1
|
Brugada J, Campuzano O, Arbelo E, Sarquella-Brugada G, Brugada R. Present Status of Brugada Syndrome: JACC State-of-the-Art Review. J Am Coll Cardiol 2019; 72:1046-1059. [PMID: 30139433 DOI: 10.1016/j.jacc.2018.06.037] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 01/04/2023] [Imported: 09/13/2023]
Abstract
The Brugada syndrome is an inherited disorder associated with risk of ventricular fibrillation and sudden cardiac death in a structurally normal heart. Diagnosis is based on a characteristic electrocardiographic pattern (coved type ST-segment elevation ≥2 mm followed by a negative T-wave in ≥1 of the right precordial leads V1 to V2), observed either spontaneously or during a sodium-channel blocker test. The prevalence varies among regions and ethnicities, affecting mostly males. The risk stratification and management of patients, principally asymptomatic, still remains challenging. The current main therapy is an implantable cardioverter-defibrillator, but radiofrequency catheter ablation has been recently reported as an effective new treatment. Since its first description in 1992, continuous achievements have expanded our understanding of the genetics basis and electrophysiological mechanisms underlying the disease. Currently, despite several genes identified, SCN5A has attracted most attention, and in approximately 30% of patients, a genetic variant may be implicated in causation after a comprehensive analysis.
Collapse
|
Review |
6 |
259 |
2
|
Brugada R, Campuzano O, Sarquella-Brugada G, Brugada J, Brugada P. Brugada syndrome. Methodist Debakey Cardiovasc J 2015; 10:25-8. [PMID: 24932359 DOI: 10.14797/mdcj-10-1-25] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] [Imported: 09/13/2023] Open
Abstract
Brugada syndrome is a rare cardiac arrhythmia characterized by electrocardiographic right bundle branch block and persistent ST-segment elevation in the right precordial leads. It is associated with ventricular fibrillation and a high risk for sudden cardiac death, predominantly in younger males with structurally normal hearts. Patients can remain asymptomatic, and electrocardiographic patterns can occur both spontaneously or after pharmacological induction. So far, several pathogenic genes have been identified as associated with the disease, but SCN5A is the most prevalent one. Two consensus reports to define the diagnostic criteria, risk stratification, and management of patients have been published in the last few years. This brief review focuses on the recent clinical diagnosis, genetic basis, and advances in pharmacological treatment of Brugada syndrome.
Collapse
|
Review |
10 |
94 |
3
|
Sarquella-Brugada G, Campuzano O, Arbelo E, Brugada J, Brugada R. Brugada syndrome: clinical and genetic findings. Genet Med 2015; 18:3-12. [PMID: 25905440 DOI: 10.1038/gim.2015.35] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/10/2015] [Indexed: 11/09/2022] [Imported: 09/13/2023] Open
Abstract
Brugada syndrome is a rare, inherited cardiac disease leading to ventricular fibrillation and sudden cardiac death in structurally normal hearts. Clinical diagnosis requires a Brugada type I electrocardiographic pattern in combination with other clinical features. The most effective approach to unmasking this diagnostic pattern is the use of ajmaline and flecainide tests, and the most effective intervention to reducing the risk of death is the implantation of a cardioverter defibrillator. To date, 18 genes have been associated with the disease, with the voltage-gated sodium channel α type V gene (SCN5A) being the most common one to date. However, only 30-35% of diagnosed cases are attributable to pathogenic variants in known genes, emphasizing the need for further genetic studies. Despite recent advances in clinical diagnoses and genetic testing, risk stratification and clinical management of patients with Brugada syndrome remain challenging.Genet Med 18 1, 3-12.
Collapse
|
Review |
10 |
78 |
4
|
Campuzano O, Castillo-Ruiz MM, Acarin L, Castellano B, Gonzalez B. Increased levels of proinflammatory cytokines in the aged rat brain attenuate injury-induced cytokine response after excitotoxic damage. J Neurosci Res 2009; 87:2484-2497. [PMID: 19326443 DOI: 10.1002/jnr.22074] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] [Imported: 09/13/2023]
Abstract
In order to evaluate proinflammatory cytokine levels and their producing cell types in the control aged rat brain and after acute excitotoxic damage, both adult and aged male Wistar rats were injected with N-methyl-D-aspartate in the striatum. At different survival times between 6 hr and 7 days after lesioning, interleukin-1 beta (IL-1beta), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-alpha) were analyzed by enzyme-linked immunosorbent assay and by double immunofluorescence of cryostat sections by using cell-specific markers. Basal cytokine expression was attributed to astrocytes and was increased in the normal aged brain showing region specificity: TNF-alpha and IL-6 displayed age-dependent higher levels in the aged cortex, and IL-1beta and IL-6 in the aged striatum. After excitotoxic striatal damage, notable age-dependent differences in cytokine induction in the aged vs. the adult were seen. The adult injured striatum exhibited a rapid induction of all cytokines analyzed, but the aged injured striatum showed a weak induction of cytokine expression: IL-1beta showed no injury-induced changes at any time, TNF-alpha presented a late induction at 5 days after lesioning, and IL-6 was only induced at 6 hr after lesioning. At both ages, in the lesion core, all cytokines were early expressed by neurons and astrocytes, and by microglia/macrophages later on. However, in the adjacent lesion border, cytokines were found in reactive astrocytes. This study highlights the particular inflammatory response of the aged brain and suggests an important role of increased basal levels of proinflammatory cytokines in the reduced ability to induce their expression after damage.
