1
|
Huang F, Wang BR, Wang YG. Role of autophagy in tumorigenesis, metastasis, targeted therapy and drug resistance of hepatocellular carcinoma. World J Gastroenterol 2018; 24:4643-4651. [PMID: 30416312 PMCID: PMC6224467 DOI: 10.3748/wjg.v24.i41.4643] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/04/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] [Imported: 05/20/2025] Open
Abstract
Autophagy is a “self-degradative” process and is involved in the maintenance of cellular homeostasis and the control of cellular components by facilitating the clearance or turnover of long-lived or misfolded proteins, protein aggregates, and damaged organelles. Autophagy plays a dual role in cancer, including in tumor progression and tumor promotion, suggesting that autophagy acts as a double-edged sword in cancer cells. Liver cancer is one of the greatest leading causes of cancer death worldwide due to its high recurrence rate and poor prognosis. Especially in China, liver cancer has become one of the most common cancers due to the high infection rate of hepatitis virus. In primary liver cancer, hepatocellular carcinoma (HCC) is the most common type. Considering the perniciousness and complexity of HCC, it is essential to elucidate the function of autophagy in HCC. In this review, we summarize the physiological function of autophagy in cancer, analyze the role of autophagy in tumorigenesis and metastasis, discuss the therapeutic strategies targeting autophagy and the mechanisms of drug-resistance in HCC, and provide potential methods to circumvent resistance and combined anticancer strategies for HCC patients.
Collapse
|
Minireviews |
7 |
141 |
2
|
Zhao L, Gu J, Dong A, Zhang Y, Zhong L, He L, Wang Y, Zhang J, Zhang Z, Huiwang J, Qian Q, Qian C, Liu X. Potent antitumor activity of oncolytic adenovirus expressing mda-7/IL-24 for colorectal cancer. Hum Gene Ther 2005; 16:845-58. [PMID: 16000066 DOI: 10.1089/hum.2005.16.845] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] [Imported: 05/20/2025] Open
Abstract
It has been demonstrated that interleukin 24 (IL-24, also called melanoma differentiation associated gene 7) exerts antitumor activity. In this study, we investigated whether oncolytic adenovirus-mediated gene transfer of IL-24 could induce strong antitumor activity. A tumor-selective replicating adenovirus expressing IL-24 (ZD55-IL-24) was constructed by insertion of an IL-24 expression cassette into the ZD55 vector, which is based on deletion of the adenoviral E1B 55-kDa gene. ZD55-IL-24 could express substantially more IL-24 than Ad-IL-24 because of replication of the vector. It has been shown that ZD55-IL-24 exerted a strong cytopathic effect and significant apoptosis in tumor cells with p53 dysfunction. Moreover, no cytotoxic and apoptotic effects could be seen in normal cells infected with ZD55-IL-24. Expression of IL-24 did not interfere with viral replication induced by oncolytic adenovirus. Activation of caspase 3 and caspase 9, and induction of bax gene expression, were involved in tumor cell apoptosis induced by ZD55-IL-24. Treatment of established tumors with ZD55-IL-24 showed much stronger antitumor activity than that induced by ONYX-015 or Ad-IL- 24. These data indicated that oncolytic adenovirus expressing IL-24 could exert potential antitumor activity and offer a novel approach to cancer therapy.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
100 |
3
|
Wang Y, Liu HH, Cao YT, Zhang LL, Huang F, Yi C. The Role of Mitochondrial Dynamics and Mitophagy in Carcinogenesis, Metastasis and Therapy. Front Cell Dev Biol 2020; 8:413. [PMID: 32587855 PMCID: PMC7297908 DOI: 10.3389/fcell.2020.00413] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] [Imported: 05/20/2025] Open
Abstract
Mitochondria are key cellular organelles and play vital roles in energy metabolism, apoptosis regulation and cellular homeostasis. Mitochondrial dynamics refers to the varying balance between mitochondrial fission and mitochondrial fusion that plays an important part in maintaining mitochondrial homeostasis and quality. Mitochondrial malfunction is involved in aging, metabolic disease, neurodegenerative disorders, and cancers. Mitophagy, a selective autophagy of mitochondria, can efficiently degrade, remove and recycle the malfunctioning or damaged mitochondria, and is crucial for quality control. In past decades, numerous studies have identified a series of factors that regulate mitophagy and are also involved in carcinogenesis, cancer cell migration and death. Therefore, it has become critically important to analyze signal pathways that regulate mitophagy to identify potential therapeutic targets. Here, we review recent progresses in mitochondrial dynamics, the mechanisms of mitophagy regulation, and the implications for understanding carcinogenesis, metastasis, treatment, and drug resistance.
