51
|
Xia Q, Li Z, Zheng J, Zhang X, Di Y, Ding J, Yu D, Yan L, Shen L, Yan D, Jia N, Chen W, Feng Y, Wang J. Identification of novel biomarkers for hepatocellular carcinoma using transcriptome analysis. J Cell Physiol 2019; 234:4851-4863. [PMID: 30272824 DOI: 10.1002/jcp.27283] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/26/2018] [Indexed: 01/01/2023] [Imported: 04/03/2025]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of death from cancer in the world. To comprehensively investigate the utility of microRNAs (miRNAs) and protein-encoding transcripts (messenger RNAs [mRNAs]) in HCC as potential biomarkers for early detection and diagnosis, we exhaustively mined genomic data from three available omics datasets (GEO, Oncomine, and TCGA), analyzed the overlaps among gene expression studies from 920 hepatocellular carcinoma samples and 508 healthy (or adjacent normal) liver tissue samples available from six laboratories, and identified 178 differentially expressed genes (DEGs) associated with HCC. Paired with miRNA and lncRNA data, we identified 23 core genes that were targeted by nine differentially expressed miRNAs and 21 HCC-specific lncRNAs. We further demonstrated that alterations in these 23 genes were quite frequent, with five genes altered in over 5% of the population. Patients with high levels of YWHAZ, ENAH, and HMGN4 tended to have high-grade tumors and shorter overall survival, suggesting that these genes could be promising candidate biomarkers for disease and poor prognosis in patients with HCC. Our comprehensive mRNA, miRNA, and lncRNA omics analyses from multiple independent datasets identified robust molecules that may be used as biomarkers for early HCC detection and diagnosis.
Collapse
|
|
6 |
23 |
52
|
Li SY, Liu JK, Zhao GP, Wang J. CADS: CRISPR/Cas12a-Assisted DNA Steganography for Securing the Storage and Transfer of DNA-Encoded Information. ACS Synth Biol 2018; 7:1174-1178. [PMID: 29596744 DOI: 10.1021/acssynbio.8b00074] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] [Imported: 04/03/2025]
Abstract
Because DNA has the merit of high capacity and complexity, DNA steganography, which conceals DNA-encoded messages, is very promising in information storage. The classical DNA steganography method hides DNA with a "secret message" in a mount of junk DNA, and the message can be extracted by polymerase chain reaction (PCR) using specific primers (key), followed by DNA sequencing and sequence decoding. As leakage of the primer information may result in message insecurity, new methods are needed to better secure the DNA information. Here, we develop a pre-key by either mixing specific primers (real key) with nonspecific primers (fake key) or linking a real key with 3'-end redundant sequences. Then, the single-stranded DNA (ssDNA) trans cleavage activity of CRISPR/Cas12a is employed to cut a fake key or remove the 3'-end redundant sequences, generating a real key for further information extraction. Therefore, with the Cas12a-assisted DNA steganography method, both storage and transfer of DNA-encoding data can be better protected.
Collapse
|
|
7 |
22 |
53
|
Shao Z, Gao J, Ding X, Wang J, Chiao J, Zhao G. Identification and functional analysis of a nitrate assimilation operon nasACKBDEF from Amycolatopsis mediterranei U32. Arch Microbiol 2011; 193:463-477. [PMID: 21424691 DOI: 10.1007/s00203-011-0690-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 02/23/2011] [Accepted: 02/23/2011] [Indexed: 10/18/2022] [Imported: 04/03/2025]
Abstract
Nitrate assimilation has been well studied for Gram-negative bacteria but not so much in the Gram-positive actinomycetes up to date. In a rifamycin SV-producing actinomycete, Amycolatopsis mediterranei strain U32, nitrate not only can be used as a sole nitrogen source but also remarkably stimulates the antibiotic production along with regulating the related metabolic enzymes. A gene cluster of nasACKBDEF was cloned from a U32 genomic library by in situ hybridization screening with a heterogeneous nasB probe and confirmed later by whole genome sequence, corresponding to the protein coding genes of AMED_1121 to AMED_1127. These genes were co-transcribed as an operon, concomitantly repressed by ammonium while activated with supplement of either nitrate or nitrite. Genetic and biochemical analyses identified the essential nitrate/nitrite assimilation functions of the encoded proteins, orderly, the assimilatory nitrate reductase catalytic subunit (NasA), nitrate reductase electron transfer subunit (NasC), nitrate/nitrite transporter (NasK), assimilatory nitrite reductase large subunit (NasB) and small subunit (NasD), bifunctional uroporphyrinogen-III synthase (NasE), and an unknown function protein (NasF). Comparing rifamycin SV production and the level of transcription of nasB and rifE from U32 and its individual nas mutants in Bennet medium with or without nitrate indicated that nitrate assimilation function encoded by the nas operon played an essential role in the "nitrate stimulated" rifamycin production but had no effect upon the transcription regulation of the primary and secondary metabolic genes related to rifamycin biosynthesis.
Collapse
|
|
14 |
20 |
54
|
Jiang S, Wang K, Li C, Hong G, Zhang X, Shan M, Li H, Wang J. Mathematical models for devising the optimal Ebola virus disease eradication. J Transl Med 2017; 15:124. [PMID: 28569196 PMCID: PMC5452395 DOI: 10.1186/s12967-017-1224-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/27/2017] [Indexed: 11/10/2022] [Imported: 04/03/2025] Open
Abstract
BACKGROUND The 2014-2015 epidemic of Ebola virus disease (EVD) in West Africa defines an unprecedented health threat for human. METHODS We construct a mathematical model to devise the optimal Ebola virus disease eradication plan. We used mathematical model to investigate the numerical spread of Ebola and eradication pathways, further fit our model against the real total cases data and calculated infection rate as 1.754. RESULTS With incorporating hospital isolation and application of medication in our model and analyzing their effect on resisting the spread, we demonstrate the second peak of 10,029 total cases in 23 days, and expect to eradicate EVD in 285 days. Using the regional spread of EVD with our transmission model analysis, we analyzed the numbers of new infections through four important transmission paths including household, community, hospital and unsafe funeral. CONCLUSIONS Based on the result of the model, we find out the key paths in different situations and propose our suggestion to control regional transmission. We fully considers Ebola characteristics, economic and time optimization, dynamic factors and local condition constraints, and to make our plan realistic, sensible and feasible.
