1
|
Navarro-Alvarez N, Yang YG. CD47: a new player in phagocytosis and xenograft rejection. Cell Mol Immunol 2011; 8:285-288. [PMID: 21258362 PMCID: PMC3644051 DOI: 10.1038/cmi.2010.83] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 12/17/2010] [Indexed: 12/21/2022] [Imported: 08/15/2024] Open
Abstract
Organ transplantation is limited by the availability of human donor organs. The transplantation of organs and tissues from other species (xenotransplantation) would supply an unlimited number of organs and offer many other advantages for which the pig has been identified as the most suitable source. However, the robust immune responses to xenografts remain a major obstacle to clinical application of xenotransplantation. The more vigorous xenograft rejection relative to allograft rejection is largely accounted for by the extensive genetic disparities between the donor and recipient. Xenografts activate host immunity not only by expressing immunogenic xenoantigens that provide the targets for immune recognition and rejection, but also by lacking ligands for the host immune inhibitory receptors. This review is focused on recent findings regarding the role of CD47, a ligand of an immune inhibitory receptor, signal regulatory protein alpha (SIRPα), in phagocytosis and xenograft rejection.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
46 |
2
|
Navarro-Alvarez N, Soto-Gutierrez A, Rivas-Carrillo JD, Chen Y, Yamamoto T, Yuasa T, Misawa H, Takei J, Tanaka N, Kobayashi N. Self-assembling peptide nanofiber as a novel culture system for isolated porcine hepatocytes. Cell Transplant 2006; 15:921-927. [PMID: 17299997 DOI: 10.3727/000000006783981387] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] [Imported: 08/15/2024] Open
Abstract
Freshly isolated porcine hepatocytes are a very attractive cell source in the cell-based therapies to treat liver failure because of unlimited availability. However, due to the loss of hepatocyte functions in vitro, there is a need to develop a functional culture system to keep the cells metabolically active. Here we compared the effect of a self-assembling peptide nanofiber (SAPNF) as an extracellular matrix (ECM) with collagen type I on hepatocyte metabolic and secretion activities following hepatocyte isolation. Isolated porcine hepatocytes were cultured in SAPNF and collagen type I. Morphological assessment at different time points was performed by using SEM and phase contrast microscope. Metabolic and secretion activities were comparatively performed in the groups, by means of ammonia, lidocaine, and diazepam as well as albumin. Hepatocytes cultured on SAPNF revealed a three-dimensional spheroidal formation, thus maintaining cell differentiation status during 2 weeks of culture. On the other hand, hepatocytes in collagen revealed a spread shape, and by day 14 no hepatocyte-like cells were observed, but cells with long shape were present, thus revealing a degree of dedifferentiation in collagen culture. Hepatocytes in SAPNF were capable of drug-metabolizing activities and albumin secretion in higher ratio than those cultured on collagen. The present work clearly demonstrates the usefulness of SAPNF for maintaining differentiated functions of porcine hepatocytes in culture.