Collapse
|
Review |
5 |
92 |
4
|
Zhao L, Dong A, Gu J, Liu Z, Zhang Y, Zhang W, Wang Y, He L, Qian C, Qian Q, Liu X. The antitumor activity of TRAIL and IL-24 with replicating oncolytic adenovirus in colorectal cancer. Cancer Gene Ther 2006; 13:1011-22. [PMID: 16799468 DOI: 10.1038/sj.cgt.7700969] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] [Imported: 05/20/2025]
Abstract
Melanoma differentiation associated gene-7 (Mda-7)/IL-24 was previously cloned into ZD55 (an adenovirus with E1B55 deleted) to form ZD55-IL-24, which had much better antitumor effect than Ad-IL-24. According to its good antitumor properties, ZD55-IL-24 has been used in preclinical studies. But ZD55-IL-24 alone still could not completely eradicate established tumors in all nude mice. It was reported that IL-24 could induce and enhance the activity of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) (a member of tumor necrosis factor (TNF) superfamily). Accordingly, the combined use of ZD55-IL-24 and ZD55-TRAIL was carried out in this study. Treatment with both ZD55-IL-24 and ZD55-TRAIL could induce more significant apoptosis in cancer cells in vitro compared with ZD55-IL-24 or ZD55-TRAIL alone. The combination of the two replicative adenoviruses had better antitumor activity in vivo than that of single oncolytic adenovirus and led to complete eradication of xenograft tumors in all treated mice. Upregulation of TRAIL was observed in tumor cells infected with ZD55-IL-24 and studies of the apoptotic cascade regulators indicate that ZD55-IL-24 could further enhance the activation of apoptosis through the TNF family of death receptors. We demonstrated for the first time the potential therapeutic effect of combined ZD55-IL-24 with ZD55-TRAIL for the targeted therapy of cancer.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
62 |
5
|
Zhang Y, Gu J, Zhao L, He L, Qian W, Wang J, Wang Y, Qian Q, Qian C, Wu J, Liu XY. Complete elimination of colorectal tumor xenograft by combined manganese superoxide dismutase with tumor necrosis factor-related apoptosis-inducing ligand gene virotherapy. Cancer Res 2006; 66:4291-8. [PMID: 16618754 DOI: 10.1158/0008-5472.can-05-1834] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] [Imported: 05/20/2025]
Abstract
Manganese superoxide dismutase (MnSOD) is a latent tumor suppressor gene. To investigate the therapeutic effect of MnSOD and its mechanisms, a replication-competent recombinant adenovirus with E1B 55-kDa gene deletion (ZD55) was constructed, and human MnSOD and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) genes were inserted to form ZD55-MnSOD and ZD55-TRAIL. ZD55-MnSOD exhibited an inhibition in tumor cell growth approximately 1,000-fold greater than Ad-MnSOD. ZD55-TRAIL was shown to induce the MnSOD expression in SW620 cells. Accordingly, by the combined use of ZD55-MnSOD with ZD55-TRAIL (i.e., "dual gene virotherapy"), all established colorectal tumor xenografts were completely eliminated in nude mice. The evidence exists that the MnSOD overexpression led to a slower tumor cell growth both in vitro and in vivo as a result of apoptosis caused by MnSOD and TRAIL overexpression after adenoviral transduction. Our results showed that the production of hydrogen peroxide derived from MnSOD dismutation activated caspase-8, which might down-regulate Bcl-2 expression and induce Bax translocation to mitochondria. Subsequently, Bax translocation enhanced the release of apoptosis-initiating factor and cytochrome c. Cytochrome c finally triggered apoptosis by activating caspase-9 and caspase-3 in apoptotic cascade. Bax-mediated apoptosis seems to be dependent on caspase-8 activation because the inhibition of caspase-8 prevented Bid processing and Bax translocation. In conclusion, our dual gene virotherapy completely eliminated colorectal tumor xenografts via enhanced apoptosis, and this novel strategy points toward a new direction of cancer treatment.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
59 |
6
|
Xiao BD, Zhao YJ, Jia XY, Wu J, Wang YG, Huang F. Multifaceted p21 in carcinogenesis, stemness of tumor and tumor therapy. World J Stem Cells 2020; 12:481-487. [PMID: 32742565 PMCID: PMC7360995 DOI: 10.4252/wjsc.v12.i6.481] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/17/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] [Imported: 05/20/2025] Open
Abstract
Cancer cells possess metabolic properties that are different from those of benign cells. p21, encoded by CDKN1A gene, also named p21Cip1/WAF1, was first identified as a cyclin-dependent kinase regulator that suppresses cell cycle G1/S phase and retinoblastoma protein phosphorylation. CDKN1A (p21) acts as the downstream target gene of TP53 (p53), and its expression is induced by wild-type p53 and it is not associated with mutant p53. p21 has been characterized as a vital regulator that involves multiple cell functions, including G1/S cell cycle progression, cell growth, DNA damage, and cell stemness. In 1994, p21 was found as a tumor suppressor in brain, lung and colon cancer by targeting p53 and was associated with tumorigenesis and metastasis. Notably, p21 plays a significant role in tumor development through p53-dependent and p53-independent pathways. In addition, expression of p21 is closely related to the resting state or terminal differentiation of cells. p21 is also associated with cancer stem cells and acts as a biomarker for such cells. In cancer therapy, given the importance of p21 in regulating the G1/S and G2 check points, it is not surprising that p21 is implicated in response to many cancer treatments and p21 promotes the effect of oncolytic virotherapy.
