1
|
Ye T, Yang M, Huang D, Wang X, Xue B, Tian N, Xu X, Bao L, Hu H, Lv T, Huang Y. MicroRNA-7 as a potential therapeutic target for aberrant NF-κB-driven distant metastasis of gastric cancer. J Exp Clin Cancer Res 2019; 38:55. [PMID: 30728051 PMCID: PMC6364399 DOI: 10.1186/s13046-019-1074-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/30/2019] [Indexed: 12/24/2022] [Imported: 08/29/2023] Open
Abstract
BACKGROUND Dysregulated miR-7 and aberrant NF-κB activation were reported in various human cancers. However, the expression profile, clinical relevance and dysregulated mechanism of miR-7 and NF-κB RelA/p65 in human gastric cancers (GC) metastasis remain largely unknown. This study is to investigate the expression profile, clinical relevance and dysregulated mechanism of miR-7 and NF-κB RelA/p65 in GC and to explore the potential therapeutic effect of miR-7 to GC distant metastasis. METHODS TCGA STAD and NCBI GEO database were used to investigate the expression profile of miR-7 and NF-κB RelA/p65 and clinical relevance. Lentivirus-mediated gene delivery was applied to explore the therapeutic effect of miR-7 in GC. Real-time PCR, FACS, IHC, IF, reporter gene assay, IP, pre-miRNA-7 processing and binding assays were performed. RESULTS Low miR-7 correlated with high RelA/p65 in GC with a clinical relevance that low miR-7 and high RelA/p65 as prognostic indicators of poor survival outcome of GC patients. Moreover, an impaired pre-miR-7 processing caused by dysregulated Dicer1 expression is associated with downregulated miR-7 in GC cells. Functionally, delivery of miR-7 displays therapeutic effects to GC lung and liver metastasis by alleviating hemangiogenesis, lymphangiogenesis as well as inflammation cells infiltration. Mechanistically, miR-7 suppresses NF-κB transcriptional activity and its downstream metastasis-related molecules Vimentin, ICAM-1, VCAM-1, MMP-2, MMP-9 and VEGF by reducing p65 and p-p65-ser536 expression. Pharmacologic prevention of NF-κB activator LPS obviously restored miR-7-suppressed NF-κB transcriptional activation and significantly reverted miR-7-inhibited cell migration and invasion. CONCLUSIONS Our data suggest loss of miR-7 in GC promotes p65-mediated aberrant NF-κB activation, facilitating GC metastasis and ultimately resulting in the worse clinical outcome. Thus, miR-7 may act as novel prognostic biomarker and potential therapeutic target for aberrant NF-κB-driven GC distant metastasis.
Collapse
|
research-article |
6 |
78 |
2
|
Wang X, Ye T, Xue B, Yang M, Li R, Xu X, Zeng X, Tian N, Bao L, Huang Y. Mitochondrial GRIM-19 deficiency facilitates gastric cancer metastasis through oncogenic ROS-NRF2-HO-1 axis via a NRF2-HO-1 loop. Gastric Cancer 2021; 24:117-132. [PMID: 32770429 DOI: 10.1007/s10120-020-01111-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023] [Imported: 08/29/2023]
Abstract
BACKGROUND NRF2, a prime target of cellular defense against oxidative stress, has shown a dark side profile in cancer progression. GRIM-19, an essential subunit of the mitochondrial MRC complex I, was recently identified as a suppressive role in tumorigenesis of human gastric cancer (GC). However, little information is available on the role of GRIM-19 and its cross-talk with NRF2 in GC metastasis. METHODS Online GC database was used to investigate DNA methylation and survival outcomes of GRIM-19. CRISPR/Cas9 lentivirus-mediated gene editing, metastasis mice models and pharmacological intervention were applied to investigate the role of GRIM-19 deficiency in GC metastasis. Quantitative RT-PCR, FACS, Western blot, IHC, IF and reporter gene assay were performed to explore underlying mechanisms. RESULTS Low GRIM-19 is correlated with poor survival outcome of GC patients while DNA hypermethylation is associated with GRIM-19 downregulation. GRIM-19 deficiency facilitates GC metastasis and triggers aberrant oxidative stress as well as ROS-dependent NRF2-HO-1 activation. Experimental interventions of specific ROS, NRF2 or HO-1 inhibitor significantly abrogate GRIM-19 deficiency-driven GC metastasis in vitro and in vivo. Moreover, HO-1 inhibition not only reverses GRIM-19 deficiency-driven NRF2 activation, but also feedback blocks NRF2 activator-induced NRF2 signaling, resulting in decreased metastasis-associated genes. CONCLUSIONS Our data suggest that GRIM-19 deficiency accelerates GC metastasis through the oncogenic ROS-NRF2-HO-1 axis via a positive-feedback NRF2-HO-1 loop. Therefore, this study not only offers novel insights into the role of oncogenic NRF2 in tumor progression, but also provides new strategies to alleviate the dark side of NRF2 by targeting HO-1.
