1
|
Ward SM, Ordog T, Koh SD, Baker SA, Jun JY, Amberg G, Monaghan K, Sanders KM. Pacemaking in interstitial cells of Cajal depends upon calcium handling by endoplasmic reticulum and mitochondria. J Physiol 2000; 525 Pt 2:355-61. [PMID: 10835039 PMCID: PMC2269944 DOI: 10.1111/j.1469-7793.2000.t01-1-00355.x] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] [Imported: 05/20/2025] Open
Abstract
Pacemaker cells, known as interstitial cells of Cajal (ICC), generate electrical rhythmicity in the gastrointestinal tract. Pacemaker currents in ICC result from the activation of a voltage-independent, non-selective cation conductance, but the timing mechanism responsible for periodic activation of the pacemaker current is unknown. Previous studies suggest that pacemaking in ICC is dependent upon metabolic activity 1y1yand1 Ca2+ release from intracellular stores. We tested the hypothesis that mitochondrial Ca2+ handling may underlie the dependence of gastrointestinal pacemaking on oxidative metabolism. Pacemaker currents occurred spontaneously in cultured ICC and were associated with mitochondrial Ca2+ transients. Inhibition of the electrochemical gradient across the inner mitochondrial membrane blocked Ca2+ uptake and pacemaker currents in cultured ICC and blocked slow wave activity in intact gastrointestinal muscles from mouse, dog and guinea-pig. Pacemaker currents and rhythmic mitochondrial Ca2+ uptake in ICC were also blocked by inhibitors of IP3-dependent release of Ca2+ from the endoplasmic reticulum and by inhibitors of endoplasmic reticulum Ca2+ reuptake. Our data suggest that integrated Ca2+ handling by endoplasmic reticulum and mitochondria is a prerequisite of electrical pacemaking in the gastrointestinal tract.
Collapse
|
brief-report |
25 |
250 |
2
|
Baker SA, Hennig GW, Salter AK, Kurahashi M, Ward SM, Sanders KM. Distribution and Ca(2+) signalling of fibroblast-like (PDGFR(+)) cells in the murine gastric fundus. J Physiol 2013; 591:6193-208. [PMID: 24144881 DOI: 10.1113/jphysiol.2013.264747] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] [Imported: 05/20/2025] Open
Abstract
Platelet-derived growth factor receptor α positive (PDGFRα(+)) cells are suggested to mediate purinergic inputs in GI muscles, but the responsiveness of these cells to purines in situ has not been evaluated. We developed techniques to label and visualize PDGFRα(+) cells in murine gastric fundus, load cells with Ca(2+) indicators, and follow their activity via digital imaging. Immunolabelling demonstrated a high density of PDGFRα(+) cells in the fundus. Cells were isolated and purified by fluorescence-activated cell sorting (FACS) using endogenous expression of enhanced green fluorescent protein (eGFP) driven off the Pdgfra promoter. Quantitative PCR showed high levels of expression of purinergic P2Y1 receptors and SK3 K(+) channels in PDGFRα(+) cells. Ca(2+) imaging was used to characterize spontaneous Ca(2+) transients and responses to purines in PDGFRα(+) cells in situ. ATP, ADP, UTP and β-NAD elicited robust Ca(2+) transients in PDGFRα(+) cells. Ca(2+) transients were also elicited by the P2Y1-specific agonist (N)-methanocarba-2MeSADP (MRS-2365), and inhibited by MRS-2500, a P2Y1-specific antagonist. Responses to ADP, MRS-2365 and β-NAD were absent in PDGFRα(+) cells from P2ry1((-/-)) mice, but responses to ATP were retained. Purine-evoked Ca(2+) transients were mediated through Ca(2+) release mechanisms. Inhibitors of phospholipase C (U-73122), IP3 (2-APB), ryanodine receptors (Ryanodine) and SERCA pump (cyclopiazonic acid and thapsigargin) abolished Ca(2+) transients elicited by purines. This study provides a link between purine binding to P2Y1 receptors and activation of SK3 channels in PDGFRα(+) cells. Activation of Ca(2+) release is likely to be the signalling mechanism in PDGFRα(+) cells responsible for the transduction of purinergic enteric inhibitory input in gastric fundus muscles.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
76 |
3
|
Drumm BT, Hennig GW, Battersby MJ, Cunningham EK, Sung TS, Ward SM, Sanders KM, Baker SA. Clustering of Ca 2+ transients in interstitial cells of Cajal defines slow wave duration. J Gen Physiol 2017; 149:703-725. [PMID: 28592421 PMCID: PMC5496507 DOI: 10.1085/jgp.201711771] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 05/02/2017] [Indexed: 12/13/2022] [Imported: 08/29/2023] Open
Abstract
Interstitial cells of Cajal (ICC) in the myenteric plexus region (ICC-MY) of the small intestine are pacemakers that generate rhythmic depolarizations known as slow waves. Slow waves depend on activation of Ca2+-activated Cl- channels (ANO1) in ICC, propagate actively within networks of ICC-MY, and conduct to smooth muscle cells where they generate action potentials and phasic contractions. Thus, mechanisms of Ca2+ regulation in ICC are fundamental to the motor patterns of the bowel. Here, we characterize the nature of Ca2+ transients in ICC-MY within intact muscles, using mice expressing a genetically encoded Ca2+ sensor, GCaMP3, in ICC. Ca2+ transients in ICC-MY display a complex firing pattern caused by localized Ca2+ release events arising from multiple sites in cell somata and processes. Ca2+ transients are clustered within the time course of slow waves but fire asynchronously during these clusters. The durations of Ca2+ transient clusters (CTCs) correspond to slow wave durations (plateau phase). Simultaneous imaging and intracellular electrical recordings revealed that the upstroke depolarization of slow waves precedes clusters of Ca2+ transients. Summation of CTCs results in relatively uniform Ca2+ responses from one slow wave to another. These Ca2+ transients are caused by Ca2+ release from intracellular stores and depend on ryanodine receptors as well as amplification from IP3 receptors. Reduced extracellular Ca2+ concentrations and T-type Ca2+ channel blockers decreased the number of firing sites and firing probability of Ca2+ transients. In summary, the fundamental electrical events of small intestinal muscles generated by ICC-MY depend on asynchronous firing of Ca2+ transients from multiple intracellular release sites. These events are organized into clusters by Ca2+ influx through T-type Ca2+ channels to sustain activation of ANO1 channels and generate the plateau phase of slow waves.