Collapse
|
Minireviews |
5 |
57 |
7
|
Zhang J, Lai W, Li Q, Yu Y, Jin J, Guo W, Zhou X, Liu X, Wang Y. A novel oncolytic adenovirus targeting Wnt signaling effectively inhibits cancer-stem like cell growth via metastasis, apoptosis and autophagy in HCC models. Biochem Biophys Res Commun 2017; 491:469-477. [PMID: 28698142 DOI: 10.1016/j.bbrc.2017.07.041] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/08/2017] [Indexed: 02/07/2023] [Imported: 05/20/2025]
Abstract
Cancer stem cells (CSCs), which are highly differentiated and self-renewing, play an important role in the occurrence, therapeutic resistant and metastasis of hepatacellular carcinoma (HCC). Oncolytic adenoviruses have targeted killing effect on tumor cells, and are invoked as candidate drugs for cancer treatment. We designed a dual-regulated oncolytic adenovirus Ad.wnt-E1A(△24bp)-TSLC1 that targets Wnt and Rb signaling pathways respectively, and carries the tumor suppressor gene, TSLC1. Previous studies have demonstrated that oncolytic adenovirus mediated TSLC1can target liver cancer and exhibit significant cytotoxicity. However, whether Ad.wnt-E1A(△24bp)-TSLC1 can effectively eliminate liver CSCs remains to be explored. We first used the spheroid culture to enrich the liver CSCs-like cells, and detected the self-renewal capacity, differentiation, drug resistance and tumorigenicity. The results showed that Ad-wnt-E1A(△24bp)-TSLC1 could effectively lead to autophagic death. In addition, recombinant adenovirus effectively induced the apoptosis, inhibit metastasis of hepatic CSCs-like cells in vivo. Further animal experiments indicated that Ad-wnt-E1A(△24bp)-TSLC1could effectively inhibit the growth of transplanted tumor of hepatic CSCs and prolong the survival time of mice. Therefore, the novel oncolytic adenovirus Ad.wnt-E1A(△24bp)-TSLC1 has potential application as a therapeutic target for HCC stem cells.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
47 |
8
|
Long F, He Y, Fu H, Li Y, Bao X, Wang Q, Wang Y, Xie C, Lou L. Preclinical characterization of SHR6390, a novel CDK 4/6 inhibitor, in vitro and in human tumor xenograft models. Cancer Sci 2019; 110:1420-1430. [PMID: 30724426 PMCID: PMC6447953 DOI: 10.1111/cas.13957] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023] [Imported: 05/20/2025] Open
Abstract
Inhibition of the cyclin‐dependent kinase (CDK) 4/6‐retinoblastoma (RB) pathway is an effective therapeutic strategy against cancer. Here, we performed a preclinical investigation of the antitumor activity of SHR6390, a novel CDK4/6 inhibitor. SHR6390 exhibited potent antiproliferative activity against a wide range of human RB‐positive tumor cells in vitro, and exclusively induced G1 arrest as well as cellular senescence, with a concomitant reduction in the levels of Ser780‐phosphorylated RB protein. Compared with the well‐known CDK4/6 inhibitor palbociclib, orally administered SHR6390 led to equivalent or improved tumor efficacy against a panel of carcinoma xenografts, and produced marked tumor regression in some models, in association with sustained target inhibition in tumor tissues. Furthermore, SHR6390 overcame resistance to endocrine therapy and HER2‐targeting antibody in ER‐positive and HER2‐positive breast cancer, respectively. Moreover, SHR6390 combined with endocrine therapy exerted remarkable synergistic antitumor activity in ER‐positive breast cancer. Taken together, our findings indicate that SHR6390 is a novel CDK4/6 inhibitor with favorable pharmaceutical properties for use as an anticancer agent.
Collapse
|
Journal Article |
6 |
40 |
9
|
He G, Lei W, Wang S, Xiao R, Guo K, Xia Y, Zhou X, Zhang K, Liu X, Wang Y. Overexpression of tumor suppressor TSLC1 by a survivin-regulated oncolytic adenovirus significantly inhibits hepatocellular carcinoma growth. J Cancer Res Clin Oncol 2012; 138:657-70. [PMID: 22237452 DOI: 10.1007/s00432-011-1138-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 12/20/2011] [Indexed: 12/16/2022] [Imported: 05/20/2025]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. Oncolytic viruses represent a promising therapeutic agent or vehicle to human cancers due to their ability of selectively lysing cancer cells but not in normal cells. TSLC1, a novel tumor suppressor gene, was loss in many human cancers including HCC, not in normal cells. The current study is focused on the antitumor effect of TSLC1-armed survivin-regulated oncolytic adenovirus for HCC and to explore their molecular mechanism. METHODS The expression of tumor suppressor TSLC1 and survivin was detected by quantitative PCR. The recombinant virus Ad.SP-E1A-E1B((Δ55))-TSLC1 (brief name as SD55-TSLC1) was constructed by inserting TSLC1 gene into the dual-regulated oncolytic adenovirus vector Ad.SP-E1A-E1B((Δ55)). Then, we performed the antitumor experiments of SD55-TSLC1 in vitro and in nude mice xenografted with Huh7 liver cancer. RESULTS The expression of TSLC1 was lower in HCC cells than in normal cells, which implied TSLC1 is a tumor suppressor of liver cancer. Survivin expression is higher in detected HCC cells than in normal cells. The SD55-TSLC1 exhibited an excellent antitumor effect on HCC cell growth in vitro but does no or little damage to normal liver cells. Animal experiment further confirmed that SD55-TSLC1 achieved significant inhibition of Huh7 liver cancer xenografted growth. Furthermore, the mechanism of antitumor efficacy by SD55-TSLC1 was elucidated to be due to the activation of caspase apoptotic pathway including the inducement of caspase-3, caspase-8, and poly (ADP-ribose) polymerase cleavage. This is the first report of TSLC1 by oncolytic adenovirus with an excellent antitumor effect to liver cancer growth. CONCLUSION These data suggest that an oncolytic adenovirus expressing TSLC1 is effective and support that SD55-TSLC1 may be a potent antitumoral agent for future clinical trials of liver cancer.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adenoviridae/physiology