Collapse
|
|
4 |
23 |
3
|
Huang Y, Yang M, Hu H, Zhao X, Bao L, Huang D, Song L, Li Y. Mitochondrial GRIM-19 as a potential therapeutic target for STAT3-dependent carcinogenesis of gastric cancer. Oncotarget 2016; 7:41404-41420. [PMID: 27167343 PMCID: PMC5173068 DOI: 10.18632/oncotarget.9167] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 04/11/2016] [Indexed: 01/05/2023] [Imported: 08/29/2023] Open
Abstract
Aberrant STAT3 activation occurs in most human gastric cancers (GCs) and contributes to the malignant progression of GC, but mechanism(s) underlying aberrant STAT3 remain largely unknown. Here we demonstrated that the gene associated with retinoid interferon-induced mortality 19 (GRIM-19) was severely depressed or lost in GC and chronic atrophic gastritis (CAG) tissues and its loss contributed to GC tumorigenesis partly by activating STAT3 signaling. In primary human GC tissues, GRIM-19 was frequently depressed or lost and this loss correlated with advanced clinical stage, lymph node metastasis, H. pylori infection and poor overall survival of GC patients. In CAG tissues, GRIM-19 was progressively decreased along with its malignant transformation. Functionally, we indentified an oncogenic role of GRIM-19 loss in promoting GC tumorigenesis. Ectopic GRIM-19 expression suppressed GC tumor formation in vitro and in vivo by inducing cell cycle arrest and apoptosis. Moreover, we revealed that GRIM-19 inhibited STAT3 transcriptional activation and its downstream targets by reducing STAT3 nuclear distribution. Conversely, knockdown of GRIM-19 induced aberrant STAT3 activation and accelerated GC cell growth in vitro and in vivo, and this could be partly attenuated by the blockage of STAT3 activation. In addition, we observed subcellular redistributions of GRIM-19 characterized by peri-nuclear aggregates, non-mitochondria cytoplasmic distribution and nuclear invasion, which should be responsible for reduced STAT3 nuclear distribution. Our studies suggest that mitochondrial GRIM-19 could not only serve as an valuable prognostic biomarker for GC development, but also as a potential therapeutic target for STAT3-dependent carcinogenesis of GC.
Collapse
|
research-article |
9 |
18 |
4
|
Zeng X, Yang M, Ye T, Feng J, Xu X, Yang H, Wang X, Bao L, Li R, Xue B, Zang J, Huang Y. Mitochondrial GRIM-19 loss in parietal cells promotes spasmolytic polypeptide-expressing metaplasia through NLR family pyrin domain-containing 3 (NLRP3)-mediated IL-33 activation via a reactive oxygen species (ROS) -NRF2- Heme oxygenase-1(HO-1)-NF-кB axis. Free Radic Biol Med 2023; 202:46-61. [PMID: 36990300 DOI: 10.1016/j.freeradbiomed.2023.03.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/05/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] [Imported: 08/29/2023]
Abstract
Spasmolytic polypeptide-expressing metaplasia (SPEM), as a pre-neoplastic precursor of intestinal metaplasia (IM), plays critical roles in the development of chronic atrophic gastritis (CAG) and gastric cancer (GC). However, the pathogenetic targets responsible for the SPEM pathogenesis remain poorly understood. Gene associated with retinoid-IFN-induced mortality 19 (GRIM-19), an essential subunit of the mitochondrial respiratory chain complex I, was progressively lost along with malignant transformation of human CAG, little is known about the potential link between GRIM-19 loss and CAG pathogenesis. Here, we show that lower GRIM-19 is associated with higher NF-кB RelA/p65 and NLR family pyrin domain-containing 3 (NLRP3) levels in CAG lesions. Functionally, GRIM-19 deficiency fails to drive direct differentiation of human GES-1 cells into IM or SPEM-like cell lineages in vitro, whereas parietal cells (PCs)-specific GRIM-19 knockout disturbs gastric glandular differentiation and promotes spontaneous gastritis and SPEM pathogenesis without intestinal characteristics in mice. Mechanistically, GRIM-19 loss causes chronic mucosal injury and aberrant NRF2 (Nuclear factor erythroid 2-related factor 2)- HO-1 (Heme oxygenase-1) activation via reactive oxygen species (ROS)-mediated oxidative stress, resulting in aberrant