Collapse
|
|
16 |
76 |
5
|
Riuró H, Beltran-Alvarez P, Tarradas A, Selga E, Campuzano O, Vergés M, Pagans S, Iglesias A, Brugada J, Brugada P, Vázquez FM, Pérez GJ, Scornik FS, Brugada R. A missense mutation in the sodium channel β2 subunit reveals SCN2B as a new candidate gene for Brugada syndrome. Hum Mutat 2013; 34:961-6. [PMID: 23559163 DOI: 10.1002/humu.22328] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/21/2013] [Indexed: 11/09/2022] [Imported: 09/13/2023]
Abstract
Brugada Syndrome (BrS) is a familial disease associated with sudden cardiac death. A 20%-25% of BrS patients carry genetic defects that cause loss-of-function of the voltage-gated cardiac sodium channel. Thus, 70%-75% of patients remain without a genetic diagnosis. In this work, we identified a novel missense mutation (p.Asp211Gly) in the sodium β2 subunit encoded by SCN2B, in a woman diagnosed with BrS. We studied the sodium current (INa ) from cells coexpressing Nav 1.5 and wild-type (β2WT) or mutant (β2D211G) β2 subunits. Our electrophysiological analysis showed a 39.4% reduction in INa density when Nav 1.5 was coexpressed with the β2D211G. Single channel analysis showed that the mutation did not affect the Nav 1.5 unitary channel conductance. Instead, protein membrane detection experiments suggested that β2D211G decreases Nav 1.5 cell surface expression. The effect of the mutant β2 subunit on the INa strongly suggests that SCN2B is a new candidate gene associated with BrS.
Collapse
|
Journal Article |
12 |
75 |
6
|
Lahrouchi N, Tadros R, Crotti L, Mizusawa Y, Postema PG, Beekman L, Walsh R, Hasegawa K, Barc J, Ernsting M, Turkowski KL, Mazzanti A, Beckmann BM, Shimamoto K, Diamant UB, Wijeyeratne YD, Kucho Y, Robyns T, Ishikawa T, Arbelo E, Christiansen M, Winbo A, Jabbari R, Lubitz SA, Steinfurt J, Rudic B, Loeys B, Shoemaker MB, Weeke PE, Pfeiffer R, Davies B, Andorin A, Hofman N, Dagradi F, Pedrazzini M, Tester DJ, Bos JM, Sarquella-Brugada G, Campuzano Ó, Platonov PG, Stallmeyer B, Zumhagen S, Nannenberg EA, Veldink JH, van den Berg LH, Al-Chalabi A, Shaw CE, Shaw PJ, Morrison KE, Andersen PM, Müller-Nurasyid M, Cusi D, Barlassina C, Galan P, Lathrop M, Munter M, Werge T, Ribasés M, Aung T, Khor CC, Ozaki M, Lichtner P, Meitinger T, van Tintelen JP, Hoedemaekers Y, Denjoy I, Leenhardt A, Napolitano C, Shimizu W, Schott JJ, Gourraud JB, Makiyama T, Ohno S, Itoh H, Krahn AD, Antzelevitch C, Roden DM, Saenen J, Borggrefe M, Odening KE, Ellinor PT, Tfelt-Hansen J, Skinner JR, van den Berg MP, Olesen MS, Brugada J, Brugada R, Makita N, Breckpot J, Yoshinaga M, Behr ER, Rydberg A, Aiba T, Kääb S, Priori SG, Guicheney P, Tan HL, Newton-Cheh C, Ackerman MJ, Schwartz PJ, Schulze-Bahr E, Probst V, Horie M, Wilde AA, Tanck MWT, Bezzina CR. Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome. Circulation 2020; 142:324-338. [PMID: 32429735 PMCID: PMC7382531 DOI: 10.1161/circulationaha.120.045956] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] [Imported: 09/13/2023]
Abstract
Supplemental Digital Content is available in the text. Long QT syndrome (LQTS) is a rare genetic disorder and a major preventable cause of sudden cardiac death in the young. A causal rare genetic variant with large effect size is identified in up to 80% of probands (genotype positive) and cascade family screening shows incomplete penetrance of genetic variants. Furthermore, a proportion of cases meeting diagnostic criteria for LQTS remain genetically elusive despite genetic testing of established genes (genotype negative). These observations raise the possibility that common genetic variants with small effect size contribute to the clinical picture of LQTS. This study aimed to characterize and quantify the contribution of common genetic variation to LQTS disease susceptibility.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
73 |
7
|
Campuzano O, Beltrán-Alvarez P, Iglesias A, Scornik F, Pérez G, Brugada R. Genetics and cardiac channelopathies. Genet Med 2010; 12:260-267. [PMID: 20386317 DOI: 10.1097/gim.0b013e3181d81636] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] [Imported: 09/13/2023] Open
Abstract
Sudden cardiac death is a major contributor to mortality in industrialized nations; in fact, it is the cause of more deaths than acquired immune deficiency syndrome, lung and breast cancer, and stroke together. Frequently, the autopsy becomes the principal diagnostic tool because macroscopic and microscopic analyses reveal the underlying cause of death. However, a significant number of sudden cardiac deaths remain unexplained. These cases are referred to as "natural" or arrhythmogenic. In the young, in up to 50% of sudden cardiac death cases, sudden death is the first and only clinical manifestation of an inherited cardiac disease that had remained undetected by conventional clinical investigations. To improve diagnosis, genetic testing has recently been added to these clinical tools. During the last two decades, there has been considerable progress in the understanding about genetics of sudden cardiac death. With that new information, the probands and their family members can make an informed decision regarding their care and know whether and to what extent they are at risk of suffering from the disease. Thus, genetic technology and expertise have become essential for the diagnosis of some forms of inherited cardiac diseases and to provide a basis for subsequent prevention strategies. This review focuses on recent advances in the understanding of cardiopathies owing to genetic investigations.