Collapse
|
research-article |
8 |
19 |
55
|
Jiang S, Katayama H, Wang J, Li SA, Hong Y, Radvanyi L, Li JJ, Sen S. Estrogen-induced aurora kinase-A (AURKA) gene expression is activated by GATA-3 in estrogen receptor-positive breast cancer cells. HORMONES & CANCER 2010; 1:11-20. [PMID: 21761347 PMCID: PMC4501777 DOI: 10.1007/s12672-010-0006-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 01/05/2010] [Indexed: 01/30/2023] [Imported: 04/03/2025]
Abstract
Aurora-A is a proto-oncogenic mitotic kinase that is frequently overexpressed in human epithelial malignancies including in breast and ovarian cancers. The mechanism of transcriptional upregulation of Aurora-A in human breast cancer is not yet elucidated. We report herein that Aurora-A transcription is positively regulated by GATA-3 in response to estrogen in estrogen receptor α (ERα)-positive cells. Transient expression of aurora-A promoter deletion mutants in luciferase constructs identified a GATA binding sequence motif as a functional regulatory element in ERα-positive breast cancer cells. Electrophoretic mobility shift assay identified the binding of regulatory proteins to the GATA element. Anti-GATA-3 antibody generated a supershifted complex. Recruitment of GATA-3 to the aurora-A promoter was verified by chromatin immunoprecipitation analysis with GATA-3 antibody. Ectopic expression of GATA-3 resulted in elevated expression of Aurora-A in both ERα-positive and negative cells while siRNA-mediated silencing led to downregulation of endogenous Aurora-A in ERα-positive cells. Estrogen treatment of ERα-positive cells induced increased Aurora-A expression with enhanced recruitment of GATA-3 to the aurora-A promoter. Finally, in the ACI rat model of estrogen-induced breast cancer, known to be associated with elevated Aurora-A expression, we observed increased expression of GATA-3 in preinvasive and invasive mammary epithelial cells exposed to prolonged estrogen treatment and in developing breast tumors. These results demonstrate a direct positive role of estrogen in regulating Aurora-A expression through activation of the ERα-GATA-3 signaling cascade and suggest that this pathway may be critical in the origin of estrogen-stimulated sporadic breast cancer.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
19 |
56
|
Liu JK, Chen WH, Ren SX, Zhao GP, Wang J. iBrick: a new standard for iterative assembly of biological parts with homing endonucleases. PLoS One 2014; 9:e110852. [PMID: 25329380 PMCID: PMC4203835 DOI: 10.1371/journal.pone.0110852] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 09/25/2014] [Indexed: 12/19/2022] [Imported: 04/03/2025] Open
Abstract
The BioBricks standard has made the construction of DNA modules easier, quicker and cheaper. So far, over 100 BioBricks assembly schemes have been developed and many of them, including the original standard of BBF RFC 10, are now widely used. However, because the restriction endonucleases employed by these standards usually recognize short DNA sequences that are widely spread among natural DNA sequences, and these recognition sites must be removed before the parts construction, there is much inconvenience in dealing with large-size DNA parts (e.g., more than couple kilobases in length) with the present standards. Here, we introduce a new standard, namely iBrick, which uses two homing endonucleases of I-SceI and PI-PspI. Because both enzymes recognize long DNA sequences (>18 bps), their sites are extremely rare in natural DNA sources, thus providing additional convenience, especially in handling large pieces of DNA fragments. Using the iBrick standard, the carotenoid biosynthetic cluster (>4 kb) was successfully assembled and the actinorhodin biosynthetic cluster (>20 kb) was easily cloned and heterologously expressed. In addition, a corresponding nomenclature system has been established for the iBrick standard.
Collapse
|
research-article |
11 |
18 |
57
|
Shao ZH, Ren SX, Liu XQ, Xu J, Yan H, Zhao GP, Wang J. A preliminary study of the mechanism of nitrate-stimulated remarkable increase of rifamycin production in Amycolatopsis mediterranei U32 by RNA-seq. Microb Cell Fact 2015; 14:75. [PMID: 26041361 PMCID: PMC4453227 DOI: 10.1186/s12934-015-0264-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/11/2015] [Indexed: 01/15/2023] [Imported: 04/03/2025] Open
Abstract
BACKGROUND Rifamycin is an important antibiotic for the treatment of infectious disease caused by Mycobacteria tuberculosis. It was found that in Amycolatopsis mediterranei U32, an industrial producer for rifamycin SV, supplementation of nitrate into the medium remarkably stimulated the yield of rifamycin SV. However, the molecular mechanism of this nitrate-mediated stimulation remains unknown. RESULTS In this study, RNA-sequencing (RNA-seq) technology was employed for investigation of the genome-wide differential gene expression in U32 cultured with or without nitrate supplementation. In the presence of nitrate, U32 maintained a high transcriptional level of genes both located in the rifamycin biosynthetic cluster and involved in the biosynthesis of rifamycin precursors, including 3-amino-5-dihydroxybenzoic acid, malonyl-CoA and (S)-methylmalonyl-CoA. However, when nitrate was omitted from the medium, the transcription of these genes declined sharply during the transition from the mid-logarithmic phase to the early stationary phase. With these understandings, one may easily propose that nitrate stimulates the rifamycin SV production through increasing both the precursors supply and the enzymes for rifamycin biosynthesis. CONCLUSION It is the first time to thoroughly illustrate the mechanism of the nitrate-mediated stimulation of rifamycin production at the transcriptional level, which may facilitate improvement of the industrial production of rifamycin SV, e.g. through optimizing the global rifamycin biosynthetic pathways on the basis of RNA-seq data.