NF-кB activation by inducing p65 nuclear translocation via an IKK/IкB partner, while NRF2-HO-1 activation contributes to GRIM-19 loss-driven NF-кB activation via a positive feedback NRF2-HO-1 loop. Furthermore, GRIM-19 loss did not cause obvious PCs loss but triggers NLRP3 inflammasome activation in PCs via a ROS-NRF2-HO-1-NF-кB axis, leading to NLRP3-dependent IL-33 expression, a key mediator for SPEM formation. Moreover, intraperitoneal administration of NLRP3 inhibitor MCC950 drastically attenuates GRIM-19 loss-driven gastritis and SPEM in vivo. Our study suggests that mitochondrial GRIM-19 maybe a potential pathogenetic target for the SPEM pathogenesis, and its deficiency promotes SPEM through NLRP3/IL-33 pathway via a ROS-NRF2-HO-1-NF-кB axis. This finding not only provides a causal link between GRIM-19 loss and SPEM pathogenesis, but offers potential therapeutic strategies for the early prevention of intestinal GC.
Collapse
|
|
2 |
10 |
5
|
Li R, Zeng X, Yang M, Feng J, Xu X, Bao L, Ye T, Wang X, Xue B, Huang Y. Antidiabetic DPP-4 Inhibitors Reprogram Tumor Microenvironment That Facilitates Murine Breast Cancer Metastasis Through Interaction With Cancer Cells via a ROS-NF-кB-NLRP3 Axis. Front Oncol 2021; 11:728047. [PMID: 34631556 PMCID: PMC8497989 DOI: 10.3389/fonc.2021.728047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/01/2021] [Indexed: 01/21/2023] [Imported: 08/29/2023] Open
Abstract
Improvement of understanding of the safety profile and biological significance of antidiabetic agents in breast cancer (BC) progression may shed new light on minimizing the unexpected side effect of antidiabetic reagents in diabetic patients with BC. Our recent finding showed that Saxagliptin (Sax) and Sitagliptin (Sit), two common antidiabetic dipeptidyl peptidase-4 inhibitors (DPP-4i) compounds, promoted murine BC 4T1 metastasis via a ROS-NRF2-HO-1 axis in nonobese diabetic-severe combined immunodeficiency (NOD-SCID) mice. However, the potential role of DPP-4i in BC progression under immune-competent status remains largely unknown. Herein, we extended our investigation and revealed that Sax and Sit also accelerated murine BC 4T1 metastasis in orthotopic, syngeneic, and immune-competent BALB/c mice. Mechanically, we found that DPP-4i not only activated ROS-NRF2-HO-1 axis but also triggered reactive oxygen species (ROS)-dependent nuclear factor kappa B (NF-κB) activation and its downstream metastasis-associated gene levels in vitro and in vivo, while NF-кB inhibition significantly abrogated DPP-4i-driven BC metastasis in vitro. Meanwhile, inhibition of NRF2-HO-1 activation attenuated DPP-4i-driven NF-кB activation, while NRF2 activator ALA enhanced NF-кB activation, indicating an essential role of ROS-NRF2-HO-1 axis in DPP-4i-driven NF-кB activation. Furthermore, we also found that DPP-4i increased tumor-infiltrating CD45, MPO, F4/80, CD4, and Foxp3-positive cells and myeloid-derived suppressor cells (MDSCs), and decreased CD8-positive lymphocytes in metastatic sites, but did not significantly alter cell viability, apoptosis, differentiation, and suppressive activation of 4T1-induced splenic MDSCs. Moreover, we revealed that DPP-4i triggered ROS-NF-κB-dependent NLRP3 inflammasome activation in BC cells, leading to increase in inflammation cytokines such as interleukin (IL)-6, tumor necrosis factor alpha (TNF-α), vascular endothelial growth factor (VEGF), intercellular cell adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), IL-1β and IL-33, and MDSCs inductors granulocyte-macrophage colony-stimulating factor (GM-CSF), G-CSF, and M-CSF, which play a crucial role in the remodeling of tumor immune-suppressive microenvironment. Thus, our findings suggest that antidiabetic DPP-4i reprograms tumor microenvironment that facilitates murine BC metastasis by interaction with BC cells via a ROS-NRF2-HO-1-NF-κB-NLRP3 axis. This finding not only provides a mechanistic insight into the oncogenic ROS-NRF2-HO-1 in DPP-4i-driven BC progression but also offers novel insights relevant for the improvement of tumor microenvironment to alleviate DPP-4i-induced BC metastasis.