Collapse
|
Review |
15 |
72 |
8
|
Fernández-Falgueras A, Sarquella-Brugada G, Brugada J, Brugada R, Campuzano O. Cardiac Channelopathies and Sudden Death: Recent Clinical and Genetic Advances. BIOLOGY 2017; 6:biology6010007. [PMID: 28146053 PMCID: PMC5372000 DOI: 10.3390/biology6010007] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/17/2017] [Accepted: 01/20/2017] [Indexed: 12/19/2022] [Imported: 08/29/2023]
Abstract
Sudden cardiac death poses a unique challenge to clinicians because it may be the only symptom of an inherited heart condition. Indeed, inherited heart diseases can cause sudden cardiac death in older and younger individuals. Two groups of familial diseases are responsible for sudden cardiac death: cardiomyopathies (mainly hypertrophic cardiomyopathy, dilated cardiomyopathy, and arrhythmogenic cardiomyopathy) and channelopathies (mainly long QT syndrome, Brugada syndrome, short QT syndrome, and catecholaminergic polymorphic ventricular tachycardia). This review focuses on cardiac channelopathies, which are characterized by lethal arrhythmias in the structurally normal heart, incomplete penetrance, and variable expressivity. Arrhythmias in these diseases result from pathogenic variants in genes encoding cardiac ion channels or associated proteins. Due to a lack of gross structural changes in the heart, channelopathies are often considered as potential causes of death in otherwise unexplained forensic autopsies. The asymptomatic nature of channelopathies is cause for concern in family members who may be carrying genetic risk factors, making the identification of these genetic factors of significant clinical importance.
Collapse
|
Review |
8 |
69 |
9
|
Barc J, Tadros R, Glinge C, Chiang DY, Jouni M, Simonet F, Jurgens SJ, Baudic M, Nicastro M, Potet F, Offerhaus JA, Walsh R, Choi SH, Verkerk AO, Mizusawa Y, Anys S, Minois D, Arnaud M, Duchateau J, Wijeyeratne YD, Muir A, Papadakis M, Castelletti S, Torchio M, Ortuño CG, Lacunza J, Giachino DF, Cerrato N, Martins RP, Campuzano O, Van Dooren S, Thollet A, Kyndt F, Mazzanti A, Clémenty N, Bisson A, Corveleyn A, Stallmeyer B, Dittmann S, Saenen J, Noël A, Honarbakhsh S, Rudic B, Marzak H, Rowe MK, Federspiel C, Le Page S, Placide L, Milhem A, Barajas-Martinez H, Beckmann BM, Krapels IP, Steinfurt J, Winkel BG, Jabbari R, Shoemaker MB, Boukens BJ, Škorić-Milosavljević D, Bikker H, Manevy FC, Lichtner P, Ribasés M, Meitinger T, Müller-Nurasyid M, Veldink JH, van den Berg LH, Van Damme P, Cusi D, Lanzani C, Rigade S, Charpentier E, Baron E, Bonnaud S, Lecointe S, Donnart A, Le Marec H, Chatel S, Karakachoff M, Bézieau S, London B, Tfelt-Hansen J, Roden D, Odening KE, Cerrone M, Chinitz LA, Volders PG, van de Berg MP, Laurent G, Faivre L, Antzelevitch C, Kääb S, Arnaout AA, Dupuis JM, Pasquie JL, Billon O, Roberts JD, Jesel L, Borggrefe M, Lambiase PD, Mansourati J, Loeys B, Leenhardt A, Guicheney P, Maury P, Schulze-Bahr E, Robyns T, Breckpot J, Babuty D, Priori SG, Napolitano C, de Asmundis C, Brugada P, Brugada R, Arbelo E, Brugada J, Mabo P, Behar N, Giustetto C, Molina MS, Gimeno JR, Hasdemir C, Schwartz PJ, Crotti L, McKeown PP, Sharma S, Behr ER, Haissaguerre M, Sacher F, Rooryck C, Tan HL, Remme CA, Postema PG, Delmar M, Ellinor PT, Lubitz SA, Gourraud JB, Tanck MW, George AL, MacRae CA, Burridge PW, Dina C, Probst V, Wilde AA, Schott JJ, Redon R, Bezzina CR. Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility. Nat Genet 2022; 54:232-239. [PMID: 35210625 DOI: 10.1038/s41588-021-01007-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/13/2021] [Indexed: 12/19/2022] [Imported: 09/13/2023]
Abstract
Brugada syndrome (BrS) is a cardiac arrhythmia disorder associated with sudden death in young adults. With the exception of SCN5A, encoding the cardiac sodium channel NaV1.5, susceptibility genes remain largely unknown. Here we performed a genome-wide association meta-analysis comprising 2,820 unrelated cases with BrS and 10,001 controls, and identified 21 association signals at 12 loci (10 new). Single nucleotide polymorphism (SNP)-heritability estimates indicate a strong polygenic influence. Polygenic risk score analyses based on the 21 susceptibility variants demonstrate varying cumulative contribution of common risk alleles among different patient subgroups, as well as genetic associations with cardiac electrical traits and disorders in the general population. The predominance of cardiac transcription factor loci indicates that transcriptional regulation is a key feature of BrS pathogenesis. Furthermore, functional studies conducted on MAPRE2, encoding the microtubule plus-end binding protein EB2, point to microtubule-related trafficking effects on NaV1.5 expression as a new underlying molecular mechanism. Taken together, these findings broaden our understanding of the genetic architecture of BrS and provide new insights into its molecular underpinnings.
