1
|
Wang Y, Liu HH, Cao YT, Zhang LL, Huang F, Yi C. The Role of Mitochondrial Dynamics and Mitophagy in Carcinogenesis, Metastasis and Therapy. Front Cell Dev Biol 2020; 8:413. [PMID: 32587855 PMCID: PMC7297908 DOI: 10.3389/fcell.2020.00413] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] [Imported: 05/20/2025] Open
Abstract
Mitochondria are key cellular organelles and play vital roles in energy metabolism, apoptosis regulation and cellular homeostasis. Mitochondrial dynamics refers to the varying balance between mitochondrial fission and mitochondrial fusion that plays an important part in maintaining mitochondrial homeostasis and quality. Mitochondrial malfunction is involved in aging, metabolic disease, neurodegenerative disorders, and cancers. Mitophagy, a selective autophagy of mitochondria, can efficiently degrade, remove and recycle the malfunctioning or damaged mitochondria, and is crucial for quality control. In past decades, numerous studies have identified a series of factors that regulate mitophagy and are also involved in carcinogenesis, cancer cell migration and death. Therefore, it has become critically important to analyze signal pathways that regulate mitophagy to identify potential therapeutic targets. Here, we review recent progresses in mitochondrial dynamics, the mechanisms of mitophagy regulation, and the implications for understanding carcinogenesis, metastasis, treatment, and drug resistance.
Collapse
|
Review |
5 |
92 |
2
|
Wang YG, Huang PP, Zhang R, Ma BY, Zhou XM, Sun YF. Targeting adeno-associated virus and adenoviral gene therapy for hepatocellular carcinoma. World J Gastroenterol 2016; 22:326-337. [PMID: 26755879 PMCID: PMC4698495 DOI: 10.3748/wjg.v22.i1.326] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/14/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] [Imported: 05/20/2025] Open
Abstract
Human hepatocellular carcinoma (HCC) heavily endangers human heath worldwide. HCC is one of most frequent cancers in China because patients with liver disease, such as chronic hepatitis, have the highest cancer susceptibility. Traditional therapeutic approaches have limited efficacy in advanced liver cancer, and novel strategies are urgently needed to improve the limited treatment options for HCC. This review summarizes the basic knowledge, current advances, and future challenges and prospects of adeno-associated virus (AAV) and adenoviruses as vectors for gene therapy of HCC. This paper also reviews the clinical trials of gene therapy using adenovirus vectors, immunotherapy, toxicity and immunological barriers for AAV and adenoviruses, and proposes several alternative strategies to overcome the therapeutic barriers to using AAV and adenoviruses as vectors.
Collapse
|
Topic Highlight |
9 |
33 |
3
|
Wang Y, Liu T, Huang P, Zhao H, Zhang R, Ma B, Chen K, Huang F, Zhou X, Cui C, Liu X. A novel Golgi protein (GOLPH2)-regulated oncolytic adenovirus exhibits potent antitumor efficacy in hepatocellular carcinoma. Oncotarget 2015; 6:13564-78. [PMID: 25980438 PMCID: PMC4537034 DOI: 10.18632/oncotarget.3769] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/10/2015] [Indexed: 12/16/2022] [Imported: 05/20/2025] Open
Abstract
Golgi apparatus is the organelle mainly functioning as protein processing and secretion. GOLPH2 is a resident Golgi glycoprotein, usually called GP73. Recent data displayed that GOLPH2 is a superb hepatocellular carcinoma (HCC) marker candidate, and even its specificity is better than liver cancer marker AFP. Oncolytic adenoviruses are broadly used for targeting cancer therapy due to their selective tumor-killing effect. However, it was reported that traditionally oncolytic adenovirus lack the HCC specificity. In this study, a novel dual-regulated oncolytic adenovirus GD55 targeting HCC was first constructed based on our cancer targeted gene-viral therapeutic strategy. To verify the targeting and effectiveness of GOLPH2-regulated oncolytic adenovirus GD55 in HCC, the anticancer capacity was investigated in HCC cell lines and animal model. The results proved that the novel GOLPH2-regulated GD55 conferred higher adenovirus replication and infectivity for liver cancer cells than oncolytic adenovirus ZD55. The GOLPH2-regulated GD55 exerted a significant grow-suppressing effect on HCC cells in vitro but little damage to normal liver cells. In animal experiment, antitumor effect of GD55 was more effective in HCC xenograft of nude mice than that of ZD55. Thus GOLPH2-regulated GD55 may be a promising oncolytic virus agent for future liver cancer treatment.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
31 |
4
|
