
Review |
27 |
24 |