Collapse
|
research-article |
10 |
17 |
58
|
Shao Z, Deng W, Li S, He J, Ren S, Huang W, Lu Y, Zhao G, Cai Z, Wang J. GlnR-Mediated Regulation of ectABCD Transcription Expands the Role of the GlnR Regulon to Osmotic Stress Management. J Bacteriol 2015; 197:3041-3047. [PMID: 26170409 PMCID: PMC4560291 DOI: 10.1128/jb.00185-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 07/03/2015] [Indexed: 11/20/2022] [Imported: 04/03/2025] Open
Abstract
UNLABELLED Ectoine and hydroxyectoine are excellent compatible solutes for bacteria to deal with environmental osmotic stress and temperature damages. The biosynthesis cluster of ectoine and hydroxyectoine is widespread among microorganisms, and its expression is activated by high salinity and temperature changes. So far, little is known about the mechanism of the regulation of the transcription of ect genes and only two MarR family regulators (EctR1 in methylobacteria and the EctR1-related regulator CosR in Vibrio cholerae) have been found to negatively regulate the expression of ect genes. Here, we characterize GlnR, the global regulator for nitrogen metabolism in actinomycetes, as a negative regulator for the transcription of ectoine/hydroxyectoine biosynthetic genes (ect operon) in Streptomyces coelicolor. The physiological role of this transcriptional repression by GlnR is proposed to protect the intracellular glutamate pool, which acts as a key nitrogen donor for both the nitrogen metabolism and the ectoine/hydroxyectoine biosynthesis. IMPORTANCE High salinity is deleterious, and cells must evolve sophisticated mechanisms to cope with this osmotic stress. Although production of ectoine and hydroxyectoine is one of the most frequently adopted strategies, the in-depth mechanism of regulation of their biosynthesis is less understood. So far, only two MarR family negative regulators, EctR1 and CosR, have been identified in methylobacteria and Vibrio, respectively. Here, our work demonstrates that GlnR, the global regulator for nitrogen metabolism, is a negative transcriptional regulator for ect genes in Streptomyces coelicolor. Moreover, a close relationship is found between nitrogen metabolism and osmotic resistance, and GlnR-mediated regulation of ect transcription is proposed to protect the intracellular glutamate pool. Meanwhile, the work reveals the multiple roles of GlnR in bacterial physiology.
Collapse
|
research-article |
10 |
17 |
59
|
Tan W, Liao TH, Wang J, Ye Y, Wei YC, Zhou HK, Xiao Y, Zhi XY, Shao ZH, Lyu LD, Zhao GP. A recently evolved diflavin-containing monomeric nitrate reductase is responsible for highly efficient bacterial nitrate assimilation. J Biol Chem 2020; 295:5051-5066. [PMID: 32111737 PMCID: PMC7152768 DOI: 10.1074/jbc.ra120.012859] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/25/2020] [Indexed: 12/11/2022] [Imported: 04/03/2025] Open
Abstract
Nitrate is one of the major inorganic nitrogen sources for microbes. Many bacterial and archaeal lineages have the capacity to express assimilatory nitrate reductase (NAS), which catalyzes the rate-limiting reduction of nitrate to nitrite. Although a nitrate assimilatory pathway in mycobacteria has been proposed and validated physiologically and genetically, the putative NAS enzyme has yet to be identified. Here, we report the characterization of a novel NAS encoded by Mycolicibacterium smegmatis Msmeg_4206, designated NasN, which differs from the canonical NASs in its structure, electron transfer mechanism, enzymatic properties, and phylogenetic distribution. Using sequence analysis and biochemical characterization, we found that NasN is an NADPH-dependent, diflavin-containing monomeric enzyme composed of a canonical molybdopterin cofactor-binding catalytic domain and an FMN-FAD/NAD-binding, electron-receiving/transferring domain, making it unique among all previously reported hetero-oligomeric NASs. Genetic studies revealed that NasN is essential for aerobic M. smegmatis growth on nitrate as the sole nitrogen source and that the global transcriptional regulator GlnR regulates nasN expression. Moreover, unlike the NADH-dependent heterodimeric NAS enzyme, NasN efficiently supports bacterial growth under nitrate-limiting conditions, likely due to its significantly greater catalytic activity and oxygen tolerance. Results from a phylogenetic analysis suggested that the nasN gene is more recently evolved than those encoding other NASs and that its distribution is limited mainly to Actinobacteria and Proteobacteria. We observed that among mycobacterial species, most fast-growing environmental mycobacteria carry nasN, but that it is largely lacking in slow-growing pathogenic mycobacteria because of multiple independent genomic deletion events along their evolution.