Collapse
|
|
19 |
32 |
3
|
Navarro-Alvarez N, Shah JA, Zhu A, Ligocka J, Yeh H, Elias N, Rosales I, Colvin R, Cosimi AB, Markmann JF, Hertl M, Sachs DH, Vagefi PA. The Effects of Exogenous Administration of Human Coagulation Factors Following Pig-to-Baboon Liver Xenotransplantation. Am J Transplant 2016; 16:1715-1725. [PMID: 26613235 PMCID: PMC4874924 DOI: 10.1111/ajt.13647] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/19/2015] [Accepted: 11/22/2015] [Indexed: 01/25/2023] [Imported: 08/15/2024]
Abstract
We sought to determine the effects of exogenous administration of human coagulation factors following pig-to-baboon liver xenotransplantation (LXT) using GalT-KO swine donors. After LXT, baboons received no coagulation factors (historical control, n = 1), bolus administration of a human prothrombin concentrate complex (hPCC; 2.5 mL/kg, n = 2), continuous infusion of hPCC (1.0 mL/h, n = 1) or continuous infusion of human recombinant factor VIIa (1 µg/kg per hour, n = 3). The historical control recipient demonstrated persistent thrombocytopenia despite platelet administration after transplant, along with widespread thrombotic microangiopathy (TMA). In contrast, platelet levels were maintained in bolus hPCC recipients; however, these animals quickly developed large-vessel thrombosis and TMA, leading to graft failure with shortened survival. Recipients of continuous coagulation factor administration experienced either stabilization or an increase in their circulating platelets with escalating doses. Furthermore, transfusion requirements were decreased, and hepatic TMA was noticeably absent in recipients of continuous coagulation factor infusions compared with the historical control and bolus hPCC recipients. This effect was most profound with a continuous, escalating dose of factor VIIa. Further studies are warranted because this regimen may allow for prolonged survival following LXT.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
30 |
4
|
Navarro-Alvarez N, Soto-Gutierrez A, Chen Y, Caballero-Corbalan J, Hassan W, Kobayashi S, Kondo Y, Iwamuro M, Yamamoto K, Kondo E, Tanaka N, Fox IJ, Kobayashi N. Intramuscular transplantation of engineered hepatic tissue constructs corrects acute and chronic liver failure in mice. J Hepatol 2010; 52:211-219. [PMID: 20022655 DOI: 10.1016/j.jhep.2009.11.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 07/16/2009] [Accepted: 07/20/2009] [Indexed: 12/04/2022] [Imported: 08/15/2024]
Abstract
BACKGROUND & AIMS Transplantation of isolated hepatocytes holds great promise as an alternative to whole organ liver transplantation. For treatment of liver failure, access to the portal circulation has significant risks and intrahepatic hepatocyte engraftment is poor. In advanced cirrhosis, transplantation into an extrahepatic site is necessary and intrasplenic engraftment is short-lived. Strategies that allow repeated extrahepatic infusion of hepatocytes could improve the efficacy and safety of hepatocyte transplantation for the treatment of liver failure. METHODS A non-immunogenic self-assembling peptide nanofiber (SAPNF) was developed as a three-dimensional scaffold and combined with growth factors derived from a conditionally immortalized human hepatocyte cell line to engineer a hepatic tissue graft that would allow hepatocyte engraftment outside the liver. RESULTS The hepatic tissue constructs maintained hepatocyte-specific gene expression and functionality in vitro. When transplanted into skeletal muscle as an extrahepatic site for engraftment, the engineered hepatic grafts provided life-saving support in models of acute, fulminant, and chronic liver failure that recapitulates these clinical diseases. CONCLUSIONS SAPNF-engineered hepatic constructs engrafted and functioned as hepatic tissues within the muscle to provide life-sustaining liver support. These engineered tissue constructs contained no animal products that would limit their development as a therapeutic approach.