Collapse
|
|
3 |
63 |
10
|
Campuzano O, Alcalde M, Iglesias A, Barahona-Dussault C, Sarquella-Brugada G, Benito B, Arzamendi D, Flores J, Leung TK, Talajic M, Oliva A, Brugada R. Arrhythmogenic right ventricular cardiomyopathy: severe structural alterations are associated with inflammation. J Clin Pathol 2012; 65:1077-83. [PMID: 22944624 DOI: 10.1136/jclinpath-2012-201022] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] [Imported: 09/13/2023]
|
|
13 |
61 |
11
|
Enhancing rare variant interpretation in inherited arrhythmias through quantitative analysis of consortium disease cohorts and population controls. Genet Med 2020; 23:47-58. [PMID: 32893267 PMCID: PMC7790744 DOI: 10.1038/s41436-020-00946-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 11/30/2022] [Imported: 09/13/2023] Open
Abstract
Purpose Stringent variant interpretation guidelines can lead to high rates of variants of uncertain significance (VUS) for genetically heterogeneous disease like long QT syndrome (LQTS) and Brugada syndrome (BrS). Quantitative and disease-specific customization of American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines can address this false negative rate. Methods We compared rare variant frequencies from 1847 LQTS (KCNQ1/KCNH2/SCN5A) and 3335 BrS (SCN5A) cases from the International LQTS/BrS Genetics Consortia to population-specific gnomAD data and developed disease-specific criteria for ACMG/AMP evidence classes—rarity (PM2/BS1 rules) and case enrichment of individual (PS4) and domain-specific (PM1) variants. Results Rare SCN5A variant prevalence differed between European (20.8%) and Japanese (8.9%) BrS patients (p = 5.7 × 10−18) and diagnosis with spontaneous (28.7%) versus induced (15.8%) Brugada type 1 electrocardiogram (ECG) (p = 1.3 × 10−13). Ion channel transmembrane regions and specific N-terminus (KCNH2) and C-terminus (KCNQ1/KCNH2) domains were characterized by high enrichment of case variants and >95% probability of pathogenicity. Applying the customized rules, 17.4% of European BrS and 74.8% of European LQTS cases had (likely) pathogenic variants, compared with estimated diagnostic yields (case excess over gnomAD) of 19.2%/82.1%, reducing VUS prevalence to close to background rare variant frequency. Conclusion Large case–control data sets enable quantitative implementation of ACMG/AMP guidelines and increased sensitivity for inherited arrhythmia genetic testing.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
59 |
12
|
Genetic basis of dilated cardiomyopathy. Int J Cardiol 2016; 224:461-472. [PMID: 27736720 DOI: 10.1016/j.ijcard.2016.09.068] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/15/2016] [Accepted: 09/17/2016] [Indexed: 01/19/2023] [Imported: 09/13/2023]
|
|
9 |
57 |
13
|
Parisi P, Oliva A, Coll Vidal M, Partemi S, Campuzano O, Iglesias A, Pisani D, Pascali VL, Paolino MC, Villa MP, Zara F, Tassinari CA, Striano P, Brugada R. Coexistence of epilepsy and Brugada syndrome in a family with SCN5A mutation. Epilepsy Res 2013; 105:415-8. [PMID: 23538271 DOI: 10.1016/j.eplepsyres.2013.02.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/27/2013] [Accepted: 02/27/2013] [Indexed: 12/23/2022] [Imported: 09/13/2023]
Abstract
Cardiac arrhythmias are associated with abnormal channel function due to mutations in ion channel genes. Epilepsy is a disorder of neuronal function also involving abnormal channel function. It is increasingly demonstrated that the etiologies of long QT syndrome and epilepsy may partly overlap. However, only a few genetic studies have addressed a possible link between cardiac and neural channelopathies. We describe a family showing the association between Brugada syndrome and epilepsy in which a known mutation in the SCN5A gene (p.W1095X, c.3284G>A) was identified. We suggest that this mutation can be responsible for cardiac and brain involvement, probably at different developmental age in the same individual. This observation confirms the possibility that SCN5A mutations may confer susceptibility for recurrent seizure activity, supporting the emerging concept of a genetically determined cardiocerebral channelopathy.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
54 |
14
|
Sanchez O, Campuzano O, Fernández-Falgueras A, Sarquella-Brugada G, Cesar S, Mademont I, Mates J, Pérez-Serra A, Coll M, Pico F, Iglesias A, Tirón C, Allegue C, Carro E, Gallego MÁ, Ferrer-Costa C, Hospital A, Bardalet N, Borondo JC, Vingut A, Arbelo E, Brugada J, Castellà J, Medallo J, Brugada R. Natural and Undetermined Sudden Death: Value of Post-Mortem Genetic Investigation. PLoS One 2016; 11:e0167358. [PMID: 27930701 PMCID: PMC5145162 DOI: 10.1371/journal.pone.0167358] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/11/2016] [Indexed: 12/15/2022] [Imported: 09/13/2023] Open
Abstract