- Adenovirus E1A Proteins/genetics
- Animals
- Apoptosis/genetics
- Blotting, Western
- Caspases/metabolism
- Cell Adhesion Molecule-1
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cell Line, Tumor
- Female
- Gene Expression Regulation, Neoplastic
- Genetic Vectors/genetics
- HEK293 Cells
- Host-Pathogen Interactions/genetics
- Humans
- Immunoglobulins/genetics
- Immunoglobulins/metabolism
- Inhibitor of Apoptosis Proteins/genetics
- Inhibitor of Apoptosis Proteins/metabolism
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/therapy
- Liver Neoplasms, Experimental/virology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Microscopy, Electron, Transmission
- Oncolytic Virotherapy/methods
- Oncolytic Viruses/genetics
- Oncolytic Viruses/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Survivin
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Viral Proteins/genetics
- Xenograft Model Antitumor Assays
Collapse
|
|
13 |
33 |
10
|
Wang YG, Huang PP, Zhang R, Ma BY, Zhou XM, Sun YF. Targeting adeno-associated virus and adenoviral gene therapy for hepatocellular carcinoma. World J Gastroenterol 2016; 22:326-337. [PMID: 26755879 PMCID: PMC4698495 DOI: 10.3748/wjg.v22.i1.326] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/14/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] [Imported: 05/20/2025] Open
Abstract
Human hepatocellular carcinoma (HCC) heavily endangers human heath worldwide. HCC is one of most frequent cancers in China because patients with liver disease, such as chronic hepatitis, have the highest cancer susceptibility. Traditional therapeutic approaches have limited efficacy in advanced liver cancer, and novel strategies are urgently needed to improve the limited treatment options for HCC. This review summarizes the basic knowledge, current advances, and future challenges and prospects of adeno-associated virus (AAV) and adenoviruses as vectors for gene therapy of HCC. This paper also reviews the clinical trials of gene therapy using adenovirus vectors, immunotherapy, toxicity and immunological barriers for AAV and adenoviruses, and proposes several alternative strategies to overcome the therapeutic barriers to using AAV and adenoviruses as vectors.
Collapse
|
Topic Highlight |
9 |
33 |
11
|
Wang Y, Liu T, Huang P, Zhao H, Zhang R, Ma B, Chen K, Huang F, Zhou X, Cui C, Liu X. A novel Golgi protein (GOLPH2)-regulated oncolytic adenovirus exhibits potent antitumor efficacy in hepatocellular carcinoma. Oncotarget 2015; 6:13564-78. [PMID: 25980438 PMCID: PMC4537034 DOI: 10.18632/oncotarget.3769] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/10/2015] [Indexed: 12/16/2022] [Imported: 05/20/2025] Open
Abstract
Golgi apparatus is the organelle mainly functioning as protein processing and secretion. GOLPH2 is a resident Golgi glycoprotein, usually called GP73. Recent data displayed that GOLPH2 is a superb hepatocellular carcinoma (HCC) marker candidate, and even its specificity is better than liver cancer marker AFP. Oncolytic adenoviruses are broadly used for targeting cancer therapy due to their selective tumor-killing effect. However, it was reported that traditionally oncolytic adenovirus lack the HCC specificity. In this study, a novel dual-regulated oncolytic adenovirus GD55 targeting HCC was first constructed based on our cancer targeted gene-viral therapeutic strategy. To verify the targeting and effectiveness of GOLPH2-regulated oncolytic adenovirus GD55 in HCC, the anticancer capacity was investigated in HCC cell lines and animal model. The results proved that the novel GOLPH2-regulated GD55 conferred higher adenovirus replication and infectivity for liver cancer cells than oncolytic adenovirus ZD55. The GOLPH2-regulated GD55 exerted a significant grow-suppressing effect on HCC cells in vitro but little damage to normal liver cells. In animal experiment, antitumor effect of GD55 was more effective in HCC xenograft of nude mice than that of ZD55. Thus GOLPH2-regulated GD55 may be a promising oncolytic virus agent for future liver cancer treatment.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
31 |
12
|
Enhancement of tumor cell death by combining cisplatin with an oncolytic adenovirus carrying MDA-7/IL-24. Acta Pharmacol Sin 2009; 30:467-77. [PMID: 19270721 DOI: 10.1038/aps.2009.16] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] [Imported: 05/20/2025]
Abstract
AIM The aim of this study was to creatively implement a novel chemo-gene-virotherapeutic strategy and further strengthen the antitumor effect in cancer cells by the combined use of ZD55-IL-24 and cisplatin. METHODS ZD55-IL-24 is an oncolytic adenovirus that harbors interleukin 24 (IL-24), which has a strong antitumor effect and was identified and evaluated by PCR, RT-PCR, and Western blot analysis. Enhancement of cancer cell death using a combination of ZD55-IL-24 and cisplatin was assessed in several cancer cell lines by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cytopathic effect (CPE) assay. Apoptosis induction by treatment with ZD55-IL-24 and/or cisplatin was detected in BEL7404 and SMMC7721 by morphological evaluation, apoptotic cell staining, and flow cytometry analysis. In addition, negative effects on normal cells were evaluated in the L-02 cell line using the MTT assay, the CPE assay, morphological evaluation, apoptotic cell staining, and flow cytometry analysis. RESULTS The combination of ZD55-IL-24 and cisplatin, which is superior to ZD55-IL-24, cisplatin, and ZD55-EGFP, as well as ZD55-EGFP plus cisplatin, resulted in a significantly increased effect. Most importantly, conjugation of ZD55-IL-24 with cisplatin had toxic effects equal to that of cisplatin and did not have overlapping toxicities in normal cells. CONCLUSION This study showed that ZD55-IL-24 conjugated with cisplatin exhibited a remarkably increased cytotoxic and apoptosis-inducing effect in cancer cells and significantly reduced the toxicity in normal cells through the use of a reduced dose.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