Collapse
|
research-article |
5 |
17 |
60
|
Pei Z, Liu SM, Huang JT, Zhang X, Yan D, Xia Q, Ji C, Chen W, Zhang X, Xu J, Wang J. Clinically relevant circulating microRNA profiling studies in pancreatic cancer using meta-analysis. Oncotarget 2017; 8:22616-22624. [PMID: 28186984 PMCID: PMC5410249 DOI: 10.18632/oncotarget.15148] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/25/2017] [Indexed: 12/12/2022] [Imported: 04/03/2025] Open
Abstract
BACKGROUND Pancreatic cancer (PaCa) is the most lethal gastrointestinal (GI) tumor. Although many studies on differentially expressed miRNAs as candidate biomarkers of pancreatic cancer have been published, reliability of these findings generated from investigations performed in single laboratory settings remain unclear. RESULTS There were 29 articles with a total of 2,225 patients and 1,618 controls included in this meta-analysis. The pooled sensitivity was 82% (95% CI, 79-85%); the specificity was 85% (95% CI, 79-89%); and area under the curve (AUC) was 0.89 (95% CI, 0.86-0.92). Subgroup analyses indicated that there were significant divergences between Caucasian and Asian subgroups for circulating miRNA analysis. MATERIALS AND METHODS To comprehensively investigate the potential utility of miRNAs as biomarkers of the disease, we searched publications diagnosing PaCa using miRNAs from PubMed, Medline, Embase, Google Scholar and Chinese National Knowledge Infrastructure (CNKI) databases. The sensitivity (SEN), specificity (SPE), and summary receiver operating characteristic (SROC) curve were used to examine the overall test performance, and heterogeneity was analyzed with the I2 test. CONCLUSIONS Our analysis demonstrated that multiple miRNAs (SEN: 85%; SPE: 89%; AUC: 0.93) were more accurate for diagnosing PaCa than a single miRNA (SEN: 78%; SPE: 79%; AUC: 0.84), and future studies are still needed to confirm the diagnostic value of these pooled miRNAs for PaCa.
Collapse
|
Meta-Analysis |
8 |
17 |
61
|
Gu SS, Wang X, Hu X, Jiang P, Li Z, Traugh N, Bu X, Tang Q, Wang C, Zeng Z, Fu J, Meyer C, Zhang Y, Cejas P, Lim K, Wang J, Zhang W, Tokheim C, Sahu AD, Xing X, Kroger B, Ouyang Z, Long H, Freeman GJ, Brown M, Liu XS. Clonal tracing reveals diverse patterns of response to immune checkpoint blockade. Genome Biol 2020; 21:263. [PMID: 33059736 PMCID: PMC7559192 DOI: 10.1186/s13059-020-02166-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/15/2020] [Indexed: 01/05/2023] [Imported: 04/03/2025] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) therapy has improved patient survival in a variety of cancers, but only a minority of cancer patients respond. Multiple studies have sought to identify general biomarkers of ICB response, but elucidating the molecular and cellular drivers of resistance for individual tumors remains challenging. We sought to determine whether a tumor with defined genetic background exhibits a stereotypic or heterogeneous response to ICB treatment. RESULTS We establish a unique mouse system that utilizes clonal tracing and mathematical modeling to monitor the growth of each cancer clone, as well as the bulk tumor, in response to ICB. We find that tumors derived from the same clonal populations showed heterogeneous ICB response and diverse response patterns. Primary response is associated with higher immune infiltration and leads to enrichment of pre-existing ICB-resistant cancer clones. We further identify several cancer cell-intrinsic gene expression signatures associated with ICB resistance, including increased interferon response genes and glucocorticoid response genes. These findings are supported by clinical data from ICB treatment cohorts. CONCLUSIONS Our study demonstrates diverse response patterns from the same ancestor cancer cells in response to ICB. This suggests the value of monitoring clonal constitution and tumor microenvironment over time to optimize ICB response and to design new combination therapies. Furthermore, as ICB response may enrich for cancer cell-intrinsic resistance signatures, this can affect interpretations of tumor RNA-seq data for response-signature association studies.
Collapse
|
Comparative Study |
5 |
16 |
62
|
Zhu W, Wang J, Zhu Y, Tang B, Zhang Y, He P, Zhang Y, Liu B, Guo X, Zhao G, Qin J. Identification of three extra-chromosomal replicons in Leptospira pathogenic strain and development of new shuttle vectors. BMC Genomics 2015; 16:90. [PMID: 25887950 PMCID: PMC4338851 DOI: 10.1186/s12864-015-1321-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 02/04/2015] [Indexed: 12/20/2022] [Imported: 04/03/2025] Open
Abstract
BACKGROUND The genome of pathogenic Leptospira interrogans contains two chromosomes. Plasmids and prophages are known to play specific roles in gene transfer in bacteria and can potentially serve as efficient genetic tools in these organisms. Although plasmids and prophage remnants have recently been reported in Leptospira species, their characteristics and potential applications in leptospiral genetic transformation systems have not been fully evaluated. RESULTS Three extrachromosomal replicons designated lcp1 (65,732 bp), lcp2 (56,757 bp), and lcp3 (54,986 bp) in the L. interrogans serovar Linhai strain 56609 were identified through whole genome sequencing. All three replicons were stable outside of the bacterial chromosomes. Phage particles were observed in the culture supernatant of 56609 after mitomycin C induction, and lcp3, which contained phage-related genes, was considered to be an inducible prophage. L. interrogans-Escherichia coli shuttle vectors, constructed with the predicted replication elements of single rep or rep combined with parAB loci from the three plasmids were shown to successfully transform into both saprophytic and pathogenic Leptospira species, suggesting an essential function for rep genes in supporting auto-replication of the plasmids. Additionally, a wide distribution of homologs of the three rep genes was identified in L. interrogans isolates, and correlation tests showed that the transformability of the shuttle vectors in L. interrogans isolates depended, to certain extent, on genetic compatibility between the rep sequences of both plasmid and host. CONCLUSIONS Three extrachromosomal replicons co-exist in L. interrogans, one of which we consider to be an inducible prophage. The vectors constructed with the rep genes of the three replicons successfully transformed into saprophytic and pathogenic Leptospira species alike, but this was partly dependent on genetic compatibility between the rep sequences of both plasmid and host.