Collapse
|
|
15 |
28 |
5
|
Navarro-Alvarez N, Kondo E, Kawamoto H, Hassan W, Yuasa T, Kubota Y, Seita M, Nakahara H, Hayashi T, Nishikawa Y, Hassan RARA, Javed SM, Noguchi H, Matsumoto S, Nakaji S, Tanaka N, Kobayashi N, Soto-Gutierrez A. Isolation and propagation of a human CD133(-) colon tumor-derived cell line with tumorigenic and angiogenic properties. Cell Transplant 2010; 19:865-77. [PMID: 20587145 PMCID: PMC2957535 DOI: 10.3727/096368910x508997] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] [Imported: 08/15/2024] Open
Abstract
It has been proposed in human colorectal cancers (CRC) a minority subset of cancer cells within tumors able to initiate tumor growth, defined as cancer stem cells (CSC). Solid human primary colonic and its ovarian metastatic cancer tissues were collected from fresh surgical samples and subsequent xenografts were established in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. The resulting tumors were disaggregated into single-cell suspensions and a CD133(-) cell line (NANK) was newly established and analyzed by flow cytometry. Surface markers of progenitor cells were immunophenotypically analyzed, and expression of stem cell and cancer-related genes was characterized. Secreted angiogenesis-associated molecules were investigated by proteomic array technology. Finally, different numbers of NANK were implanted and their tumor-initiating properties were investigated in NOD/SCID mice. Intraperitoneal injection of NANK in NOD/SCID mice induced tumors with developing progressive peritoneal dissemination and ascites. NANK cells maintained a differentiated phenotype and reproduced the full morphologic and phenotypic heterogeneity of their parental lesions. Noticeably, NANK lacked the expression of conventional CSC markers CD133 and CD44, self-renewal genes Oct-4 and Nanog, but showed the expression of an important gastrointestinal development marker CDX-2 and BMI-1 that is essential in regulating the proliferative activity of normal and leukemic stem cells. In addition, NANK secreted high amounts of important angiogenic cytokines. These results provide a novel and extensive model in human CSC for studying the generation and maintenance of phenotypic heterogeneity in CRC.
Collapse
|
research-article |
15 |
27 |
6
|
Navarro-Alvarez N, Soto-Gutierrez A, Kobayashi N. Stem cell research and therapy for liver disease. Curr Stem Cell Res Ther 2009; 4:141-146. [PMID: 19442198 DOI: 10.2174/157488809788167418] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] [Imported: 08/15/2024]
Abstract
Liver failure is a catastrophic illness associated with the death of many patients who are waiting for transplantation. Currently there are no effective treatments for this disease, therefore scientists have paid their attention to the field of stem cells, which has helped to understand the pathogenesis of liver disease, expanded the drug discovery processes, and could potentially be used as an alternative therapy. Recent reports demonstrating the production of liver like cells derived from bone marrow and embryonic stem cells, have established a better understanding of the soluble factors and biochemical compounds that are essential in liver development. Although considerable progress has been made in differentiating stem cells into liver cells, current protocols have not yet produced cells with the phenotype of a complete mature hepatocyte. Therefore, the proper criteria for defining what constitutes a functional human stem cell-derived hepatocyte are required. This review describes the current challenges and future opportunities in Embryonic Stem cell differentiation to liver cells, and the appropriate characteristics needed for their future clinical use in the treatment of liver disease.
Collapse
|
Review |
16 |
23 |
7
|
Navarro-Alvarez N, Yang YG. Lack of CD47 on donor hepatocytes promotes innate immune cell activation and graft loss: a potential barrier to hepatocyte xenotransplantation. Cell Transplant 2014; 23:345-354. [PMID: 23394628 PMCID: PMC3751988 DOI: 10.3727/096368913x663604] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] [Imported: 08/15/2024] Open
Abstract