Background Sudden unexplained death may be the first manifestation of an unknown inherited cardiac disease. Current genetic technologies may enable the unraveling of an etiology and the identification of relatives at risk. The aim of our study was to define the etiology of natural deaths, younger than 50 years of age, and to investigate whether genetic defects associated with cardiac diseases could provide a potential etiology for the unexplained cases. Methods and Findings Our cohort included a total of 789 consecutive cases (77.19% males) <50 years old (average 38.6±12.2 years old) who died suddenly from non-violent causes. A comprehensive autopsy was performed according to current forensic guidelines. During autopsy a cause of death was identified in most cases (81.1%), mainly due to cardiac alterations (56.87%). In unexplained cases, genetic analysis of the main genes associated with sudden cardiac death was performed using Next Generation Sequencing technology. Genetic analysis was performed in suspected inherited diseases (cardiomyopathy) and in unexplained death, with identification of potentially pathogenic variants in nearly 50% and 40% of samples, respectively. Conclusions Cardiac disease is the most important cause of sudden death, especially after the age of 40. Close to 10% of cases may remain unexplained after a complete autopsy investigation. Molecular autopsy may provide an explanation for a significant part of these unexplained cases. Identification of genetic variations enables genetic counseling and undertaking of preventive measures in relatives at risk.
Collapse
|
Journal Article |
9 |
52 |
15
|
Blancafort A, Giró-Perafita A, Oliveras G, Palomeras S, Turrado C, Campuzano Ò, Carrión-Salip D, Massaguer A, Brugada R, Palafox M, Gómez-Miragaya J, González-Suárez E, Puig T. Dual fatty acid synthase and HER2 signaling blockade shows marked antitumor activity against breast cancer models resistant to anti-HER2 drugs. PLoS One 2015; 10:e0131241. [PMID: 26107737 PMCID: PMC4479882 DOI: 10.1371/journal.pone.0131241] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 05/30/2015] [Indexed: 11/18/2022] [Imported: 09/13/2023] Open
Abstract
Blocking the enzyme Fatty Acid Synthase (FASN) leads to apoptosis of HER2-positive breast carcinoma cells. The hypothesis is that blocking FASN, in combination with anti-HER2 signaling agents, would be an effective antitumor strategy in preclinical HER2+ breast cancer models of trastuzumab and lapatinib resistance. We developed and molecularly characterized in vitro HER2+ models of resistance to trastuzumab (SKTR), lapatinib (SKLR) and both (SKLTR). The cellular interactions of combining anti-FASN polyphenolic compounds (EGCG and the synthetic G28UCM) with anti-HER2 signaling drugs (trastuzumab plus pertuzumab and temsirolimus) were analyzed. Tumor growth inhibition after treatment with EGCG, pertuzumab, temsirolimus or the combination was evaluated in two in vivo orthoxenopatients: one derived from a HER2+ patient and another from a patient who relapsed on trastuzumab and lapatinib-based therapy. SKTR, SKLR and SKLTR showed hyperactivation of EGFR and p-ERK1/2 and PI3KCA mutations. Dual-resistant cells (SKLTR) also showed hyperactivation of HER4 and recovered levels of p-AKT compared with mono-resistant cells. mTOR, p-mTOR and FASN expression remained stable in SKTR, SKLR and SKLTR. In vitro, anti-FASN compounds plus pertuzumab showed synergistic interactions in lapatinib- and dual- resistant cells and improved the results of pertuzumab plus trastuzumab co-treatment. FASN inhibitors combined with temsirolimus displayed the strongest synergistic interactions in resistant cells. In vivo, both orthoxenopatients showed strong response to the antitumor activity of the combination of EGCG with pertuzumab or temsirolimus, without signs of toxicity. We showed that the simultaneous blockade of FASN and HER2 pathways is effective in cells and in breast cancer models refractory to anti-HER2 therapies.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
51 |
16
|
Campuzano O, Allegue C, Partemi S, Iglesias A, Oliva A, Brugada R. Negative autopsy and sudden cardiac death. Int J Legal Med 2014; 128:599-606. [PMID: 24532175 DOI: 10.1007/s00414-014-0966-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/15/2014] [Indexed: 12/20/2022] [Imported: 09/13/2023]
Abstract
Forensic medicine defines the unexplained sudden death as a death with a non-conclusive diagnosis after autopsy. Molecular diagnosis is being progressively incorporated in forensics, mainly due to improvement in genetics. New genetic technologies may help to identify the genetic cause of death, despite clinical interpretation of genetic data remains the current challenge. The identification of an inheritable defect responsible for arrhythmogenic syndromes could help to adopt preventive measures in family members, many of them asymptomatic but at risk of sudden death. This multidisciplinary translational research requires a specialized team.