Collapse
|
research-article |
10 |
15 |
63
|
Lei C, Wang J, Liu Y, Liu X, Zhao G, Wang J. A feedback regulatory model for RifQ-mediated repression of rifamycin export in Amycolatopsis mediterranei. Microb Cell Fact 2018; 17:14. [PMID: 29375035 PMCID: PMC5787919 DOI: 10.1186/s12934-018-0863-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/19/2018] [Indexed: 11/10/2022] [Imported: 04/03/2025] Open
Abstract
BACKGROUND Due to the important role of rifamycin in curing tuberculosis infection, the study on rifamycin has never been stopped. Although RifZ, which locates within the rifamycin biosynthetic cluster, has recently been characterized as a pathway-specific regulator for rifamycin biosynthesis, little is known about the regulation of rifamycin export. RESULTS In this work, we proved that the expression of the rifamycin efflux pump (RifP) was regulated by RifQ, a TetR-family transcriptional regulator. Deletion of rifQ had little impact on bacterial growth, but resulted in improved rifamycin production, which was consistent with the reverse transcription PCR results that RifQ negatively regulated rifP's transcription. With electrophoretic mobility shift assay and DNase I Footprinting assay, RifQ was found to directly bind to the promoter region of rifP, and a typical inverted repeat was identified within the RifQ-protected sequences. The transcription initiation site of rifP was further characterized and found to be upstream of the RifQ binding sites, well explaining the RifQ-mediated repression of rifP's transcription in vivo. Moreover, rifamycin B (the end product of rifamycin biosynthesis) remarkably decreased the DNA binding affinity of RifQ, which led to derepression of rifamycin export, reducing the intracellular concentration of rifamycin B as well as its toxicity against the host. CONCLUSIONS Here, we proved that the export of rifamycin B was repressed by RifQ in Amycolatopsis mediterranei, and the RifQ-mediated repression could be specifically relieved by rifamycin B, the end product of rifamycin biosynthesis, based on which a feedback model was proposed for regulation of rifamycin export. With the findings here, one could improve the antibiotic yield by simply inactivating the negative regulator of the antibiotic transporter.
Collapse
|
research-article |
7 |
15 |
64
|
Wang K, Cheng L, Li W, Jiang H, Zhang X, Liu S, Huang Y, Qiang M, Dong T, Li Y, Wang J, Feng S, Li H. Susceptibilities of Malassezia strains from pityriasis versicolor, Malassezia folliculitis and seborrheic dermatitis to antifungal drugs. Heliyon 2020; 6:e04203. [PMID: 32613106 PMCID: PMC7322256 DOI: 10.1016/j.heliyon.2020.e04203] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 11/25/2022] [Imported: 08/29/2023] Open
Abstract
The human pathogenic yeast genus Malassezia may be an etiological agent of skin disorders and has received considerable attention from dermatologists in recent years. To investigate the different susceptibilities of Malassezia species to four antifungal drugs, we isolated a total of 244 Malassezia strains and identified six species of Malassezia from patients with clinical skin diseases. The minimum inhibitory concentration (MIC) of the four antifungal drugs was obtained by comparing the susceptibility of the isolated Malassezia strains to four antifungal drugs (ketoconazole (KTZ), itraconazole (ITZ), fluconazole (FLC) and amphotericin B (Am B)). We demonstrated that M. furfur, M. sympodialis, M. pachydermatis and M. globosa are the most common Malassezia species in the three skin diseases. The MICs of KTZ, ITZ, FLC and Am B against M. furfur, M. sympodialis, M. pachydermatis and M. globosa ranged from 0.03 - 16 mg/L, 0.03 - 2.0 mg/L, 0.03 - 8 mg/L, and 13 - 64 mg/L, respectively. The sensitivities of Malassezia to the four antifungal drugs from high to low were ITZ ≥ KTZ > Am B > FLC. The susceptibilities of the various Malassezia species to the four antifungal drugs were different, and the susceptibility of M. furfur to KTZ was significantly different from those of the three skin diseases (pityriasis versicolor, Malassezia folliculitis and seborrheic dermatitis). Our results suggested that the MIC analysis of the four antifungal drugs would be helpful in preventing drug resistance in the clinical screening of Malassezia and choosing better antifungal drugs to treat Malassezia-associated skin diseases.
Collapse
|
research-article |
5 |
14 |
65
|
Wang Y, Li C, Duan N, Li B, Ding XM, Yao YF, Hu J, Zhao GP, Wang J. GlnR negatively regulates the transcription of the alanine dehydrogenase encoding gene ald in Amycolatopsis mediterranei U32 under nitrogen limited conditions via specific binding to its major transcription initiation site. PLoS One 2014; 9:e104811. [PMID: 25144373 PMCID: PMC4140684 DOI: 10.1371/journal.pone.0104811] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/14/2014] [Indexed: 11/25/2022] [Imported: 04/03/2025] Open
Abstract
Ammonium assimilation is catalyzed by two enzymatic pathways, i.e., glutamine synthetase/glutamate synthase (GS/GOGAT) and alanine dehydrogenase (AlaDH) in Amycolatopsis mediterranei U32. Under nitrogen-rich conditions, the AlaDH pathway is the major route for ammonium assimilation, while the GS/GOGAT pathway takes over when the extracellular nitrogen supply is limited. The global nitrogen regulator GlnR was previously characterized to activate the transcription of the GS encoding gene glnA in response to nitrogen limitation and is demonstrated in this study as a repressor for the transcription of the AlaDH encoding gene ald, whose regulation is consistent with the switch of the ammonium assimilation pathways from AlaDH to GS/GOGAT responding to nitrogen limitation. Three transcription initiation sites (TISs) of ald were determined with primer extension assay, among which transcription from aldP2 contributed the major transcripts under nitrogen-rich conditions but was repressed to an undetectable level in response to nitrogen limitation. Through DNase I footprinting assay, two separate regions were found to be protected by GlnR within ald promoter, within which three GlnR binding sites (a1, b1 sites in region I and a2 site in region II) were defined. Interestingly, the major TIS aldP2 is located in the middle of a2 site within region II. Therefore, one may easily conclude that GlnR represses the transcription of ald via specific binding to the GlnR binding sites, which obviously blocks the transcription initiation from aldP2 and therefore reduces ald transcripts.