31 |
13
|
Pan Q, Liu B, Liu J, Cai R, Wang Y, Qian C. Synergistic induction of tumor cell death by combining cisplatin with an oncolytic adenovirus carrying TRAIL. Mol Cell Biochem 2007; 304:315-23. [PMID: 17577631 DOI: 10.1007/s11010-007-9514-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 05/16/2007] [Indexed: 11/24/2022] [Imported: 05/20/2025]
Abstract
Chemoresistance and side effects are considered as the major obstacles in cisplatin-based chemotherapy of various human malignant tumors. Conjugation with cancer-specific apoptotic stimuli TRAIL or typical viro-agent ONYX-015 has been extensively investigated to enhance the antitumor activity of cisplatin. In this study, we presented a novel chemo-gene-virotherapeutic strategy to further improve the toxic effects in cancer cells and reduce the damage in normal cells. Here, an oncolytic adenoviral vector (ZD55), with a deletion of E1B 55-kDa gene, was employed to express the therapeutic TRAIL gene by constructing a recombinant virus ZD55-TRAIL. Exogenous gene delivery efficacy was determined by both in vitro and in vivo experiments and enhanced cytotoxicity of combined treatment of ZD55-TRAIL with cisplatin was evaluated in several cancer cell lines. Moreover, negative effects on normal cells have been tested in both L-02 and MRC-5 cell lines by MTT assay and apoptotic cell staining. According to our observation, combination of ZD55-TRAIL with cisplatin exhibited an apparent synergistic cytotoxicity in cancer cells, yet significantly abolished the negative toxicity in normal cells by reducing the dosage. Thus, a novel chemo-gene-virotherapeutic strategy for cancer therapy was proposed.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
30 |
14
|
Ma B, Wang Y, Zhou X, Huang P, Zhang R, Liu T, Cui C, Liu X, Wang Y. Synergistic suppression effect on tumor growth of hepatocellular carcinoma by combining oncolytic adenovirus carrying XAF1 with cisplatin. J Cancer Res Clin Oncol 2015; 141:419-29. [PMID: 25240826 DOI: 10.1007/s00432-014-1835-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 09/11/2014] [Indexed: 12/16/2022] [Imported: 05/20/2025]
Abstract
PURPOSE The potent anticancer efficacy of oncolytic viruses has been verified in Clinic in recent years. Cisplatin (DDP) is one of most common chemotherapeutic drugs, but is accompanied by side effects and drug resistance. Our previous studies have shown the strategy of cancer -targeting gene-viro-therapy (CTGVT) mediated by the oncolytic virus ZD55 containing the XAF1 cDNA (ZD55-XAF1), which exhibited potent antitumor effects in various tumor cells and no apparent toxicities on normal cells. In the study, the CTGVT strategy is broadened by combining DDP with ZD55-XAF1 for growth inhibition of hepatocellular carcinoma (HCC) cells. METHODS The transgenic expression was evaluated by both in vitro and in vivo experiments, and the enhanced inhibitory effect of ZD55-XAF1 combined with cisplatin was assessed in HCC cells. The cytotoxicity on normal liver cells was evaluated by MTT assay and apoptotic cell staining. Activation of caspase-9 and PARP for apoptosis was further detected by Western blot analysis. The in vivo antitumor efficacy of combination treatment with cisplatin and ZD55-XAF1 was estimated in an HCC xenograft mouse model. RESULTS We found that the combination of ZD55-XAF1 and cisplatin showed enhanced inhibitory effects on the proliferation of HCC cells in vitro and tumor growth in mice. Furthermore, the combined treatment of ZD55-XAF1 and DDP decreases the chemotherapy dose needed to achieve the same inhibitory effect without overlapping toxicities on normal liver cells and induces tumor cell apoptosis via the activation of caspase-9/PARP pathway. CONCLUSION Thus, these data suggest that the chemo-gene-viro-therapeutic strategy by combining ZD55-XAF1 and DDP reveals a novel therapeutic strategy for hepatocellular carcinoma.
Collapse
|
|
10 |
29 |
15
|
Shen J, Ma B, Zhang X, Sun X, Han J, Wang Y, Chu L, Xu H, Yang Y. Thioridazine has potent antitumor effects on lung cancer stem-like cells. Oncol Lett 2017; 13:1563-1568. [PMID: 28454291 PMCID: PMC5403693 DOI: 10.3892/ol.2017.5651] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/29/2016] [Indexed: 12/11/2022] [Imported: 05/20/2025] Open
Abstract
Thioridazine (TDZ), originally an anti-psychotic drug, suppresses several types of cancer and has specificity for leukemia stem cells. The present study was performed to assess its effect on lung cancer stem-like cells, as its effect remains unknown. TDZ was utilized to treat lung cancer stem-like cells (A549 sphere cells) and its cytotoxic effect and mechanism were evaluated in vitro and in vivo. TDZ elicited cytotoxicity in A549 sphere cells and inhibited their proliferation in a dose-dependent pattern. A549 sphere cells treated with TDZ showed nuclear fragmentation, increased G0/G1 phase distribution, positive Annexin V staining, and a change in the expression of caspase family and cell cycle-associated proteins. These results suggest the induction of caspase-dependent apoptosis and cell cycle arrest. In addition, TDZ treatment resulted in significant inhibitory effect on mice xenografts established by A549 sphere cells. TDZ repressed growth of lung cancer stem-like cells in vitro and in vivo, indicating its potential application in targeting lung cancer stem-like cells.