Collapse
|
Review |
11 |
50 |
17
|
Campuzano O, Sarquella-Brugada G, Cesar S, Arbelo E, Brugada J, Brugada R. Recent Advances in Short QT Syndrome. Front Cardiovasc Med 2018; 5:149. [PMID: 30420954 PMCID: PMC6215807 DOI: 10.3389/fcvm.2018.00149] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/03/2018] [Indexed: 01/22/2023] [Imported: 08/29/2023] Open
Abstract
Short QT syndrome is a highly malignant inherited cardiac disease characterized by ventricular tachyarrhythmias leading to syncope and sudden cardiac death. It is responsible of lethal episodes in young people, mainly infants. International guidelines establish diagnostic criteria with the presence of a QTc ≤ 340 ms in the electrocardiogram despite clinical diagnostic values remain controversial. In last years, clinical diagnosis, risk stratification as well as preventive therapies have been improved due to identification of pathophysiological mechanisms. The only effective option is implantation of a defibrillator despite Quinidine may be at times an effective option. Currently, a limited number of rare variants have been identified in seven genes, which account for nearly 20–30% of families. However, some of these variants are associated with phenotypes showing a shorter QT interval but no conclusive diagnosis of Short QT syndrome. Therefore, an exhaustive interpretation of each variant and a close genotype-phenotype correlation is necessary before clinical translation. Here, we review the main clinical and genetic hallmarks of this rare entity.
Collapse
|
Review |
7 |
47 |
18
|
Tiron C, Campuzano O, Pérez-Serra A, Mademont I, Coll M, Allegue C, Iglesias A, Partemi S, Striano P, Oliva A, Brugada R. Further evidence of the association between LQT syndrome and epilepsy in a family with KCNQ1 pathogenic variant. Seizure 2015; 25:65-7. [PMID: 25645639 DOI: 10.1016/j.seizure.2015.01.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/22/2014] [Accepted: 01/04/2015] [Indexed: 11/17/2022] [Imported: 09/13/2023] Open
Abstract
PURPOSE Ion channels are expressed both in the heart and in the brain, being advocated as responsible for sudden unexpected death in epilepsy but few pathogenic mutations have been identified. We aim to identify a novel gen associated with channelopathies and epilepsy in a family. METHODS We assessed a family showing epilepsy concomitant with LQTS. Index case showed prolonged QT interval. His father suffers of LQT and epilepsy. We performed a direct sequencing analysis of KCNQ1, KCNH2, KCNE1, KCNE2 and SCN5A genes. RESULTS We identified a non-synonymous heterozygous missense pathogenic mutation (p.L273F) in exon 6 of the KCNQ1 gene. All clinically affected relatives carried the same mutation. CONCLUSION We report, for a first time, a KCNQ1 mutation in a family suffering of both phenotypes, suggesting that KCNQ1 genetic variations may confer susceptibility for recurrent seizure activity increasing the risk or lead to sudden death.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
46 |
19
|
Coll M, Allegue C, Partemi S, Mates J, Del Olmo B, Campuzano O, Pascali V, Iglesias A, Striano P, Oliva A, Brugada R. Genetic investigation of sudden unexpected death in epilepsy cohort by panel target resequencing. Int J Legal Med 2015; 130:331-9. [PMID: 26423924 DOI: 10.1007/s00414-015-1269-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 09/21/2015] [Indexed: 12/22/2022] [Imported: 09/13/2023]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is defined as the abrupt, no traumatic, witnessed or unwitnessed death, occurring in benign circumstances, in an individual with epilepsy, with or without evidence for a seizure and excluding documented status epilepticus (seizure duration ≥ 30 min or seizures without recovery), and in which postmortem examination does not reveal a cause of death. Although the physiopathological mechanisms that underlie SUDEP remain to be clarified, the genetic background has been described to play a role in this disorder. Pathogenic variants in genes associated with epilepsy and encoding cardiac ion channels could explain the SUDEP phenotype. To test this we use the next-generation sequencing technology to sequence a cohort of SUDEP cases and its translation into clinical and forensic fields. A panel target resequencing was used to study 14 SUDEP cases from both postmortem (2 cases) and from living patients (12 cases). Genes already