Collapse
|
research-article |
4 |
6 |
6
|
徐 小, 李 锐, 曾 欣, 王 欣, 薛 炳, 黄 道, 黄 轶. [Pathogenic role of NDUFA13 inactivation in spontaneous hepatitis in mice and the mechanism]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:55-63. [PMID: 33509753 PMCID: PMC7867491 DOI: 10.12122/j.issn.1673-4254.2021.01.07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 12/20/2022] [Imported: 08/29/2023]
Abstract
OBJECTIVE To investigate the role of NDUFA13 inactivation in the pathogenesis of spontaneous hepatitis in mice and explore the possible mechanisms. METHODS Hepatocyte-specific NDUFA13 knockout (NDUFA13fl/-) mice were generated by intercrossing NDUFA13fl/fl and Alb-Cre mice based on Cre/loxP transgenic technology, and tail and liver DNA of the mice was genotyped by PCR analysis. Ten NDUFA13fl/- mice and 10 littermate control NDUFA13fl/fl mice were housed, and in each group, 5 mice were euthanized at the age of 4 weeks and the other 5 at two years for pathological examination of the liver tissues with HE staining. Immunohistochemistry was used to verify the expression levels of NDUFA13, NF-κB/p65, NF-κB/p-p65 and inflammasome NLRP3. The total intracellular ROS and mitochondrial ROS levels were measured with a ROS staining kit. The expressions of the inflammatory cell markers (CD45, MPO, and F4/80) and inflammatory cytokines (IL1β and IL33) in the liver were detected with immunohistochemistry and immunofluorescence assay. RESULTS Liver-specific NDUFA13 heterozygous knockout mice were successfully constructed as verified by PCR results. HE staining revealed severe liver damage in both 4- week-old and 2-year-old NDUFA13fl/- mice as compared with their littermate controls. Immunohistochemistry showed a significant decrease of NDUFA13 expression in both 4-week-old and 2-year-old NDUFA13fl/- mice (P < 0.05). The expression levels of NF-κB signals p65, p-p65 and NLRP3 inflammasomes were all significantly increased in NDUFA13fl/- mice (P < 0.05). The total intracellular ROS and mitochondrial ROS levels in NDUFA13fl/- mice were also significantly increased. NDUFA13 knockout obviously promoted the expression of the inflammatory cell markers (CD45, MPO and F4/80) and the secretion of IL-1β and IL-33 in the liver tissue of the mice (P < 0.05). CONCLUSIONS Hepatocytes-specific NDUFA13 ablation can trigger spontaneous hepatitis in mice possibly mediated by the activation of ROS/NF-κB/NLRP3 signaling.