Collapse
|
research-article |
11 |
14 |
66
|
Ma Y, Di Y, Li Q, Zhan Q, He X, Liu S, Zou H, Corpe C, Chen L, Wang J. LncRNAs as epigenetic regulators of epithelial to mesenchymal transition in pancreatic cancer. Discov Oncol 2022; 13:61. [PMID: 35819532 PMCID: PMC9276894 DOI: 10.1007/s12672-022-00522-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/01/2022] [Indexed: 11/04/2022] [Imported: 08/29/2023] Open
Abstract
Pancreatic cancer is the leading cause of cancer-related mortality because of tumor metastasis. Activation of the epithelial-to-mesenchymal transition (EMT) pathway has been confirmed to be an important driver of pancreatic cancer progression from initiation to metastasis. Long noncoding RNAs (lncRNAs) have been reported to exert essential physiological functions in pancreatic cancer progression by regulating the EMT program. In this review, we have summarized the role of EMT-related lncRNAs in human pancreatic cancer and the potential molecular mechanisms by which lncRNAs can be vital epigenetic regulators of epithelial to mesenchymal transition. Specifically, EMT-activating transcription factors (EMT-TFs) regulate EMT via TGF-β/Smad, Wnt/β-catenin, and JAK/STAT pathways. In addition, the interaction between lncRNAs and HIF-1α and m6A RNA methylation also have an impact on tumor metastasis and EMT in pancreatic cancer. This review will provide insights into lncRNAs as promising biomarkers for tumor metastasis and potential therapeutic strategies for pancreatic cancer.
Collapse
|
Review |
3 |
13 |
67
|
Li Z, Zheng J, Xia Q, He X, Bao J, Chen Z, Katayama H, Yu D, Zhang X, Xu J, Zhu T, Wang J. Identification of Specific Long Non-Coding Ribonucleic Acid Signatures and Regulatory Networks in Prostate Cancer in Fine-Needle Aspiration Biopsies. Front Genet 2020; 11:62. [PMID: 32117463 PMCID: PMC7034103 DOI: 10.3389/fgene.2020.00062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/17/2020] [Indexed: 12/13/2022] [Imported: 08/29/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common tumors in men and can be lethal, especially if left untreated. A substantial majority of PCa patients not only are diagnosed based on fine needle aspiration (FNA) biopsies, but their treatment choices are also largely driven by the pathological findings obtained with these FNA specimens. It is widely believed that lncRNAs have strong biological significance, but their specific functions and regulatory networks have not been elucidated. LncRNAs may serve as key players and regulators of PCa carcinogenesis and could be novel biomarkers of this cancer. To identify potential markers for early detection of PCa, in this study, we employed a competing endogenous RNA (ceRNA) microarray to identify differentially expressed lncRNAs (DelncRNAs) in PCa tissue and quantitative real-time PCR (qRT-PCR) analysis to validate these DelncRNAs in FNA biopsies. We demonstrated that a total of 451 lncRNAs were differentially expressed in four pairs of PCa/adjacent tissues, and upregulation of the lncRNAs RP11-33A14.1, RP11-423H2.3, and LAMTOR5-AS1 was confirmed in FNA biopsies of PCa by qRT-PCR and was consistent with the ceRNA array data. The association between the expression of the lncRNA LAMTOR5-AS1 and aggressive cancer was also investigated. Regulatory network analysis of DelncRNAs showed that the lncRNAs RP11-33A14.1 and RP11-423H2.3 targeted miR-7, miR-24-3p, and miR-30 and interacted with the RNA binding protein FUS. Knockdown of these DelncRNAs in PCa cells also demonstrated the effects of RP11-423H2.3 on miR-7/miR-24/miR-30 or LAMTOR5-AS1 on miR-942-5p/miR-542-3p via direct interaction. The results of these studies indicate that these three specific lncRNA signatures and regulatory networks might serve as risk prediction and diagnostic biomarkers for prostate cancer, even in biopsies obtained by FNA.
Collapse
|
research-article |
5 |
13 |
68
|
Yuan H, Zhao W, Zhong Y, Wang J, Qin Z, Ding X, Zhao GP. Two genes, rif15 and rif16, of the rifamycin biosynthetic gene cluster in Amycolatopsis mediterranei likely encode a transketolase and a P450 monooxygenase, respectively, both essential for the conversion of rifamycin SV into B. Acta Biochim Biophys Sin (Shanghai) 2011; 43:948-956. [PMID: 21986914 DOI: 10.1093/abbs/gmr091] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] [Imported: 04/03/2025] Open
Abstract
Amycolatopsis mediterranei produces an important antibiotic rifamycin, the biosynthesis of which involves many unusual modifications. Previous work suggested a putative P450 enzyme encoded by rif16 within the rifamycin biosynthetic gene cluster (rif) was required for the conversion of the intermediate rifamycin SV into the end product rifamycin B. In this study, we genetically proved that a putative transketolase encoded by rif15 is another essential enzyme for this conversion. Expression of merely rif15 and rif16 in a rif cluster null mutant of A. mediterranei U32 was able to convert rifamycin SV into B. However, this Rif15- and Rif16-mediated conversion was only detected in intact cells of A. meidterranei, but not in Streptomyce coelicolor or Mycobacterium smegmatis, suggesting that yet-characterized gene(s) in A. mediterranei other than those encoded by the rif cluster should be involved in this process.