associated with SUDEP and also candidate genes had been investigated. Overall, 24 rare genetic variants were identified in 13 SUDEP cases. Four cases showed rare variants with complete segregation in the SCN1A, FBN1, HCN1, SCN4A, and EFHC1 genes, and one case with a rare variant in KCNQ1 gene showed incomplete pattern of inheritance. In four cases, rare variants were detected in CACNA1A, SCN11A and SCN10A, and KCNQ1 genes, but familial segregation was not possible due to lack of DNA from relatives. Finally, in the four remaining cases, the rare variants did not segregate in the family. This study confirms the link between epilepsy, sudden death, and cardiac disease. In addition, we identified new potential candidate genes for SUDEP: FBN1, HCN1, SCN4A, EFHC1, CACNA1A, SCN11A, and SCN10A. Further confirmation in larger cohorts will be necessary especially if genetic screening for SUDEP is applied to forensic and clinical medicine. Nevertheless, this study supports the emerging concept of a genetically determined cardiocerebral channelopathy.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
46 |
20
|
Increase in sudden death from coronary artery disease in young adults. Am Heart J 2011; 161:574-80. [PMID: 21392614 DOI: 10.1016/j.ahj.2010.10.040] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 10/29/2010] [Indexed: 01/21/2023] [Imported: 09/13/2023]
Abstract
BACKGROUND Sudden cardiac death (SCD) is the most common cause of death in adults aged <65 years, making it a major public health problem. A growing incidence in coronary artery disease (CAD) in young individuals has been predicted in developed countries, which could in turn be associated with an increase in SCD in this population. The aim of the study was to assess the prevalence of CAD among autopsies of young individuals (<40 years) who had sudden death (SD). METHODS We selected all the autopsies referred to the Montreal Heart Institute and Maisonneuve-Rosemont Hospital from January 2002 to December 2006 that corresponded to individuals <40 years old who had died suddenly. For each decedent, the following data were collected: cause of death, autopsy findings, available clinical history, toxicological findings, and cardiovascular risk factors. RESULTS From a total of 1,260 autopsies, 243 fulfilled the inclusion criteria. Coronary artery disease was the main cause of SCD from age 20 years, representing the 37% of deaths in the group of 21 to 30 years old, and up to 80% of deaths in the group of 31 to 40 years old. Among individuals who died of CAD, 3-vessel disease was observed in 39.7% of cases. Moreover, among the whole population <40 years old, at least 1 significant coronary lesion was observed in 39.5% of cases, irrespective to the cause of death. In the multivariable analysis, an increased BMI (hazard ratio 1.1 for each kg/m(2), 95% CI 1.01-1.1) and hypercholesterolemia (hazard ratio 2.4, 95% CI 1.7-333.3) showed to be the modifiable factors related to an increased risk of SD from CAD. CONCLUSIONS In our population, CAD was the main cause of SD from age 20 years. These data bring into question whether present prevention strategies are sufficient and reinforce the need to extend prevention to younger ages.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
45 |
21
|
Campuzano O, Alcalde M, Allegue C, Iglesias A, García-Pavía P, Partemi S, Oliva A, Pascali VL, Berne P, Sarquella-Brugada G, Brugada J, Brugada P, Brugada R. Genetics of arrhythmogenic right ventricular cardiomyopathy. J Med Genet 2013; 50:280-9. [PMID: 23468208 DOI: 10.1136/jmedgenet-2013-101523] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] [Imported: 09/13/2023]
Abstract
Arrhythmogenic right ventricular cardiomyopathy is a rare clinical entity characterised by fibro-fatty replacement of myocardium, mainly involving right ventricular free wall, leading to malignant electrical instability and sudden cardiac death. The disease is inherited in up to 50% of cases, with incomplete penetrance and variable phenotypic expression. To date, more than 300 pathogenic mutations have been identified in 12 genes, mainly with autosomal dominant inheritance. Here, we focus on recent advances in the genetics of arrhythmogenic right ventricular cardiomyopathy. Despite continuous improvements, current genotype-phenotype studies have not contributed yet to establish a genetic risk stratification of the disease.