Collapse
|
research-article |
8 |
58 |
4
|
Baker SA, Drumm BT, Saur D, Hennig GW, Ward SM, Sanders KM. Spontaneous Ca(2+) transients in interstitial cells of Cajal located within the deep muscular plexus of the murine small intestine. J Physiol 2016; 594:3317-38. [PMID: 26824875 DOI: 10.1113/jp271699] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/24/2016] [Indexed: 01/13/2023] [Imported: 05/20/2025] Open
Abstract
KEY POINTS Interstitial cells of Cajal at the level of the deep muscular plexus (ICC-DMP) in the small intestine generate spontaneous Ca(2+) transients that consist of localized Ca(2+) events and limited propagating Ca(2+) waves. Ca(2+) transients in ICC-DMP display variable characteristics: from discrete, highly localized Ca(2+) transients to regionalized Ca(2+) waves with variable rates of occurrence, amplitude, duration and spatial spread. Ca(2+) transients fired stochastically, with no cellular or multicellular rhythmic activity being observed. No correlation was found between the firing sites in adjacent cells. Ca(2+) transients in ICC-DMP are suppressed by the ongoing release of inhibitory neurotransmitter(s). Functional intracellular Ca(2+) stores are essential for spontaneous Ca(2+) transients, and the sarco/endoplasmic reticulum Ca(2+) -ATPase (SERCA) pump is necessary for maintenance of spontaneity. Ca(2+) release mechanisms involve both ryanodine receptors (RyRs) and inositol triphosphate receptors (InsP3 Rs). Release from these channels is interdependent. ICC express transcripts of multiple RyRs and InsP3 Rs, with Itpr1 and Ryr2 subtypes displaying the highest expression. ABSTRACT Interstitial cells of Cajal in the deep muscular plexus of the small intestine (ICC-DMP) are closely associated with varicosities of enteric motor neurons and generate responses contributing to neural regulation of intestinal motility. Responses of ICC-DMP are mediated by activation of Ca(2+) -activated Cl(-) channels; thus, Ca(2+) signalling is central to the behaviours of these cells. Confocal imaging was used to characterize the nature and mechanisms of Ca(2+) transients in ICC-DMP within intact jejunal muscles expressing a genetically encoded Ca(2+) indicator (GCaMP3) selectively in ICC. ICC-DMP displayed spontaneous Ca(2+) transients that ranged from discrete, localized events to waves that propagated over variable distances. The occurrence of Ca(2+) transients was highly variable, and it was determined that firing was stochastic in nature. Ca(2+) transients were tabulated in multiple cells within fields of view, and no correlation was found between the events in adjacent cells. TTX (1 μm) significantly increased the occurrence of Ca(2+) transients, suggesting that ICC-DMP contributes to the tonic inhibition conveyed by ongoing activity of inhibitory motor neurons. Ca(2+) transients were minimally affected after 12 min in Ca(2+) free solution, indicating these events do not depend immediately upon Ca(2+) influx. However, inhibitors of sarco/endoplasmic reticulum Ca(2+) -ATPase (SERCA) pump and blockers of inositol triphosphate receptor (InsP3 R) and ryanodine receptor (RyR) channels blocked ICC Ca(2+) transients. These data suggest an interdependence between RyR and InsP3 R in the generation of Ca(2+) transients. Itpr1 and Ryr2 were the dominant transcripts expressed by ICC. These findings provide the first high-resolution recording of the subcellular Ca(2+) dynamics that control the behaviour of ICC-DMP in situ.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
47 |
5
|
Ward SM, Baker SA, de Faoite A, Sanders KM. Propagation of slow waves requires IP3 receptors and mitochondrial Ca2+ uptake in canine colonic muscles. J Physiol 2003; 549:207-18. [PMID: 12665604 PMCID: PMC2342916 DOI: 10.1113/jphysiol.2003.040097] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] [Imported: 05/20/2025] Open
Abstract
In the gastrointestinal (GI) tract electrical slow waves yield oscillations in membrane potential that periodically increase the open probability of voltage-dependent Ca2+ channels and facilitate phasic contractions. Slow waves are generated by the interstitial cells of Cajal (ICC), and these events actively propagate through ICC networks within the walls of GI organs. The mechanism that entrains spontaneously active pacemaker sites throughout ICC networks to produce regenerative propagation of slow waves is unresolved. Agents that block inositol 1,4,5-trisphosphate (IP3) receptors and mitochondrial Ca2+ uptake were tested on the generation of slow waves in the canine colon. A partitioned chamber apparatus was used to test the effects of blocking slow-wave generation on propagation. We found that active propagation occurred along strips of colonic muscle, but when the pacemaker mechanism was blocked in a portion of the tissue, slow waves decayed exponentially from the point where the pacemaker mechanism was inhibited. An IP3 receptor inhibitor, mitochondrial inhibitors, low external Ca2+, and divalent cations (Mn2+ and Ni2+) caused exponential decay of the slow waves in regions of muscle exposed to these agents. These data demonstrate that the mechanism that initiates slow waves is reactivated from cell-to-cell during the propagation of slow waves. Voltage-dependent conductances present in smooth muscle cells are incapable of slow-wave regeneration. The data predict that partial loss of or disruptions to ICC networks observed in human motility disorders could lead to incomplete penetration of slow waves through GI organs and, thus, to defects in myogenic regulation.
Collapse
|
research-article |
22 |
45 |
6
|
Park KJ, Baker SA, Cho SY, Sanders KM, Koh SD. Sulfur-containing amino acids block stretch-dependent K+ channels and nitrergic responses in the murine colon. Br J Pharmacol 2005; 144:1126-37. [PMID: 15700022 PMCID: PMC1576098 DOI: 10.1038/sj.bjp.0706154] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] [Imported: 05/20/2025] Open
Abstract
1. Efforts to determine the role of stretch-dependent K(+) (SDK) channels in enteric inhibitory neural responses in gastrointestinal muscles are difficult due to a lack of blocking drugs for SDK channels. 2. SDK channels are blocked by sulfur-containing amino acids. These compounds reduced the open probability of SDK channels in on and off-cell patches of murine colonic myocytes. L-Methionine was the most selective and had little or no effect on other known K(+) conductances in colonic myocytes. 3. Application of L-cysteine, L-methionine or DL-homocysteine depolarized intact muscles and enhanced spontaneous contractions. D-Stereoisomers of these amino acids were less effective than L-stereoisomers. 4. Pretreatment of muscles with tetrodotoxin, N(W)-nitro-L-arginine or 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one reduced the depolarization responses to these compounds, suggesting that spontaneous neural activity and release of NO tonically activates SDK channels. 5. Nitrergic responses to nerve stimulation were reduced by sulfur-containing amino acids. 6. These data suggest that nitrergic inhibitory junction potentials are mediated, in part, by activation of SDK channels in murine colonic muscles.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
43 |
7
|
Baker SA, Hennig GW, Ward SM, Sanders KM. Temporal sequence of activation of cells involved in purinergic neurotransmission in the colon. J Physiol 2015; 593:1945-63. [PMID: 25627983 DOI: 10.1113/jphysiol.2014.287599] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/21/2015] [Indexed: 12/27/2022] [Imported: 05/20/2025] Open
Abstract