Collapse
|
|
14 |
13 |
69
|
Li C, Liu X, Lei C, Yan H, Shao Z, Wang Y, Zhao G, Wang J, Ding X. RifZ (AMED_0655) Is a Pathway-Specific Regulator for Rifamycin Biosynthesis in Amycolatopsis mediterranei. Appl Environ Microbiol 2017; 83:e03201-16. [PMID: 28159794 PMCID: PMC5377510 DOI: 10.1128/aem.03201-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/26/2017] [Indexed: 11/20/2022] [Imported: 04/03/2025] Open
Abstract
Rifamycin and its derivatives are particularly effective against the pathogenic mycobacteria Mycobacterium tuberculosis and Mycobacterium leprae Although the biosynthetic pathway of rifamycin has been extensively studied in Amycolatopsis mediterranei, little is known about the regulation in rifamycin biosynthesis. Here, an in vivo transposon system was employed to identify genes involved in the regulation of rifamycin production in A. mediterranei U32. In total, nine rifamycin-deficient mutants were isolated, among which three mutants had the transposon inserted in AMED_0655 (rifZ, encoding a LuxR family regulator). The rifZ gene was further knocked out via homologous recombination, and the transcription of genes in the rifamycin biosynthetic gene cluster (rif cluster) was remarkably reduced in the rifZ null mutant. Based on the cotranscription assay results, genes within the rif cluster were grouped into 10 operons, sharing six promoter regions. By use of electrophoretic mobility shift assay and DNase I footprinting assay, RifZ was proved to specially bind to all six promoter regions, which was consistent with the fact that RifZ regulated the transcription of the whole rif cluster. The binding consensus sequence was further characterized through alignment using the RifZ-protected DNA sequences. By use of bionformatic analysis, another five promoters containing the RifZ box (CTACC-N8-GGATG) were identified, among which the binding of RifZ to the promoter regions of both rifK and orf18 (AMED_0645) was further verified. As RifZ directly regulates the transcription of all operons within the rif cluster, we propose that RifZ is a pathway-specific regulator for the rif cluster.IMPORTANCE To this day, rifamycin and its derivatives are still the first-line antituberculosis drugs. The biosynthesis of rifamycin has been extensively studied, and most biosynthetic processes have been characterized. However, little is known about the regulation of the transcription of the rifamycin biosynthetic gene cluster (rif cluster), and no regulator has been characterized. Through the employment of transposon screening, we here characterized a LuxR family regulator, RifZ, as a direct transcriptional activator for the rif cluster. As RifZ directly regulates the transcription of the entire rif cluster, it is considered a pathway-specific regulator for rifamycin biosynthesis. Therefore, as the first regulator characterized for direct regulation of rif cluster transcription, RifZ may provide a new clue for further engineering of high-yield industrial strains.
Collapse
|
research-article |
8 |
13 |
70
|
Zhang J, Lv H, Li L, Chen M, Gu D, Wang J, Xu Y. Recent Improvements in CRISPR-Based Amplification-Free Pathogen Detection. Front Microbiol 2021; 12:751408. [PMID: 34659186 PMCID: PMC8515055 DOI: 10.3389/fmicb.2021.751408] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/09/2021] [Indexed: 12/26/2022] [Imported: 04/03/2025] Open
Abstract
Molecular diagnostic (MDx) methods directly detect target nucleic acid sequences and are therefore an important approach for precise diagnosis of pathogen infection. In comparison with traditional MDx techniques such as PCR, the recently developed CRISPR-based diagnostic technologies, which employ the single-stranded nucleic acid trans-cleavage activities of either Cas12 or Cas13, show merits in both sensitivity and specificity and therefore have great potential in both pathogen detection and beyond. With more and more efforts in improving both the CRISPR trans-cleavage efficiencies and the signal detection sensitivities, CRISPR-based direct detection of target nucleic acids without preamplification can be a possibility. Here in this mini-review, we summarize recent research progresses of amplification-free CRISPR-Dx systems and explore the potential changes they will lead to pathogen diagnosis. In addition, discussion of the challenges for both detection sensitivity and cost of the amplification-free systems will also be covered.
Collapse
|
Review |
4 |
12 |
71
|
Han X, Shen L, Wang Q, Cen X, Wang J, Wu M, Li P, Zhao W, Zhang Y, Zhao G. Cyclic AMP Inhibits the Activity and Promotes the Acetylation of Acetyl-CoA Synthetase through Competitive Binding to the ATP/AMP Pocket. J Biol Chem 2017; 292:1374-1384. [PMID: 27974467 PMCID: PMC5270480 DOI: 10.1074/jbc.m116.753640] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/08/2016] [Indexed: 11/06/2022] [Imported: 04/03/2025] Open
Abstract
The high-affinity biosynthetic pathway for converting acetate to acetyl-coenzyme A (acetyl-CoA) is catalyzed by the central metabolic enzyme acetyl-coenzyme A synthetase (Acs), which is finely regulated both at the transcriptional level via cyclic AMP (cAMP)-driven trans-activation and at the post-translational level via acetylation inhibition. In this study, we discovered that cAMP directly binds to Salmonella enterica Acs (SeAcs) and inhibits its activity in a substrate-competitive manner. In addition, cAMP binding increases SeAcs acetylation by simultaneously promoting Pat-dependent acetylation and inhibiting CobB-dependent deacetylation, resulting in enhanced SeAcs inhibition. A crystal structure study and site-directed mutagenesis analyses confirmed that cAMP binds to the ATP/AMP pocket of SeAcs, and restrains SeAcs in an open conformation. The cAMP contact residues are well conserved from prokaryotes to eukaryotes, suggesting a general regulatory mechanism of cAMP on Acs.