Collapse
|
Journal Article |
8 |
28 |
16
|
Zhang X, Meng S, Zhang R, Ma B, Liu T, Yang Y, Xie W, Liu X, Huang F, Liu T, Zhou X, Liu X, Wang Y. GP73-regulated oncolytic adenoviruses possess potent killing effect on human liver cancer stem-like cells. Oncotarget 2016; 7:29346-58. [PMID: 27121064 PMCID: PMC5045400 DOI: 10.18632/oncotarget.8830] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/28/2016] [Indexed: 12/14/2022] [Imported: 05/20/2025] Open
Abstract
Cancer stem cells (CSCs), also known as tumor-initiating cells, are highly metastatic, chemo-resistant and tumorigenic, and are critical for cancer development, maintenance and recurrence. Oncolytic adenovirus could targetedly kill CSCs and has been acted as a promising anticancer agent. Currently, a novel GP73-regulated oncolytic adenovirus GD55 was constructed to specifically treat liver cancer and exhibited obvious cytotoxicity effect. However, there remains to be confirmed that whether GD55 could effectively eliminate liver CSCs. We first utilized the suspension culture to enrich the liver CSCs-like cells, which acquires the properties of liver CSCs in self-renewal, differentiation, quiescence, chemo-resistance and tumorigenicity. The results indicated that GD55 elicited more significant cytotoxicity and stronger oncolytic effect in liver CSC-like cells compared to common oncolytic virus ZD55. Additionally, GD55 possessed the greater efficacy in suppressing the growth of implanted tumors derived from liver CSC-like cells than ZD55. Furthermore, GD55 induced remarkable apoptosis of liver CSC-like cells in vitro and in vivo, and inhibited the propogation of cells and angiogenesis in xenograft tumor tissues. Thus, GD55 may virtually represent an attractive therapeutic agent for targeting liver CSCs to achieve better clinical outcomes for HCC patients.
Collapse
|
Journal Article |
9 |
28 |
17
|
Yuan S, Wu Y, Wang Y, Chen J, Chu L. An Oncolytic Adenovirus Expressing SNORD44 and GAS5 Exhibits Antitumor Effect in Colorectal Cancer Cells. Hum Gene Ther 2017; 28:690-700. [PMID: 28530127 DOI: 10.1089/hum.2017.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] [Imported: 05/20/2025] Open
Abstract
SNORD44 is a C/D box small nucleolar RNA, and exhibits low expression in breast cancer and head and neck squamous cell carcinoma tissues. Its host gene is growth arrest specific transcript 5 (GAS5), which is a long noncoding RNA. GAS5 is downregulated in colorectal cancer (CRC), and overexpression of GAS5 suppresses cell proliferation. However, the function of SNORD44 in CRC remains largely unknown, and the application of SNORD44 combined with GAS5 in CRC treatment has not been reported. In this study, the expression levels of SNORD44 and GAS5 were measured in CRC tissues by quantitative RT-PCR. The correlation between SNORD44 and GAS5 was evaluated by Pearson correlation analysis. An oncolytic adenovirus expressing SNORD44 and GAS5 (SPDD-UG) was constructed. The biological effects of SPDD-UG were investigated in CRC cell line SW620 and LS174T in vitro and in xenografts. The synergistic effect of rapamycin and SPDD-UG was explored in SW620 and LS174T cells and tumors. We demonstrated that SNORD44 expression level was markedly decreased in CRC tissues and positively correlated with GAS5 expression. SPDD-UG significantly inhibited SW620 and LS174T cell growth and induced cell apoptosis. Intratumoral injection of SPDD-UG significantly suppressed xenografts growth in nude mice. Moreover, the mechanistic target of rapamycin (mTOR) inhibitor, rapamycin, enhanced the antitumor effect through antagonizing the PI3K/Akt pathway activated by SPDD-UG. These results suggest that overexpression of SNORD44 and GAS5 by oncolytic adenovirus provides a promising method for CRC therapy.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
26 |
18
|
Wang Y, Huang F, Cai H, Zhong S, Liu X, Tan WS. Potent antitumor effect of TRAIL mediated by a novel adeno-associated viral vector targeting to telomerase activity for human hepatocellular carcinoma. J Gene Med 2008; 10:518-26. [PMID: 18338833 DOI: 10.1002/jgm.1177] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] [Imported: 05/20/2025] Open
Abstract
BACKGROUND Adeno-associated virus (AAV) has rapidly become a promising gene delivery vehicle for its excellent advantages of low pathogenicity and long-term gene expression. However, lack of tissue specificity caused low efficiency of AAV transfer to target cells. The promoter of human telomerase reverse transcriptase (hTERT) has been implicated in mediating gene expression in cancer cells as hTERT is transcriptionally upregulated in most cancer cells. Thereby, the hTERT promoter becomes a good candidate to enhance the targeting efficiency of AAV in cancer cells. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) functions as a soluble cytokine to selectively kill various cancer cells without toxicity to most normal cells. It remains to be determined whether the hTERT promoter can efficiently mediate TRAIL gene therapy in cancer cells using AAV vector. METHODS A novel AAV vector containing the TRAIL gene under the control of the hTERT promoter (AAV-hTERT-TRAIL) was generated. The specific expression of hTERT-controlled genes was evaluated in cell lines. The antitumor efficacy of AAV-hTERT-TRAIL was assessed in tumor cell lines and human hepatocellular carcinoma xenograft mouse model. RESULTS TRAIL expression was observed in tumor cells infected with AAV-hTERT-TRAIL at both the protein and mRNA level. AAV-hTERT-TRAIL displayed cancer-specific cytotoxicity and induced tumor cell apoptosis. Moreover, in animal experiments, intratumoral administration of AAV-hTERT-TRAIL significantly suppressed the growth of xenograft tumors and resulted in tumor cell death. CONCLUSIONS AAVs in combination with hTERT-mediated therapeutic gene expression provide a promising targeting approach for developing effective therapy for human cancers. These data suggest that AAV-hTERT-TRAIL is a potent therapeutic agent for cancer therapy.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