Collapse
|
research-article |
4 |
3 |
7
|
Li R, Zeng X, Yang M, Xu X, Feng J, Bao L, Xue B, Wang X, Huang Y. Antidiabetic Agent DPP-4i Facilitates Murine Breast Cancer Metastasis by Oncogenic ROS-NRF2-HO-1 Axis via a Positive NRF2-HO-1 Feedback Loop. Front Oncol 2021; 11:679816. [PMID: 34123848 PMCID: PMC8187865 DOI: 10.3389/fonc.2021.679816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/04/2021] [Indexed: 01/03/2023] [Imported: 08/29/2023] Open
Abstract
Cancer has been as one of common comorbidities of diabetes. Long-term antidiabetic treatment may potentially exert uncertain impacts on diabetic patients with cancer including breast cancer (BC). Dipeptidyl peptidase-4 inhibitors (DPP-4i) are currently recommended by the AACE as first-line hypoglycemic drugs in type 2 diabetes mellitus (T2DM). Although the safety of DPP-4i has been widely evaluated, the potential side-effects of DPP-4i in cancer metastasis were also reported and remain controversial. Here, we revealed that Saxagliptin (Sax) and Sitagliptin (Sit), two common DPP-4i compounds, potentially promoted murine BC 4T1 metastasis in vitro and in vivo under immune-deficient status. Mechanically, we observed that DPP-4i treatment induced aberrant oxidative stress by triggering ROS overproduction, as well as ROS-dependent NRF2 and HO-1 activations in BC cells, while specific inhibition of ROS, NRF2 or HO-1 activations abrogated DPP-4i-driven BC metastasis and metastasis-associated gene expression in vitro. Furthermore, ALA, a NRF2 activator significantly promoted BC metastasis in vitro and in vivo, which can be abrogated by specific HO-1 inhibition in vitro. Moreover, specific HO-1 inhibition not only reversed DPP-4i-induced NRF2 activation but also abrogated ALA-induced NRF2 activation, resulting in a decrease of metastasis-associated genes, indicating a positive-feedback NRF2-HO-1 loop. Our findings suggest that DPP-4i accelerates murine BC metastasis through an oncogenic ROS-NRF2-HO-1 axis via a positive-feedback NRF2-HO-1 loop. Therefore, this study not only offers novel insights into an oncogenic role of DPP-4i in BC progression but also provides new strategies to alleviate the dark side of DPP-4i by targeting HO-1.
Collapse
|
research-article |
4 |
3 |
8
|
徐 小, 曾 欣, 李 锐, 冯 金, 黄 道, 黄 轶. [Mechanism of hepatocyte mitochondrial NDUFA13 deficiency-induced liver fibrogenesis: the role of abnormal hepatic stellate cell activation]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:529-535. [PMID: 33963711 PMCID: PMC8110444 DOI: 10.12122/j.issn.1673-4254.2021.04.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Indexed: 11/24/2022] [Imported: 08/29/2023]
Abstract
OBJECTIVE To investigate the role of hepatocyte mitochondrial NDUFA13 loss in the liver fibrogenesis in mice and explore the possible mechanisms. OBJECTIVE We used liver-specific NDUFA13 heterozygous knockout mouse models (NDUFA13fl/-; Alb-Cre) established previously by intercrossing NDUFA13fl/fl and Alb-Cre mice, with their littermate control NDUFA13fl/fl mice as the control (n=8). The mice were euthanized at the age of 4 weeks and 2 years, and the liver tissues were collected for HE and Masson staining to observe the pathological changes and fibrosis phenotypes. Western blotting was performed to detect the expression of NDUFA13 protein in the liver tissues, and the infiltration of F4/80+ macrophages and the expressions of TGF-β1, TNF-α and IL-1β were analyzed by immunofluorescence assay. The expression levels of α-SMA, matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of matrix metalloproteases 1 (TIMP-1), collagen-Ⅰ and collagen-Ⅲ were assayed by immunohistochemistry. OBJECTIVE HE and Masson staining showed obvious inflammatory infiltration but no significant fibrosis in the liver tissues of 4-week-old NDUFA13fl/- mice, but severe liver damage with massive fibrosis was observed in 2-year-old NDUFA13fl/- mice. NDUFA13 expression in 2-year-old NDUFA13fl/- mice markedly decreased compared with that in the control NDUFA13fl/fl mice as shown by Western blotting (P < 0.05). Immunohistochemistry showed obvious infiltration of F4/80+ macrophages in the liver tissue with a large amount of TGF-β1 production (P < 0.05) and TNF-α and IL-1β secretions in NDUFA13fl/- mice (P < 0.05). NDUFA13 knockout obviously promoted α-SMA expression (P < 0.05) and collagen-Ⅰ and collagen-Ⅲ deposition (P < 0.05) while significantly decreased MMP-9 and increased TIMP-1 expression in the liver (P < 0.05). OBJECTIVE Hepatocytes-specific NDUFA13 deficiency can trigger spontaneous and chronic liver fibrosis phenotypes in mice probably in association with abnormal activation of hepatic stellate cells induced by macrophages and inflammatory factors.
Collapse
|
research-article |
4 |
|