Collapse
|
Review |
12 |
44 |
22
|
Mazzanti A, Guz D, Trancuccio A, Pagan E, Kukavica D, Chargeishvili T, Olivetti N, Biernacka EK, Sacilotto L, Sarquella-Brugada G, Campuzano O, Nof E, Anastasakis A, Sansone VA, Jimenez-Jaimez J, Cruz F, Sánchez-Quiñones J, Hernandez-Afonso J, Fuentes ME, Średniawa B, Garoufi A, Andršová I, Izquierdo M, Marinov R, Danon A, Expósito-García V, Garcia-Fernandez A, Muñoz-Esparza C, Ortíz M, Zienciuk-Krajka A, Tavazzani E, Monteforte N, Bloise R, Marino M, Memmi M, Napolitano C, Zorio E, Monserrat L, Bagnardi V, Priori SG. Natural History and Risk Stratification in Andersen-Tawil Syndrome Type 1. J Am Coll Cardiol 2020; 75:1772-1784. [PMID: 32299589 DOI: 10.1016/j.jacc.2020.02.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/25/2020] [Accepted: 02/11/2020] [Indexed: 11/25/2022] [Imported: 09/13/2023]
|
|
5 |
43 |
23
|
Partemi S, Cestèle S, Pezzella M, Campuzano O, Paravidino R, Pascali VL, Zara F, Tassinari CA, Striano S, Oliva A, Brugada R, Mantegazza M, Striano P. Loss-of-function KCNH2 mutation in a family with long QT syndrome, epilepsy, and sudden death. Epilepsia 2013; 54:e112-6. [PMID: 23899126 DOI: 10.1111/epi.12259] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2013] [Indexed: 01/08/2023] [Imported: 09/13/2023]
Abstract
There has been increased interest in a possible association between epilepsy channelopathies and cardiac arrhythmias, such as long QT syndrome (LQTS). We report a kindred that features LQTS, idiopathic epilepsy, and increased risk of sudden death. Genetic study showed a previously unreported heterozygous point mutation (c.246T>C) in the KCNH2 gene. Functional studies showed that the mutation induces severe loss of function. This observation provides further evidence for a possible link between idiopathic epilepsy and LQTS.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
43 |
24
|
Campuzano O, Sarquella-Brugada G, Fernandez-Falgueras A, Coll M, Iglesias A, Ferrer-Costa C, Cesar S, Arbelo E, García-Álvarez A, Jordà P, Toro R, Tiron de Llano C, Grassi S, Oliva A, Brugada J, Brugada R. Reanalysis and reclassification of rare genetic variants associated with inherited arrhythmogenic syndromes. EBioMedicine 2020; 54:102732. [PMID: 32268277 PMCID: PMC7136601 DOI: 10.1016/j.ebiom.2020.102732] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/11/2020] [Accepted: 03/05/2020] [Indexed: 12/17/2022] [Imported: 08/29/2023] Open
Abstract
Background Accurate interpretation of rare genetic variants is a challenge for clinical translation. Updates in recommendations for rare variant classification require the reanalysis and reclassification. We aim to perform an exhaustive re-analysis of rare variants associated with inherited arrhythmogenic syndromes, which were classified ten years ago, to determine whether their classification aligns with current standards and research findings. Methods In 2010, the rare variants identified through genetic analysis were classified following recommendations available at that time. Nowadays, the same variants have been reclassified following current American College of Medical Genetics and Genomics recommendations. Findings Our cohort included 104 cases diagnosed with inherited arrhythmogenic syndromes and 17 post-mortem cases in which inherited arrhythmogenic syndromes was cause of death. 71.87% of variants change their classification. While 65.62% of variants were classified as likely pathogenic in 2010, after reanalysis, only 17.96% remain as likely pathogenic. In 2010, 18.75% of variants were classified as uncertain role but nowadays 60.15% of variants are classified of unknown significance. Interpretation Reclassification occurred in more than 70% of rare variants associated with inherited arrhythmogenic syndromes. Our results support the periodical reclassification and personalized clinical translation of rare variants to improve diagnosis and adjust treatment. Funding Obra Social "La Caixa Foundation" (ID 100010434, LCF/PR/GN16/50290001 and LCF/PR/GN19/50320002), Fondo Investigacion Sanitaria (FIS PI16/01203 and FIS, PI17/01690), Sociedad Española de Cardiología, and “Fundacio Privada Daniel Bravo Andreu”.
Collapse
|
Journal Article |
5 |
42 |
25
|
Clinical Features and Natural History of PRKAG2 Variant Cardiac Glycogenosis. J Am Coll Cardiol 2020; 76:186-197. [PMID: 32646569 DOI: 10.1016/j.jacc.2020.05.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 11/21/2022] [Imported: 09/13/2023]
Abstract
BACKGROUND PRKAG2 gene variants cause a syndrome characterized by cardiomyopathy, conduction disease, and ventricular pre-excitation. Only a small number of cases have been reported to date, and the natural history of the disease is poorly understood. OBJECTIVES The aim of this study was to describe phenotype and natural history of PRKAG2 variants in a large multicenter European cohort. METHODS Clinical, electrocardiographic, and echocardiographic data from 90 subjects with PRKAG2 variants (53% men; median age 33 years; interquartile range [IQR]: 15 to 50 years) recruited from 27 centers were retrospectively studied. RESULTS At first evaluation, 93% of patients were in New York Heart Association functional class I or II. Maximum left ventricular wall thickness was 18 ± 8 mm, and left ventricular ejection fraction was 61 ± 12%. Left ventricular hypertrophy (LVH) was present in 60 subjects (67%) at baseline. Thirty patients (33%) had ventricular pre-excitation or had undergone accessory pathway ablation; 17 (19%) had pacemakers (median age at implantation 36 years; IQR: 27 to 46 years), and 16 (18%) had atrial fibrillation (median age 43 years; IQR: 31 to 54 years). After a median follow-up period of 6 years (IQR: 2.3 to 13.9 years), 71% of subjects had LVH, 29% had AF, 21% required de novo pacemakers (median age at implantation 37 years; IQR: 29 to 48 years), 14% required admission for heart failure, 8% experienced sudden cardiac death or equivalent, 4% required heart transplantation, and 13% died. CONCLUSIONS PRKAG2 syndrome is a progressive cardiomyopathy characterized by high rates of atrial fibrillation, conduction disease, advanced heart failure, and life-threatening arrhythmias. Classical features of pre-excitation and severe LVH are not uniformly present, and diagnosis should be considered in patients with LVH who develop atrial fibrillation or require permanent pacemakers at a young age.
Collapse
|
Multicenter Study |
5 |
42 |