Collapse
|
research-article |
8 |
12 |
72
|
Liu SM, Chen W, Wang J. Distinguishing between cancer cell differentiation and resistance induced by all-trans retinoic acid using transcriptional profiles and functional pathway analysis. Sci Rep 2014; 4:5577. [PMID: 24993014 PMCID: PMC4894425 DOI: 10.1038/srep05577] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/18/2014] [Indexed: 11/03/2022] [Imported: 04/03/2025] Open
Abstract
All-trans retinoic acid (ATRA) induces differentiation in various cell types and has been investigated extensively for its effective use in cancer prevention and treatment. Relapsed or refractory disease that is resistant to ATRA is a clinically significant problem. To identify the molecular mechanism that bridges ATRA differentiation and resistance in cancer, we selected the multidrug-resistant leukemia cell line HL-60[R] by exposing it to ATRA, followed by sequential increases of one-half log concentration. A cytotoxicity analysis revealed that HL-60[R] cells were highly resistant to ATRA, doxorubicin, and etoposide. A comparative genome hybridization analysis of HL-60[R] cells identified gains of 4q34, 9q12, and 19q13 and a loss of Yq12 compared with in the parental HL-60 cell line. Transcriptional profiles and functional pathway analyses further demonstrated that 7 genes (FEN1, RFC5, EXO1, XRCC5, PARP1, POLR2F, and GTF2H3) that were relatively up-regulated in HL-60[R] cells and repressed in cells with ATRA-induced differentiation were related to mismatch repair in eukaryotes, DNA double-strand break repair, and nucleotide excision repair pathways. Our results suggest that transcriptional time series profiles and a functional pathway analysis of drug resistance and ATRA-induced cell differentiation will be useful for identifying promyelocytic leukemia patients who are eligible for new therapeutic strategies.
Collapse
|
research-article |
11 |
11 |
73
|
Liu S, He X, Di Y, Li Q, Li F, Ma Y, Chen L, Gao Y, Xu J, Yang S, Xu L, Corpe C, Ling Y, Zhang X, Xu J, Yu W, Wang J. NamiRNA-enhancer network of miR-492 activates the NR2C1-TGF-β/Smad3 pathway to promote epithelial-mesenchymal transition of pancreatic cancer. Carcinogenesis 2023; 44:153-165. [PMID: 36591938 DOI: 10.1093/carcin/bgac102] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 12/02/2022] [Accepted: 01/01/2023] [Indexed: 01/03/2023] [Imported: 04/03/2025] Open
Abstract
Pancreatic cancer (PaCa) is one of the most fatal malignancies of the digestive system, and most patients are diagnosed at advanced stages due to the lack of specific and effective tumor-related biomarkers for the early detection of PaCa. miR-492 has been found to be upregulated in PaCa tumor tissue and may serve as a potential therapeutic target. However, the molecular mechanisms by which miR-492 promotes PaCa tumor growth and progression are unclear. In this study, we first found that miR-492 in enhancer loci activated neighboring genes (NR2C1/NDUFA12/TMCC3) and promoted PaCa cell proliferation, migration, and invasion in vitro. We also observed that miR-492-activating genes significantly enriched the TGF-β/Smad3 signaling pathway in PaCa to promote epithelial-mesenchymal transition (EMT) during tumorigenesis and development. Using CRISPR-Cas9 and ChIP assays, we further observed that miR-492 acted as an enhancer trigger, and that antagomiR-492 repressed PaCa tumorigenesis in vivo, decreased the expression levels of serum TGF-β, and suppressed the EMT process by downregulating the expression of NR2C1. Our results demonstrate that miR-492, as an enhancer trigger, facilitates PaCa progression via the NR2C1-TGF-β/Smad3 pathway.
Collapse
|
|
2 |
11 |
74
|
Wang J, Wang Y, Zhao GP. Precise characterization of GlnR Box in actinomycetes. Biochem Biophys Res Commun 2015; 458:605-607. [PMID: 25684190 DOI: 10.1016/j.bbrc.2015.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/03/2015] [Indexed: 11/16/2022] [Imported: 04/03/2025]
Abstract
GlnR has been characterized as a central regulator governing most nitrogen metabolisms in many important actinomycetes. So far, the GlnR binding consensus sequences have been extensively studied, but with different motifs proposed, which has therefore brought confusion and impeded the understanding of the in-depth molecular mechanisms of GlnR-mediated transcriptional regulation. Here, a 30-nt GlnR-protected DNA sequence in the promoter of glnA in Amycolatopsis mediterranei was employed for precise characterization of GlnR binding consensus sequences. Site-by-site mutagenesis strategy combining with the Electrophoretic Mobility Shift Assay were employed, and a 5-nt GlnR Box was precisely defined as the basic unit for GlnR binding.
Collapse
|
|
10 |
11 |
75
|
Zhou Y, Liu X, Wu J, Zhao G, Wang J. CRISPR-Cas12a-Assisted Genome Editing in Amycolatopsis mediterranei. Front Bioeng Biotechnol 2020; 8:698. [PMID: 32671053 PMCID: PMC7332547 DOI: 10.3389/fbioe.2020.00698] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/03/2020] [Indexed: 11/25/2022] [Imported: 04/03/2025] Open
Abstract
Amycolatopsis mediterranei U32 is an industrial producer of rifamycin SV, whose derivatives have long been the first-line antimycobacterial drugs. In order to perform genetic modification in this important industrial strain, a lot of efforts have been made in the past decades and a homologous recombination-based method was successfully developed in our laboratory, which, however, requires the employment of an antibiotic resistance gene for positive selection and did not support convenient markerless gene deletion. Here in this study, the clustered regularly interspaced short palindromic repeat (CRISPR) system was employed to establish a genome editing system in A. mediterranei U32. Specifically, the Francisella tularensis subsp. novicida Cas12a (FnCas12a) gene was first integrated into the U32 genome to generate target-specific double-stranded DNA (dsDNA) breaks (DSBs) under the guidance of CRISPR RNAs (crRNAs). Then, the DSBs could be repaired by either the non-homologous DNA end-joining (NHEJ) system or the homology-directed repair (HDR) pathway, generating inaccurate or accurate mutations in target genes, respectively. Besides of A. mediterranei, the present work may also shed light on the development of CRISPR-assisted genome editing systems in other species of the Amycolatopsis genus.
Collapse
|
research-article |
5 |
11 |