KEY POINTS Platelet derived growth factor receptor α (PDGFRα(+) ) cells in colonic muscles are innervated by enteric inhibitory motor neurons. PDGFRα(+) cells generate Ca(2+) transients in response to exogenous purines and these responses were blocked by MRS-2500. Stimulation of enteric neurons, with cholinergic and nitrergic components blocked, evoked Ca(2+) transients in PDGFRα(+) and smooth muscle cells (SMCs). Responses to nerve stimulation were abolished by MRS-2500 and not observed in muscles with genetic deactivation of P2Y1 receptors. Ca(2+) transients evoked by nerve stimulation in PDGFRα(+) cells showed the same temporal characteristics as electrophysiological responses. PDGFRα(+) cells express gap junction genes, and drugs that inhibit gap junctions blocked neural responses in SMCs, but not in nerve processes or PDGFRα(+) cells. PDGFRα(+) cells are directly innervated by inhibitory motor neurons and purinergic responses are conducted to SMCs via gap junctions. ABSTRACT Interstitial cells, known as platelet derived growth factor receptor α (PDGFRα(+) ) cells, are closely associated with varicosities of enteric motor neurons and suggested to mediate purinergic hyperpolarization responses in smooth muscles of the gastrointestinal tract (GI), but this concept has not been demonstrated directly in intact muscles. We used confocal microscopy to monitor Ca(2+) transients in neurons and post-junctional cells of the murine colon evoked by exogenous purines or electrical field stimulation (EFS) of enteric neurons. EFS (1-20 Hz) caused Ca(2+) transients in enteric motor nerve processes and then in PDGFRα(+) cells shortly after the onset of stimulation (latency from EFS was 280 ms at 10 Hz). Responses in smooth muscle cells (SMCs) were typically a small decrease in Ca(2+) fluorescence just after the initiation of Ca(2+) transients in PDGFRα(+) cells. Upon cessation of EFS, several fast Ca(2+) transients were noted in SMCs (rebound excitation). Strong correlation was noted in the temporal characteristics of Ca(2+) transients evoked in PDGFRα(+) cells by EFS and inhibitory junction potentials (IJPs) recorded with intracellular microelectrodes. Ca(2+) transients and IJPs elicited by EFS were blocked by MRS-2500, a P2Y1 antagonist, and absent in P2ry1((-/-)) mice. PDGFRα(+) cells expressed gap junction genes, and gap junction uncouplers, 18β-glycyrrhetinic acid (18β-GA) and octanol blocked Ca(2+) transients in SMCs but not in neurons or PDGFRα(+) cells. IJPs recorded from SMCs were also blocked. These findings demonstrate direct innervation of PDGFRα(+) cells by motor neurons. PDGFRα(+) cells are primary targets for purinergic neurotransmitter(s) in enteric inhibitory neurotransmission. Hyperpolarization responses are conducted to SMCs via gap junctions.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
42 |
8
|
Monaghan K, Baker SA, Dwyer L, Hatton WC, Sik Park K, Sanders KM, Koh SD. The stretch-dependent potassium channel TREK-1 and its function in murine myometrium. J Physiol 2011; 589:1221-33. [PMID: 21224218 DOI: 10.1113/jphysiol.2010.203869] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] [Imported: 05/20/2025] Open
Abstract
Smooth muscle of the uterus stays remarkably quiescent during normal pregnancy to allow sufficient time for development of the fetus. At present the mechanisms leading to uterine quiescence during pregnancy and how the suppression of activity is relieved at term are poorly understood. Myometrial excitability is governed by ion channels, and a major hypothesis regarding the regulation of contractility during pregnancy has been that expression of certain channels is regulated by hormonal influences. We have explored the expression and function of stretch-dependent K+ (SDK) channels, which are likely to be due to TREK channels, in murine myometrial tissues and myocytes using PCR, Western blots, patch clamp, intracellular microelectrode and isometric force measurements. TREK-1 is more highly expressed than TREK-2 in myometrium, and there was no detectable expression of TRAAK. Expression of TREK-1 transcripts and protein was regulated during pregnancy and delivery. SDK channels were activated in response to negative pressure applied to patches. SDK channels were insensitive to a broad-spectrum of K+ channel blockers, including tetraethylammonium and 4-aminopyridine, and insensitive to intracellular Ca2+. SDK channels were activated by stretch and arachidonic acid and inhibited by reagents that block TREK-1 channels, l-methionine and/or methioninol. Our data suggest that uterine excitability and contractility during pregnancy is regulated by the expression of SDK/TREK-1 channels. Up-regulation of these channels stabilizes membrane potential and controls contraction during pregnancy and down-regulation of these channels induces the onset of delivery.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
40 |
9
|
Methionine and its derivatives increase bladder excitability by inhibiting stretch-dependent K(+) channels. Br J Pharmacol 2008; 153:1259-71. [PMID: 18204472 DOI: 10.1038/sj.bjp.0707690] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] [Imported: 05/20/2025] Open
Abstract
BACKGROUND AND PURPOSE During the bladder filling phase, the volume of the urinary bladder increases dramatically, with only minimal increases in intravesical pressure. To accomplish this, the smooth muscle of the bladder wall must remain relaxed during bladder filling. However, the mechanisms responsible for the stabilization of bladder excitability during stretch are unclear. We hypothesized that stretch-dependent K(+) (TREK) channels in bladder smooth muscle cells may inhibit contraction in response to stretch. EXPERIMENTAL APPROACHES Bladder tissues from mouse, guinea pig and monkey were used for molecular, patch clamp, mechanical, electrical, Ca(2+) imaging and cystometric responses to methionine and its derivatives, which are putative blockers of stretch-dependent K(+) (SDK) channels. KEY RESULTS SDK channels are functionally expressed in bladder myocytes. The single channel conductance of SDK channels is 89pS in symmetrical K(+) conditions and is blocked by L-methionine. Expressed TREK-1 currents are also inhibited by L-methioninol. All three types of bladder smooth muscle cells from mouse, guinea pig and monkey expressed TREK-1 genes. L-methionine, methioninol and methionine methyl ester but not D-methionine increased contractility in concentration-dependent manner. Methioninol further increased contractility and depolarized the membrane in the presence of blockers of Ca(2+)-activated K(+) conductance. L-methionine induced Ca(2+) waves that spread long distances through the tissue under stretched conditions and were associated with strong contractions. In cystometric assays, methioninol injection increased bladder excitability mimicking overactive bladder activity. CONCLUSIONS AND IMPLICATIONS Methioninol-sensitive K(+) (SDK, TREK-1) channels appear to be important to prevent spread of excitation through the syncitium during bladder filling.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
36 |
10
|
Amberg GC, Baker SA, Koh SD, Hatton WJ, Murray KJ, Horowitz B, Sanders KM. Characterization of the A-type potassium current in murine gastric antrum. J Physiol 2002; 544:417-28. [PMID: 12381815 PMCID: PMC2290589 DOI: 10.1113/jphysiol.2002.025171] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] [Imported: 05/20/2025] Open
Abstract
A-type currents are rapidly inactivating potassium currents that operate at subthreshold potentials. A-type currents have not been reported to occur in the phasic muscles of the stomach. We used conventional voltage-clamp techniques to identify and characterize A-type currents in myocytes isolated from the murine antrum. A-type currents were robust in these cells, with peak current densities averaging 30 pA pF(-1) at 0 mV. These currents underwent rapid inactivation with a time constant of 83 ms at 0 mV. Recovery from inactivation at -80 mV was rapid, with a time constant of 252 ms. The A-type current was blocked by 4-aminopyridine (4-AP) and was inhibited by flecainide, with an IC(50) of 35 microM. The voltage for half-activation was -26 mV, while the voltage of half-inactivation was -65 mV. There was significant activation and incomplete inactivation at potentials positive to -60 mV, which is suggestive of sustained current availability in this voltage range. Under current-clamp conditions, exposure to 4-AP or flecainide depolarized the membrane potential by 7-10 mV. In intact antral tissue preparations, flecainide depolarized the membrane potential between slow waves by 5 mV; changes in slow waves were not evident. The effect of flecainide was not abolished by inhibiting enteric neurotransmission or by blocking delayed rectifier and ATP-sensitive K(+) currents. Transcripts encoding Kv4 channels were detected in isolated antral myocytes by RT-PCR. Immunocytochemistry revealed intense Kv4.2- and Kv4.3-like immunoreactivity in antral myocytes. These data suggest that the A-type current in murine antral smooth muscle cells is likely to be due to Kv4 channels. This current contributes to the maintenance of negative resting membrane potentials.