26 |
19
|
Zhang KJ, Wang YG, Cao X, Zhong SY, Wei RC, Wu YM, Yue XT, Li GC, Liu XY. Potent antitumor effect of interleukin-24 gene in the survivin promoter and retinoblastoma double-regulated oncolytic adenovirus. Hum Gene Ther 2009; 20:818-30. [PMID: 19320563 DOI: 10.1089/hum.2008.205] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] [Imported: 05/20/2025] Open
Abstract
Interleukin (IL)-24 is an excellent therapeutic gene for cancer therapy. In this work, IL-24 was inserted into Ad.sp-E1A(Delta24), an oncolytic adenovirus with a 24-bp deletion in the E1A gene, which was driven by the survivin promoter to form Ad.sp-E1A(Delta24)-IL-24. Ad.sp-E1A(Delta24)-IL-24 has an excellent antitumor effect in vitro for human nasopharyngeal, liver, lung, and cervical carcinoma cell lines but does no or little damage to normal cell lines L-02 and WI38. Furthermore, it achieved nearly complete inhibition (although not elimination) of NCI-H460 lung carcinoma growth in nude mice. The antitumor efficacy of Ad.sp-E1A(Delta24)-IL-24 on NCI-H460 cells was clearly mediated by apoptosis, because it induced caspase-3 and poly(ADP-ribose) polymerase cleavage. This is the first report of Ad.sp-E1A(Delta24)-IL-24 with such an excellent, broad, and specific antitumor effect in vitro and nearly complete inhibition of lung tumor growth in vivo.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
25 |
20
|
van der Laan LJW, Wang Y, Tilanus HW, Janssen HLA, Pan Q. AAV-mediated gene therapy for liver diseases: the prime candidate for clinical application? Expert Opin Biol Ther 2011; 11:315-27. [PMID: 21204741 DOI: 10.1517/14712598.2011.548799] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] [Imported: 05/20/2025]
|
|
14 |
23 |
21
|
Dichloroacetate (DCA) enhances tumor cell death in combination with oncolytic adenovirus armed with MDA-7/IL-24. Mol Cell Biochem 2010; 340:31-40. [PMID: 20165905 DOI: 10.1007/s11010-010-0397-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 02/03/2010] [Indexed: 11/24/2022] [Imported: 05/20/2025]
|
|
15 |
23 |
22
|
Pan QW, Zhong SY, Liu BS, Liu J, Cai R, Wang YG, Liu XY, Qian C. Enhanced sensitivity of hepatocellular carcinoma cells to chemotherapy with a Smac-armed oncolytic adenovirus. Acta Pharmacol Sin 2007; 28:1996-2004. [PMID: 18031615 DOI: 10.1111/j.1745-7254.2007.00672.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] [Imported: 05/20/2025]
Abstract
AIM The aim of the present study was to further improve the therapeutic effects for human hepatocellular carcinoma (HCC) and reduce the damage in normal cells using a novel chemo-gene-virotherapeutic strategy. METHODS An oncolytic adenoviral vector (ZD55) similar to the typical oncolytic adenovirus ONYX-015, with a deletion of E1B-55K gene, was employed to express the second mitochondria-derived activator of caspases (Smac) protein by constructing a recombinant virus ZD55-Smac. The enhanced cytotoxicity of the combined treatment of ZD55-Smac with cisplatin or 5-fluorouracil (5-FU) was evaluated in several HCC cell lines. Moreover, the negative effects on normal cells have been tested in human normal liver cell lines L-02 and QSG-7701 cell lines by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and apoptotic cell staining. RESULTS According to our observation, ZD55-Smac is superior to ONYX-015 in sensitizing chemotherapy, ZD55-Smac used in conjunction with chemotherapy was found to exhibit obviously enhanced cytotoxicity in HCC cells, yet significantly abolished the negative toxicity in normal cells by utilizing the tumor selective replication vector and reducing the dosage. CONCLUSION This chemo-gene-virotherapeutic (cisplatin or 5-FU+ZD55-Smac) strategy is superior to the conventional chemo-gene or chemo-viro approach.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
23 |
23
|
Yu DB, Zhong SY, Yang M, Wang YG, Qian QJ, Zheng S, Liu XY. Potent antitumor activity of double-regulated oncolytic adenovirus-mediated ST13 for colorectal cancer. Cancer Sci 2009; 100:678-83. [PMID: 19298599 PMCID: PMC11158287 DOI: 10.1111/j.1349-7006.2009.01110.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 12/11/2008] [Accepted: 12/16/2008] [Indexed: 12/28/2022] [Imported: 05/20/2025] Open
Abstract
Following targeted gene virotherapy, the suppression of tumorigenicity 13 (ST13) gene was inserted into the double-regulated oncolytic adenovirus SG500 to ensure more safety and potent antitumor activity against colorectal cancer in vitro and in vivo. We generated the ST13-expressing oncolytic adenovirus SG500-ST13, with which colorectal carcinoma cell lines SW620 and HCT116, and the lung fibroblast cell line WI38, were infected. Crystal violet staining was carried out to detect the cytopathic effect in cells, and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method was used to assay cell viability. The effect of apoptosis induced by SG500-ST13 was confirmed by Hoechst staining and the TdT-mediated dUTP-biotin nick-end labeling method. To further identify the antitumor effects of SG500-ST13 on HCT116 xenografts in Balb/c nude mice, the induction of cell death was assessed by hematoxylin-eosin staining. Immunohistochemical study was also carried out.