We have previously shown that interspecies incompatibility of CD47 plays an important role in triggering rejection of xenogeneic hematopoietic cells by macrophages. However, whether CD47 incompatibility also induces rejection of nonhematopoietic cellular xenografts remains unknown. Herein, we have addressed this question in a mouse model of hepatocyte transplantation in which CD47(-/-) hepatocytes were used to resemble xenografts for CD47 incompatibility. We show that intrasplenic transplantation of CD47(-/-), but not wild-type (WT) hepatocytes, into partially hepatectomized syngeneic WT mice resulted in a rapid increase in Mac-1(+) cells with an activation phenotype (i.e., Mac-1(+)CD14(+) and Mac-1(+)CD16/32(high)), compared to nontransplant controls. In addition, CD47(-/-) hepatocytes were more severely damaged than WT hepatocytes as indicated by the greater AST and ALT serum levels in these mice. Furthermore, long-term donor hepatocyte survival and liver repopulation were observed in mice receiving WT hepatocytes, whereas CD47(-/-) hepatocytes were completely rejected within 2 weeks. These results suggest that CD47 on donor hepatocytes prevents recipient myeloid innate immune cell activation, hence aiding in graft survival after hepatocyte transplantation. Thus, CD47 incompatibility is likely to present an additional barrier to hepatocyte xenotransplantation.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
23 |
8
|
Navarro-Alvarez N, Soto-Gutierrez A, Kobayashi N. Hepatic stem cells and liver development. Methods Mol Biol 2010; 640:181-236. [PMID: 20645053 DOI: 10.1007/978-1-60761-688-7_10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] [Imported: 08/15/2024]
Abstract
The liver consists of many cell types with specialized functions. Hepatocytes are one of the main players in the organ and therefore are the most vulnerable cells to damage. Since they are not everlasting cells, they need to be replenished throughout life. Although the capacity of hepatocytes to contribute to their own maintenance has long been recognized, recent studies have indicated the presence of both intrahepatic and extrahepatic stem/progenitor cell populations that serve to maintain the normal organ and to regenerate damaged parenchyma in response to a variety of insults.The intrahepatic compartment most likely derives primarily from the biliary tree, particularly the most proximal branches, i.e. the canals of Hering and smallest ductules. The extrahepatic compartment is at least in part derived from diverse populations of cells from the bone marrow. Embryonic stem cells (ES's) are considered as a part of the extrahepatic compartment. Due to their pluripotent capabilities, ES cell-derived cells form a potential future source of hepatocytes, to replace or restore hepatic tissues that have been damaged by disease or injury. Progressing knowledge about stem cells in the liver would allow a better understanding of the mechanisms of hepatic homeostasis and regeneration. Although a human stem cell-derived cell type equivalent to primary hepatocytes does not yet exist, the promising results obtained with extrahepatic stem cells would open the way to cell-based therapy for liver diseases.
Collapse
|
|
15 |
19 |
9
|
Navarro-Alvarez N, Soto-Gutierrez A, Kobayashi N. Hepatocyte transplantation: a step forward. Curr Opin Organ Transplant 2007; 12:652-658. [DOI: 10.1097/mot.0b013e3282f19f42] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] [Imported: 08/15/2024]
|
|
18 |
8 |
10
|
Navarro-Alvarez N, Soto-Gutierrez A, Rivas-Carrillo JD, Fox IJ, Tanaka N, Kobayashi N. Stem cell-derived hepatocytes. Curr Opin Organ Transplant 2006; 11:659-664. [DOI: 10.1097/mot.0b013e3280109b7d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] [Imported: 08/15/2024]
|
|
19 |
8 |
11
|
Navarro-Alvarez N, Goncalves B, Andrews AR, Wang Z, Wang Z, Harrington E, Shah J, Sachs DH, Eliaz I, Huang CA. The effects of galectin-3 depletion apheresis on induced skin inflammation in a porcine model. J Clin Apher 2018; 33:486-493. [PMID: 29572917 PMCID: PMC6105514 DOI: 10.1002/jca.21624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 12/20/2022] [Imported: 08/15/2024]
Abstract
Galectin-3 (Gal-3), a β-galactoside-binding lectin that is expressed in mammalian cells, is known to modulate several biological functions such as cell-cell adhesion, macrophage activation, angiogenesis, metastasis, and fibrosis. The goal of this study was to evaluate the ability of Gal-3 depletion apheresis using an adsorption column with immobilized anti-Gal-3-antibody to reduce inflammation induced by Complete Freund's Adjuvant injection in a skin inflammation porcine model. Here, we report that plasma perfusion by apheresis through a Gal-3 binding immuno-affinity column reduces plasma Gal-3 levels to below limits of quantitative detection, and results in significant decrease in skin inflammation, including degree and duration of inflammatory lesions. Human plasma was tested ex vivo and found to be efficiently depleted using the anti-Gal-3 affinity column. This study demonstrates the potential of Gal-3 depletion apheresis as a therapeutic method for inflammation-mediated disease, supporting continued research in this area for clinical application.