Collapse
|
research-article |
23 |
33 |
11
|
Baker SA, Hatton WJ, Han J, Hennig GW, Britton FC, Koh SD. Role of TREK-1 potassium channel in bladder overactivity after partial bladder outlet obstruction in mouse. J Urol 2010; 183:793-800. [PMID: 20022044 DOI: 10.1016/j.juro.2009.09.079] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Indexed: 11/19/2022] [Imported: 05/20/2025]
Abstract
PURPOSE Mouse models of partial bladder outlet obstruction cause bladder hypertrophy. Expression of a number of ion channels is altered in hypertrophic detrusor muscle, resulting in bladder dysfunction. We determined whether mechanosensitive TREK-1 channels are present in the murine bladder and whether their expression is altered in partial bladder outlet obstruction, resulting in abnormal filling responses. MATERIALS AND METHODS Partial bladder outlet obstruction was surgically induced in CD-1 mice and the mice recovered for 14 days. Cystometry was done to evaluate bladder pressure responses during filling at 25 microl per minute in partial bladder outlet obstruction mice and sham operated controls. TREK-1 channel expression was determined at the mRNA and protein levels by quantitative reverse transcriptase-polymerase chain reaction and Western blotting, respectively, and localized in the bladder wall using immunohistochemistry. RESULTS Obstructed bladders showed about a 2-fold increase in weight vs sham operated bladders. TREK-1 channel protein expression on Western blots from bladder smooth muscle strip homogenates was significantly decreased in obstructed mice. Immunohistochemistry revealed a significant decrease in TREK-1 channel immunoreactivity in detrusor smooth muscle in obstructed mice. On cystometry the TREK-1 channel blocker L-methioninol induced a significant increase in premature contractions during filling in sham operated mice. L-methioninol had no significant effect in obstructed mice, which showed an overactive detrusor phenotype. CONCLUSIONS TREK-1 channel down-regulation in detrusor myocytes is associated with bladder overactivity in a murine model of partial bladder outlet obstruction.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
32 |
12
|
Drumm BT, Large RJ, Hollywood MA, Thornbury KD, Baker SA, Harvey BJ, McHale NG, Sergeant GP. The role of Ca(2+) influx in spontaneous Ca(2+) wave propagation in interstitial cells of Cajal from the rabbit urethra. J Physiol 2015; 593:3333-50. [PMID: 26046824 DOI: 10.1113/jp270883] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/01/2015] [Indexed: 12/25/2022] [Imported: 05/20/2025] Open
Abstract
KEY POINTS Tonic contractions of rabbit urethra are associated with spontaneous electrical slow waves that are thought to originate in pacemaker cells termed interstitial cells of Cajal (ICC). ICC pacemaker activity results from their ability to generate propagating Ca(2+) waves, although the exact mechanisms of propagation are not understood. In this study, we have identified spontaneous localised Ca(2+) events for the first time in urethral ICC; these were due to Ca(2+) release from the endoplasmic reticulum (ER) via ryanodine receptors (RyRs) and, while they often remained localised, they sometimes initiated propagating Ca(2+) waves. We show that propagation of Ca(2+) waves in urethral ICC is critically dependent upon Ca(2+) influx via reverse mode NCX. Our data provide a clearer understanding of the intracellular mechanisms involved in the generation of ICC pacemaker activity. Interstitial cells of Cajal (ICC) are putative pacemaker cells in the rabbit urethra. Pacemaker activity in ICC results from spontaneous propagating Ca(2+) waves that are modulated by [Ca(2+)]o and whose propagation is inhibited by inositol tri-phosphate receptor (IP3 R) blockers. The purpose of this study was to further examine the role of Ca(2+) influx and Ca(2+) release in the propagation of Ca(2+) waves. Intracellular Ca(2+) was measured in Fluo-4-loaded ICC using a Nipkow spinning disc confocal microscope at fast acquisition rates (50 fps). We identified previously undetected localised Ca(2+) events originating from ryanodine receptors (RyRs). Inhibiting Ca(2+) influx by removing [Ca(2+)]o or blocking reverse mode sodium-calcium exchange (NCX) with KB-R 7943 or SEA-0400 abolished Ca(2+) waves, while localised Ca(2+) events persisted. Stimulating RyRs with 1 mm caffeine restored propagation. Propagation was also inhibited when Ca(2+) release sites were uncoupled by buffering intracellular Ca(2+) with EGTA-AM. This was reversed when Ca(2+) influx via NCX was increased by reducing [Na(+)]o to 13 mm. Low [Na(+)]o also increased the frequency of Ca(2+) waves and this effect was blocked by tetracaine and ryanodine but not 2-aminoethoxydiphenyl borate (2-APB). RT-PCR revealed that isolated ICC expressed both RyR2 and RyR3 subtypes. We conclude: (i) RyRs are required for the initiation of Ca(2+) waves, but wave propagation normally depends on activation of IP3 Rs; (ii) under resting conditions, propagation by IP3 Rs requires sensitisation by influx of Ca(2+) via reverse mode NCX; (iii) propagation can be maintained by RyRs if they have been sensitised to Ca(2+).