Collapse
|
research-article |
16 |
22 |
24
|
Wang Y, Huang F, Cai H, Wu Y, He G, Tan WS. The efficacy of combination therapy using adeno-associated virus-TRAIL targeting to telomerase activity and cisplatin in a mice model of hepatocellular carcinoma. J Cancer Res Clin Oncol 2010; 136:1827-37. [PMID: 20213096 DOI: 10.1007/s00432-010-0841-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Accepted: 02/15/2010] [Indexed: 12/20/2022] [Imported: 05/20/2025]
Abstract
PURPOSE TNF-related apoptosis-inducing ligand (TRAIL) functions as a soluble cytokine and has been demonstrated significant antitumor activity against a variety of cancer cell lines without toxicity to most normal cells. Cisplatin is a potent anticancer agent and is widely used in the clinical for treatment of human cancers. Adeno-associated virus (AAV2) is a promising gene delivery vehicle for its advantage of low pathogenicity and long-term gene expression. However, lack of tissue specificity caused low efficiency of AAV transfer to target cells. The promoter of human telomerase reverse transcriptase (hTERT) is a good candidate to enhance targeting efficiency of AAV in cancer cells. Although AAV-mediated TRAIL controlled by hTERT promoter (AAV-hTERT-TRAIL) has obvious antitumor activity, the tumor cannot be completely eradicated. In this study, we first examined the effectiveness of combination therapy of cisplatin and AAV-hTERT-TRAIL on human hepatocellular carcinoma (HCC) in vitro and in vivo. METHODS For in vitro experiments, tumor cell lines were treated with cisplatin, virus, or both. The transgene TRAIL expression controlled by hTERT promoter was evaluated in BEL7404 HCC cell line. Cytotoxicity was performed by MTT analysis. Cell apoptosis was detected by flow cytometry analysis. The in vivo antitumor efficacy of combination treatment with cisplatin and AAV-hTERT-TRAIL was assessed in human hepatocellular carcinoma xenografts mouse model. RESULTS The enhanced TRAIL expression was observed in BEL7404 cells treated with AAV-hTERT-TRAIL plus cisplatin. Treatment with both AAV-hTERT-TRAIL and cisplatin exhibited stronger cytotoxicity and induced more significant apoptosis in cancer cells compared with AAV-hTERT-TRAIL or cisplatin alone, respectively. Moreover, in animal experiments, the combined treatment greatly suppressed tumor growth and resulted in tumor cell death. CONCLUSIONS AAV-mediated therapeutic gene expression in combination with chemotherapy provides a promising therapeutic strategy for human cancers. These data suggest that combined use of AAV-hTERT-TRAIL and cisplatin may have potential clinical application.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Apoptosis/genetics
- Blotting, Western
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Cell Line
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cisplatin/pharmacology
- Combined Modality Therapy
- Dependovirus/genetics
- Female
- Humans
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/therapy
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Promoter Regions, Genetic/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- TNF-Related Apoptosis-Inducing Ligand/genetics
- TNF-Related Apoptosis-Inducing Ligand/metabolism
- Telomerase/genetics
- Telomerase/metabolism
- Transduction, Genetic
- Tumor Burden/drug effects
- Tumor Burden/genetics
- Xenograft Model Antitumor Assays
Collapse
|
|
15 |
22 |
25
|
Complete eradication of hepatomas using an oncolytic adenovirus containing AFP promoter controlling E1A and an E1B deletion to drive IL-24 expression. Cancer Gene Ther 2012; 19:619-29. [PMID: 22790965 DOI: 10.1038/cgt.2012.40] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] [Imported: 05/20/2025]
Abstract
Interleukin (IL)-24, a promising therapeutic gene, has been widely used for Cancer Targeting Gene-Viro-Therapy (CTGVT). In this study, IL-24 was inserted into an oncolytic adenovirus in which the E1A gene is driven by an enhanced, short α-fetoprotein (AFP) promoter and the E1B gene is completely deleted to form Ad.enAFP-E1A-ΔE1B-IL-24. This construct has a potent antitumor effect on liver cancer cell lines in vitro, but little or no effect on normal cell lines, such as L-02 and QSG-7701. In vivo, the complete elimination of Huh-7 liver cancer in nude mice with Ad.enAFP-E1A-ΔE1B-IL-24 intratumor injection was observed. The design of Ad.enAFP-E1A-ΔE1B-IL-24 and its potent antitumor effect on liver cancer have not been published previously. The mechanism of the potent antitumor effect of Ad.enAFP-E1A-ΔE1B-IL-24 is due to the upregulation of GADD34 and intrinsic and extrinsic apoptotic signaling.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
21 |