Collapse
|
research-article |
7 |
4 |
12
|
Navarro-Alvarez N, Machaidze Z, Schuetz C, Zhu A, Liu WH, Shah JA, Vagefi PA, Elias N, Buhler L, Sachs DH, Markmann JF, Yeh H. Xenogeneic Heterotopic Auxiliary Liver transplantation (XHALT) promotes native liver regeneration in a Post-Hepatectomy Liver failure model. PLoS One 2018; 13:e0207272. [PMID: 30462716 PMCID: PMC6248961 DOI: 10.1371/journal.pone.0207272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/29/2018] [Indexed: 01/10/2023] [Imported: 08/15/2024] Open
Abstract
The liver's regenerative capacity is unique, but too small a segment can overwhelm its ability to simultaneously regenerate and support the host, resulting in liver dysfunction and death. Here we tested a temporary Xenogeneic Heterotopic Auxiliary Liver Transplant (XHALT) from Gal-KO miniature swine in a baboon model of Post-Hepatectomy Liver Failure (PHLF) by 90%- hepatectomy. Immunosuppression consisted of CVF, ATG, FK 506 and steroids. 90%-hepatectomized animals died within 4-5 days with the clinical picture of PHLF, (high LFTs and bilirubin, ascites, encephalopathy and coagulopathy). The 10% remnants had macroscopic and histological evidence of severe steatosis and absence of hepatocyte replication. In contrast, the addition of XHALT prolonged survival up to 11 days, with the cause of death being sepsis, rather than liver failure. The remnant liver appeared grossly normal, and on histology, there was no evidence of fatty infiltration, but there was pronounced Ki-67 staining. In conclusion, temporary auxiliary xenografts have the potential to support a small for size liver graft while it grows to adequate size or provide an opportunity for organ recovery in acute liver failure.
Collapse
|
research-article |
7 |
3 |
13
|
Navarro Alvarez N, Zhu A, Arellano RS, Randolph MA, Duggan M, Scott Arn J, Huang CA, Sachs DH, Vagefi PA. Postnatal xenogeneic B-cell tolerance in swine following in utero intraportal antigen exposure. Xenotransplantation 2015; 22:368-378. [PMID: 26314946 DOI: 10.1111/xen.12186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/03/2015] [Indexed: 12/11/2022] [Imported: 08/15/2024]
Abstract
BACKGROUND The objective of this study was to investigate the humoral immune response to xenogeneic antigens administered during the fetal state utilizing a baboon-to-pig model. METHODS Nine fetuses from an alpha-1,3-galactosyltransferase gene knockout (GalT-KO) MGH-miniature swine sow underwent transuterine ultrasound-guided intraportal injection of T-cell depleted baboon bone marrow (B-BM) at mid-gestation. Two juvenile GalT-KO swine undergoing direct B-BM intraportal injection were used as controls. RESULTS Postnatal humoral tolerance was induced in the long-term surviving piglets as demonstrated by the absence of any antibody response to baboon donor cells. In addition, a second intraportal B-BM administration at 2.5 months post-birth led to no antibody formation despite re-exposure to xenogeneic antigens. This B-cell unresponsiveness was abrogated only when the animal was exposed subcutaneously to third-party xenogeneic and allogeneic antigens, suggesting that the previously achieved humoral non-responsiveness was donor specific. In comparison, the two juvenile GalT-KO control swine demonstrated increasing anti-baboon IgM and IgG levels following intraportal injection. CONCLUSIONS In summary, xenogeneic B-cell tolerance was induced through in utero intraportal exposure to donor cells and this tolerance persisted following postnatal rechallenge with donor B-BM, but was lost on exposure to third-party antigen, possibly as a result of cross-reactive antibody formation.
Collapse
|
Evaluation Study |
10 |
3 |