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
31 |
13
|
Drumm BT, Rembetski BE, Huynh K, Nizar A, Baker SA, Sanders KM. Excitatory cholinergic responses in mouse colon intramuscular interstitial cells of Cajal are due to enhanced Ca 2+ release via M 3 receptor activation. FASEB J 2020; 34:10073-10095. [PMID: 32539213 DOI: 10.1096/fj.202000672r] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] [Imported: 05/20/2025]
Abstract
Colonic intramuscular interstitial cells of Cajal (ICC-IM) are associated with cholinergic varicosities, suggesting a role in mediating excitatory neurotransmission. Ca2+ release in ICC-IM activates Ano1, a Ca2+ -activated Cl- conductance, causing tissue depolarization and increased smooth muscle excitability. We employed Ca2+ imaging of colonic ICC-IM in situ, using mice expressing GCaMP6f in ICC to evaluate ICC-IM responses to excitatory neurotransmission. Expression of muscarinic type 2, 3 (M2 , M3 ), and NK1 receptors were enriched in ICC-IM. NK1 receptor agonists had minimal effects on ICC-IM, whereas neostigmine and carbachol increased Ca2+ transients. These effects were reversed by DAU 5884 (M3 receptor antagonist) but not AF-DX 116 (M2 receptor antagonist). Electrical field stimulation (EFS) in the presence of L-NNA and MRS 2500 enhanced ICC-IM Ca2+ transients. Responses were blocked by atropine or DAU 5884, but not AF-DX 116. ICC-IM responses to EFS were ablated by inhibiting Ca2+ stores with cyclopiazonic acid and reduced by inhibiting Ca2+ influx via Orai channels. Contractions induced by EFS were reduced by an Ano1 channel antagonist, abolished by DAU 5884, and unaffected by AF-DX 116. Colonic ICC-IM receive excitatory inputs from cholinergic neurons via M3 receptor activation. Enhancing ICC-IM Ca2+ release and Ano1 activation contributes to excitatory responses of colonic muscles.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
27 |
14
|
Bhetwal BP, An C, Baker SA, Lyon KL, Perrino BA. Impaired contractile responses and altered expression and phosphorylation of Ca(2+) sensitization proteins in gastric antrum smooth muscles from ob/ob mice. J Muscle Res Cell Motil 2013; 34:137-49. [PMID: 23576331 DOI: 10.1007/s10974-013-9341-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/27/2013] [Indexed: 12/21/2022] [Imported: 05/20/2025]
Abstract
Diabetic gastroparesis is a common complication of diabetes, adversely affecting quality of life with symptoms of abdominal discomfort, nausea, and vomiting. The pathogenesis of this complex disorder is not well understood, involving abnormalities in the extrinsic and enteric nervous systems, interstitial cells of Cajal (ICCs), smooth muscles and immune cells. The ob/ob mouse model of obesity and diabetes develops delayed gastric emptying, providing an animal model for investigating how gastric smooth muscle dysfunction contributes to the pathophysiology of diabetic gastroparesis. Although ROCK2, MYPT1, and CPI-17 activities are reduced in intestinal motility disorders, their functioning has not been investigated in diabetic gastroparesis. We hypothesized that reduced expression and phosphorylation of the myosin light chain phosphatase (MLCP) inhibitory proteins MYPT1 and CPI-17 in ob/ob gastric antrum smooth muscles could contribute to the impaired antrum smooth muscle function of diabetic gastroparesis. Spontaneous and carbachol- and high K(+)-evoked contractions of gastric antrum smooth muscles from 7 to 12 week old male ob/ob mice were reduced compared to age- and strain-matched controls. There were no differences in spontaneous and agonist-evoked intracellular Ca(2+) transients and myosin light chain kinase expression. The F-actin:G-actin ratios were similar. Rho kinase 2 (ROCK2) expression was decreased at both ages. Basal and agonist-evoked MYPT1 and myosin light chain 20 phosphorylation, but not CPI-17 phosphorylation, was reduced compared to age-matched controls. These findings suggest that reduced MLCP inhibition due to decreased ROCK2 phosphorylation of MYPT1 in gastric antrum smooth muscles contributes to the antral dysmotility of diabetic gastroparesis.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
27 |
15
|
Cho SY, Beckett EA, Baker SA, Han I, Park KJ, Monaghan K, Ward SM, Sanders KM, Koh SD. A pH-sensitive potassium conductance (TASK) and its function in the murine gastrointestinal tract. J Physiol 2005; 565:243-59. [PMID: 15774516 PMCID: PMC1464505 DOI: 10.1113/jphysiol.2005.084574] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] [Imported: 05/20/2025] Open
Abstract
The excitability of smooth muscles is regulated, in part, by background K+ conductances that determine resting membrane potential. However, the K+ conductances so far described in gastrointestinal (GI) muscles are not sufficient to explain the negative resting potentials of these cells. Here we describe expression of two-pore K+ channels of the TASK family in murine small and large intestinal muscles. TASK-2, cloned from murine intestinal muscles, resulted in a pH-sensitive, time-dependent, non-inactivating K+ conductance with slow activation kinetics. A similar conductance was found in native intestinal myocytes using whole-cell patch-clamp conditions. The pH-sensitive current was blocked by local anaesthetics. Lidocaine, bupivacaine and acidic pH depolarized circular muscle cells in intact muscles and decreased amplitude and frequency of slow waves. The effects of lidocaine were not blocked by tetraethylammonium chloride, 4-aminopyridine, glibenclamide, apamin or MK-499. However, depolarization by acidic pH was abolished by pre-treatment with lidocaine, suggesting that lidocaine-sensitive K+ channels were responsible for pH-sensitive changes in membrane potential. The kinetics of activation, sensitivity to pH, and pharmacology of the conductance in intestinal myocytes and the expression of TASK-1 and TASK-2 in these cells suggest that the pH-sensitive background conductance is encoded by TASK genes. This conductance appears to contribute significantly to resting potential and may regulate excitability of GI muscles.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
26 |
16
|
Baker SA, Drumm BT, Cobine CA, Keef KD, Sanders KM. Inhibitory Neural Regulation of the Ca 2+ Transients in Intramuscular Interstitial Cells of Cajal in the Small Intestine. Front Physiol 2018; 9:328. [PMID: 29686622 PMCID: PMC5900014 DOI: 10.3389/fphys.2018.00328] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/15/2018] [Indexed: 01/03/2023] [Imported: 05/20/2025] Open
Abstract
Gastrointestinal motility is coordinated by enteric neurons. Both inhibitory and excitatory motor neurons innervate the syncytium consisting of smooth muscle cells (SMCs) interstitial cells of Cajal (ICC) and PDGFRα+ cells (SIP syncytium). Confocal imaging of mouse small intestines from animals expressing GCaMP3 in ICC were used to investigate inhibitory neural regulation of ICC in the deep muscular plexus (ICC-DMP). We hypothesized that Ca2+ signaling in ICC-DMP can be modulated by inhibitory enteric neural input. ICC-DMP lie in close proximity to the varicosities of motor neurons and generate ongoing Ca2+ transients that underlie activation of Ca2+-dependent Cl- channels and regulate the excitability of SMCs in the SIP syncytium. Electrical field stimulation (EFS) caused inhibition of Ca2+ for the first 2-3 s of stimulation, and then Ca2+ transients escaped from inhibition. The NO donor (DEA-NONOate) inhibited Ca2+ transients and Nω-Nitro-L-arginine (L-NNA) or a guanylate cyclase inhibitor (ODQ) blocked inhibition induced by EFS. Purinergic neurotransmission did not affect Ca2+ transients in ICC-DMP. Purinergic neurotransmission elicits hyperpolarization of the SIP syncytium by activation of K+ channels in PDGFRα+ cells. Generalized hyperpolarization of SIP cells by pinacidil (KATP agonist) or MRS2365 (P2Y1 agonist) also had no effect on Ca2+ transients in ICC-DMP. Peptidergic transmitter receptors (VIP and PACAP) are expressed in ICC and can modulate ICC-DMP Ca2+ transients. In summary Ca2+ transients in ICC-DMP are blocked by enteric inhibitory neurotransmission. ICC-DMP lack a voltage-dependent mechanism for regulating Ca2+ release, and this protects Ca2+ handling in ICC-DMP from membrane potential changes in other SIP cells.
Collapse
|
research-article |
7 |
26 |
17
|
Tonic inhibition of murine proximal colon is due to nitrergic suppression of Ca 2+ signaling in interstitial cells of Cajal. Sci Rep 2019; 9:4402. [PMID: 30867452 PMCID: PMC6416298 DOI: 10.1038/s41598-019-39729-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/30/2019] [Indexed: 12/18/2022] [Imported: 05/20/2025] Open
Abstract
Spontaneous excitability and contractions of colonic smooth muscle cells (SMCs) are normally suppressed by inputs from inhibitory motor neurons, a behavior known as tonic inhibition. The post-junctional cell(s) mediating tonic inhibition have not been elucidated. We investigated the post-junctional cells mediating tonic inhibition in the proximal colon and whether tonic inhibition results from suppression of the activity of Ano1 channels, which are expressed exclusively in interstitial cells of Cajal (ICC). We found that tetrodotoxin (TTX), an inhibitor of nitric oxide (NO) synthesis, L-NNA, and an inhibitor of soluble guanylyl cyclase, ODQ, greatly enhanced colonic contractions. Ano1 antagonists, benzbromarone and Ani9 inhibited the effects of TTX, L-NNA and ODQ. Ano1 channels are activated by Ca2+ release from the endoplasmic reticulum (ER) in ICC, and blocking Ca2+ release with a SERCA inhibitor (thapsigargin) or a store-operated Ca2+ entry blocker (GSK 7975 A) reversed the effects of TTX, L-NNA and ODQ. Ca2+ imaging revealed that TTX, L-NNA and ODQ increased Ca2+ transient firing in colonic ICC. Our results suggest that tonic inhibition in the proximal colon occurs through suppression of Ca2+ release events in ICC. Suppression of Ca2+ release in ICC limits the open probability of Ano1 channels, reducing the excitability of electrically-coupled SMCs.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
25 |
18
|
Excitatory Neuronal Responses of Ca 2+ Transients in Interstitial Cells of Cajal in the Small Intestine. eNeuro 2018; 5:eN-NWR-0080-18. [PMID: 29632869 PMCID: PMC5889480 DOI: 10.1523/eneuro.0080-18.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/12/2018] [Indexed: 12/26/2022] [Imported: 05/20/2025] Open
Abstract
Interstitial cells of Cajal (ICC) regulate smooth muscle excitability and motility in the gastrointestinal (GI) tract. ICC in the deep muscular plexus (ICC-DMP) of the small intestine are aligned closely with varicosities of enteric motor neurons and thought to transduce neural responses. ICC-DMP generate Ca2+ transients that activate Ca2+ activated Cl- channels and generate electrophysiological responses. We tested the hypothesis that excitatory neurotransmitters regulate Ca2+ transients in ICC-DMP as a means of regulating intestinal muscles. High-resolution confocal microscopy was used to image Ca2+ transients in ICC-DMP within murine small intestinal muscles with cell-specific expression of GCaMP3. Intrinsic nerves were stimulated by electrical field stimulation (EFS). ICC-DMP exhibited ongoing Ca2+ transients before stimuli were applied. EFS caused initial suppression of Ca2+ transients, followed by escape during sustained stimulation, and large increases in Ca2+ transients after cessation of stimulation. Basal Ca2+ activity and the excitatory phases of Ca2+ responses to EFS were inhibited by atropine and neurokinin 1 receptor (NK1) antagonists, but not by NK2 receptor antagonists. Exogenous ACh and substance P (SP) increased Ca2+ transients, atropine and NK1 antagonists decreased Ca2+ transients. Neurokinins appear to be released spontaneously (tonic excitation) in small intestinal muscles and are the dominant excitatory neurotransmitters. Subcellular regulation of Ca2+ release events in ICC-DMP may be a means by which excitatory neurotransmission organizes intestinal motility patterns.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
25 |
19
|
Dixon RE, Hennig GW, Baker SA, Britton FC, Harfe BD, Rock JR, Sanders KM, Ward SM. Electrical slow waves in the mouse oviduct are dependent upon a calcium activated chloride conductance encoded by Tmem16a. Biol Reprod 2012; 86:1-7. [PMID: 21976594 DOI: 10.1095/biolreprod.111.095554] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] [Imported: 05/20/2025] Open
Abstract
Myosalpinx contractions are critical for oocyte transport along the oviduct. A specialized population of pacemaker cells-oviduct interstitial cells of Cajal-generate slow waves, the electrical events underlying myosalpinx contractions. The ionic basis of oviduct pacemaker activity is unknown. We examined the role of a new class of Ca(2+)-activated Cl(-) channels (CaCCs)-anoctamin 1, encoded by Tmem16a-in oviduct slow wave generation. RT-PCR revealed the transcriptional expression of Tmem16a-encoded CaCCs in the myosalpinx. Intracellular microelectrode recordings were performed in the presence of two pharmacologically distinct Cl(-) channel antagonists, anthracene-9-carboxylic acid and niflumic acid. Both of these inhibitors caused membrane hyperpolarization, reduced the duration of slow waves, and ultimately inhibited pacemaker activity. Niflumic acid also inhibited propagating calcium waves within the myosalpinx. Slow waves were present at birth in wild-type and heterozygous oviducts but failed to develop by birth in mice homozygous for a null allele of Tmem16a (Tmem16a(tm1Bdh/tm1Bdh)). These data suggest that Tmem16a-encoded CaCCs contribute to membrane potential and are responsible for the upstroke and plateau phases of oviduct slow waves.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
24 |
20
|
Sanders KM, Salter AK, Hennig GW, Koh SD, Perrino BA, Ward SM, Baker SA. Responses to enteric motor neurons in the gastric fundus of mice with reduced intramuscular interstitial cells of cajal. J Neurogastroenterol Motil 2014; 20:171-184. [PMID: 24840370 PMCID: PMC4015192 DOI: 10.5056/jnm.2014.20.2.171] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 01/26/2014] [Accepted: 01/28/2014] [Indexed: 12/31/2022] [Imported: 08/29/2023] Open
Abstract
BACKGROUND/AIMS Interstitial cells of Cajal (ICC) play important functions in motor activity of the gastrointestinal tract. The role of ICC as pace-makers is well established, however their participation in neurotransmission is controversial. Studies using mutant animals that lack ICC have yielded variable conclusions on their importance in enteric motor responses. The purpose of this study was to: (1) clarify the role of intramuscular ICC (ICC-IM) in gastric motor-neurotransmission and (2) evaluate remodeling of enteric mo-tor responses in W/W(V) mice. METHODS Kit immunohistochemistry and post-junctional contractile responses were performed on fundus muscles from wild-type and W/W(V) mice and quantitative polymerase chain reaction (qPCR) was used to evaluate differences in muscarinic and neurokinin receptor expression. RESULTS Although ICC-IM were greatly reduced in comparison with wild-type mice, we found that ICC-IM persisted in the fundus of many W/W(V) animals. ICC-IM were not observed in W/W(V) group 1 (46%) but were observed in W/W(V) group 2 (40%). Evoked neural responses consisted of excitatory and inhibitory components. The inhibitory component (nitrergic) was absent in W/W(V) group 1 and reduced in W/W(V) group 2. Enhanced excitatory responses (cholinergic) were observed in both W/W(V) groups and qPCR re-vealed that muscarinic-M3 receptor expression was significantly augmented in the W/W(V) fundus compared to wild-type controls. CONCLUSIONS This study demonstrates that ICC-IM mediate nitrergic inhibitory neurotransmission in the fundus and provides evidence of plas-ticity changes in neuronal responses that may explain discrepancies in previous functional studies which utilized mutant animals to examine the role of ICC-IM in gastric enteric motor responses.
Collapse
|
research-article |
11 |
23 |
21
|
Drumm BT, Sung TS, Zheng H, Baker SA, Koh SD, Sanders KM. The effects of mitochondrial inhibitors on Ca 2+ signalling and electrical conductances required for pacemaking in interstitial cells of Cajal in the mouse small intestine. Cell Calcium 2018; 72:1-17. [PMID: 29748128 DOI: 10.1016/j.ceca.2018.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/26/2018] [Accepted: 01/27/2018] [Indexed: 01/16/2023] [Imported: 05/20/2025]
Abstract
Interstitial cells of Cajal (ICC-MY) are pacemakers that generate and propagate electrical slow waves in gastrointestinal (GI) muscles. Slow waves appear to be generated by the release of Ca2+ from intracellular stores and activation of Ca2+-activated Cl- channels (Ano1). Conduction of slow waves to smooth muscle cells coordinates rhythmic contractions. Mitochondrial Ca2+ handling is currently thought to be critical for ICC pacemaking. Protonophores, inhibitors of the electron transport chain (FCCP, CCCP or antimycin) or mitochondrial Na+/Ca2+ exchange blockers inhibited slow waves in several GI muscles. Here we utilized Ca2+ imaging of ICC in small intestinal muscles in situ to determine the effects of mitochondrial drugs on Ca2+ transients in ICC. Muscles were obtained from mice expressing a genetically encoded Ca2+ indicator (GCaMP3) in ICC. FCCP, CCCP, antimycin, a uniporter blocker, Ru360, and a mitochondrial Na+/Ca2+ exchange inhibitor, CGP-37157 inhibited Ca2+ transients in ICC-MY. Effects were not due to depletion of ATP, as oligomycin did not affect Ca2+ transients. Patch-clamp experiments were performed to test the effects of the mitochondrial drugs on key pacemaker conductances, Ano1 and T-type Ca2+ (CaV3.2), in HEK293 cells. Antimycin blocked Ano1 and reduced CaV3.2 currents. CCCP blocked CaV3.2 current but did not affect Ano1 current. Ano1 and Cav3.2 currents were inhibited by CGP-37157. Inhibitory effects of mitochondrial drugs on slow waves and Ca2+ signalling in ICC can be explained by direct antagonism of key pacemaker conductances in ICC that generate and propagate slow waves. A direct obligatory role for mitochondria in pacemaker activity is therefore questionable.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
23 |
22
|
Drumm BT, Rembetski BE, Cobine CA, Baker SA, Sergeant GP, Hollywood MA, Thornbury KD, Sanders KM. Ca 2+ signalling in mouse urethral smooth muscle in situ: role of Ca 2+ stores and Ca 2+ influx mechanisms. J Physiol 2018; 596:1433-1466. [PMID: 29383731 PMCID: PMC5899989 DOI: 10.1113/jp275719] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/17/2018] [Indexed: 11/08/2022] [Imported: 05/20/2025] Open
Abstract
KEY POINTS Contraction of urethral smooth muscle cells (USMCs) contributes to urinary continence. Ca2+ signalling in USMCs was investigated in intact urethral muscles using a genetically encoded Ca2+ sensor, GCaMP3, expressed selectively in USMCs. USMCs were spontaneously active in situ, firing intracellular Ca2+ waves that were asynchronous at different sites within cells and between adjacent cells. Spontaneous Ca2+ waves in USMCs were myogenic but enhanced by adrenergic or purinergic agonists and decreased by nitric oxide. Ca2+ waves arose from inositol trisphosphate type 1 receptors and ryanodine receptors, and Ca2+ influx by store-operated calcium entry was required to maintain Ca2+ release events. Ca2+ release and development of Ca2+ waves appear to be the primary source of Ca2+ for excitation-contraction coupling in the mouse urethra, and no evidence was found that voltage-dependent Ca2+ entry via L-type or T-type channels was required for responses to α adrenergic responses. ABSTRACT Urethral smooth muscle cells (USMCs) generate myogenic tone and contribute to urinary continence. Currently, little is known about Ca2+ signalling in USMCs in situ, and therefore little is known about the source(s) of Ca2+ required for excitation-contraction coupling. We characterized Ca2+ signalling in USMCs within intact urethral muscles using a genetically encoded Ca2+ sensor, GCaMP3, expressed selectively in USMCs. USMCs fired spontaneous intracellular Ca2+ waves that did not propagate cell-to-cell across muscle bundles. Ca2+ waves increased dramatically in response to the α1 adrenoceptor agonist phenylephrine (10 μm) and to ATP (10 μm). Ca2+ waves were inhibited by the nitric oxide donor DEA NONOate (10 μm). Ca2+ influx and release from sarcoplasmic reticulum stores contributed to Ca2+ waves, as Ca2+ free bathing solution and blocking the sarcoplasmic Ca2+ -ATPase abolished activity. Intracellular Ca2+ release involved cooperation between ryanadine receptors and inositol trisphosphate receptors, as tetracaine and ryanodine (100 μm) and xestospongin C (1 μm) reduced Ca2+ waves. Ca2+ waves were insensitive to L-type Ca2+ channel modulators nifedipine (1 μm), nicardipine (1 μm), isradipine (1 μm) and FPL 64176 (1 μm), and were unaffected by the T-type Ca2+ channel antagonists NNC-550396 (1 μm) and TTA-A2 (1 μm). Ca2+ waves were reduced by the store operated Ca2+ entry blocker SKF 96365 (10 μm) and by an Orai antagonist, GSK-7975A (1 μm). The latter also reduced urethral contractions induced by phenylephrine, suggesting that Orai can function effectively as a receptor-operated channel. In conclusion, Ca2+ waves in mouse USMCs are a source of Ca2+ for excitation-contraction coupling in urethral muscles.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
22 |
23
|
Drumm BT, Hwang SJ, Baker SA, Ward SM, Sanders KM. Ca 2+ signalling behaviours of intramuscular interstitial cells of Cajal in the murine colon. J Physiol 2019; 597:3587-3617. [PMID: 31124144 DOI: 10.1113/jp278036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/23/2019] [Indexed: 12/13/2022] [Imported: 05/20/2025] Open
Abstract
KEY POINTS Colonic intramuscular interstitial cells of Cajal (ICC-IM) exhibit spontaneous Ca2+ transients manifesting as stochastic events from multiple firing sites with propagating Ca2+ waves occasionally observed. Firing of Ca2+ transients in ICC-IM is not coordinated with adjacent ICC-IM in a field of view or even with events from other firing sites within a single cell. Ca2+ transients, through activation of Ano1 channels and generation of inward current, cause net depolarization of colonic muscles. Ca2+ transients in ICC-IM rely on Ca2+ release from the endoplasmic reticulum via IP3 receptors, spatial amplification from RyRs and ongoing refilling of ER via the sarcoplasmic/endoplasmic-reticulum-Ca2+ -ATPase. ICC-IM are sustained by voltage-independent Ca2+ influx via store-operated Ca2+ entry. Some of the properties of Ca2+ in ICC-IM in the colon are similar to the behaviour of ICC located in the deep muscular plexus region of the small intestine, suggesting there are functional similarities between these classes of ICC. ABSTRACT A component of the SIP syncytium that regulates smooth muscle excitability in the colon is the intramuscular class of interstitial cells of Cajal (ICC-IM). All classes of ICC (including ICC-IM) express Ca2+ -activated Cl- channels, encoded by Ano1, and rely upon this conductance for physiological functions. Thus, Ca2+ handling in ICC is fundamental to colonic motility. We examined Ca2+ handling mechanisms in ICC-IM of murine proximal colon expressing GCaMP6f in ICC. Several Ca2+ firing sites were detected in each cell. While individual sites displayed rhythmic Ca2+ events, the overall pattern of Ca2+ transients was stochastic. No correlation was found between discrete Ca2+ firing sites in the same cell or in adjacent cells. Ca2+ transients in some cells initiated Ca2+ waves that spread along the cell at ∼100 µm s-1 . Ca2+ transients were caused by release from intracellular stores, but depended strongly on store-operated Ca2+ entry mechanisms. ICC Ca2+ transient firing regulated the resting membrane potential of colonic tissues as a specific Ano1 antagonist hyperpolarized colonic muscles by ∼10 mV. Ca2+ transient firing was independent of membrane potential and not affected by blockade of L- or T-type Ca2+ channels. Mechanisms regulating Ca2+ transients in the proximal colon displayed both similarities to and differences from the intramuscular type of ICC in the small intestine. Similarities and differences in Ca2+ release patterns might determine how ICC respond to neurotransmission in these two regions of the gastrointestinal tract.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
21 |
24
|
Baker SA, Hwang SJ, Blair PJ, Sireika C, Wei L, Ro S, Ward SM, Sanders KM. Ca 2+ transients in ICC-MY define the basis for the dominance of the corpus in gastric pacemaking. Cell Calcium 2021; 99:102472. [PMID: 34537580 PMCID: PMC8592010 DOI: 10.1016/j.ceca.2021.102472] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/13/2022] [Imported: 05/20/2025]
Abstract
Myenteric interstitial cells of Cajal (ICC-MY) generate and actively propagate electrical slow waves in the stomach. Slow wave generation and propagation are altered in gastric motor disorders, such as gastroparesis, and the mechanism for the gradient in slow wave frequency that facilitates proximal to distal propagation of slow waves and normal gastric peristalsis is poorly understood. Slow waves depend upon Ca2+-activated Cl- channels (encoded by Ano1). We characterized Ca2+ signaling in ICC-MY in situ using mice engineered to have cell-specific expression of GCaMP6f in ICC. Ca2+ signaling differed in ICC-MY in corpus and antrum. Localized Ca2+ transients were generated from multiple firing sites and were organized into Ca2+ transient clusters (CTCs). Ca2+ transient refractory periods occurred upon cessation of CTCs, but a relatively higher frequency of Ca2+ transients persisted during the inter-CTC interval in corpus than in antrum ICC-MY. The onset of Ca2+ transients after the refractory period was associated with initiation of the next CTC. Thus, CTCs were initiated at higher frequencies in corpus than in antrum ICC-MY. Initiation and propagation of CTCs (and electrical slow waves) depends upon T-type Ca2+ channels, and durations of CTCs relied upon L-type Ca2+ channels. The durations of CTCs mirrored the durations of slow waves. CTCs and Ca2+ transients between CTCs resulted from release of Ca2+ from intracellular stores and were maintained, in part, by store-operated Ca2+ entry. Our data suggest that Ca2+ release and activation of Ano1 channels both initiate and contribute to the plateau phase of slow waves.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
19 |
25
|
Zheng H, Drumm BT, Zhu MH, Xie Y, O'Driscoll KE, Baker SA, Perrino BA, Koh SD, Sanders KM. Na +/Ca 2 + Exchange and Pacemaker Activity of Interstitial Cells of Cajal. Front Physiol 2020; 11:230. [PMID: 32256387 PMCID: PMC7093646 DOI: 10.3389/fphys.2020.00230] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/27/2020] [Indexed: 01/30/2023] [Imported: 05/20/2025] Open
Abstract
Interstitial cells of Cajal (ICC) are pacemaker cells that generate electrical slow waves in gastrointestinal (GI) smooth muscles. Slow waves organize basic motor patterns, such as peristalsis and segmentation in the GI tract. Slow waves depend upon activation of Ca2+-activated Cl– channels (CaCC) encoded by Ano1. Slow waves consist of an upstroke depolarization and a sustained plateau potential that is the main factor leading to excitation-contraction coupling. The plateau phase can last for seconds in some regions of the GI tract. How elevated Ca2+ is maintained throughout the duration of slow waves, which is necessary for sustained activation of CaCC, is unknown. Modeling has suggested a role for Na+/Ca2+ exchanger (NCX) in regulating CaCC currents in ICC, so we tested this idea on murine intestinal ICC. ICC of small and large intestine express NCX isoforms. NCX3 is closely associated with ANO1 in ICC, as shown by immunoprecipitation and proximity ligation assays (PLA). KB-R7943, an inhibitor of NCX, increased CaCC current in ICC, suggesting that NCX, acting in Ca2+ exit mode, helps to regulate basal [Ca2+]i in these cells. Shifting NCX into Ca2+ entry mode by replacing extracellular Na+ with Li+ increased spontaneous transient inward currents (STICs), due to activation of CaCC. Stepping ICC from −80 to −40 mV activated slow wave currents that were reduced in amplitude and duration by NCX inhibitors, KB-R7943 and SN-6, and enhanced by increasing the NCX driving force. SN-6 reduced the duration of clustered Ca2+ transients that underlie the activation of CaCC and the plateau phase of slow waves. Our results suggest that NCX participates in slow waves as modeling has predicted. Dynamic changes in membrane potential and ionic gradients during slow waves appear to flip the directionality of NCX, facilitating removal of Ca2+ during the inter-slow wave interval and providing Ca2+ for sustained activation of ANO1 during the slow wave plateau phase.
Collapse
|
Journal Article |
5 |
19 |