Wang Y, Huang F, Cai H, Wu Y, He G, Tan WS. The efficacy of combination therapy using adeno-associated virus-TRAIL targeting to telomerase activity and cisplatin in a mice model of hepatocellular carcinoma. J Cancer Res Clin Oncol 2010; 136:1827-37. [PMID: 20213096 DOI: 10.1007/s00432-010-0841-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Accepted: 02/15/2010] [Indexed: 12/20/2022] [Imported: 05/20/2025]
Abstract
PURPOSE TNF-related apoptosis-inducing ligand (TRAIL) functions as a soluble cytokine and has been demonstrated significant antitumor activity against a variety of cancer cell lines without toxicity to most normal cells. Cisplatin is a potent anticancer agent and is widely used in the clinical for treatment of human cancers. Adeno-associated virus (AAV2) is a promising gene delivery vehicle for its advantage of low pathogenicity and long-term gene expression. However, lack of tissue specificity caused low efficiency of AAV transfer to target cells. The promoter of human telomerase reverse transcriptase (hTERT) is a good candidate to enhance targeting efficiency of AAV in cancer cells. Although AAV-mediated TRAIL controlled by hTERT promoter (AAV-hTERT-TRAIL) has obvious antitumor activity, the tumor cannot be completely eradicated. In this study, we first examined the effectiveness of combination therapy of cisplatin and AAV-hTERT-TRAIL on human hepatocellular carcinoma (HCC) in vitro and in vivo. METHODS For in vitro experiments, tumor cell lines were treated with cisplatin, virus, or both. The transgene TRAIL expression controlled by hTERT promoter was evaluated in BEL7404 HCC cell line. Cytotoxicity was performed by MTT analysis. Cell apoptosis was detected by flow cytometry analysis. The in vivo antitumor efficacy of combination treatment with cisplatin and AAV-hTERT-TRAIL was assessed in human hepatocellular carcinoma xenografts mouse model. RESULTS The enhanced TRAIL expression was observed in BEL7404 cells treated with AAV-hTERT-TRAIL plus cisplatin. Treatment with both AAV-hTERT-TRAIL and cisplatin exhibited stronger cytotoxicity and induced more significant apoptosis in cancer cells compared with AAV-hTERT-TRAIL or cisplatin alone, respectively. Moreover, in animal experiments, the combined treatment greatly suppressed tumor growth and resulted in tumor cell death. CONCLUSIONS AAV-mediated therapeutic gene expression in combination with chemotherapy provides a promising therapeutic strategy for human cancers. These data suggest that combined use of AAV-hTERT-TRAIL and cisplatin may have potential clinical application.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Apoptosis/genetics
- Blotting, Western
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Cell Line
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cisplatin/pharmacology
- Combined Modality Therapy
- Dependovirus/genetics
- Female
- Humans
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/therapy
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Promoter Regions, Genetic/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- TNF-Related Apoptosis-Inducing Ligand/genetics
- TNF-Related Apoptosis-Inducing Ligand/metabolism
- Telomerase/genetics
- Telomerase/metabolism
- Transduction, Genetic
- Tumor Burden/drug effects
- Tumor Burden/genetics
- Xenograft Model Antitumor Assays
Collapse
|
|
15 |
22 |
5
|
Wang Y, Huang F, Cai H, Zhong S, Liu X, Tan WS. Potent antitumor effect of TRAIL mediated by a novel adeno-associated viral vector targeting to telomerase activity for human hepatocellular carcinoma. J Gene Med 2008; 10:518-26. [PMID: 18338833 DOI: 10.1002/jgm.1177] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] [Imported: 05/20/2025] Open
Abstract
BACKGROUND Adeno-associated virus (AAV) has rapidly become a promising gene delivery vehicle for its excellent advantages of low pathogenicity and long-term gene expression. However, lack of tissue specificity caused low efficiency of AAV transfer to target cells. The promoter of human telomerase reverse transcriptase (hTERT) has been implicated in mediating gene expression in cancer cells as hTERT is transcriptionally upregulated in most cancer cells. Thereby, the hTERT promoter becomes a good candidate to enhance the targeting efficiency of AAV in cancer cells. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) functions as a soluble cytokine to selectively kill various cancer cells without toxicity to most normal cells. It remains to be determined whether the hTERT promoter can efficiently mediate TRAIL gene therapy in cancer cells using AAV vector. METHODS A novel AAV vector containing the TRAIL gene under the control of the hTERT promoter (AAV-hTERT-TRAIL) was generated. The specific expression of hTERT-controlled genes was evaluated in cell lines. The antitumor efficacy of AAV-hTERT-TRAIL was assessed in tumor cell lines and human hepatocellular carcinoma xenograft mouse model. RESULTS TRAIL expression was observed in tumor cells infected with AAV-hTERT-TRAIL at both the protein and mRNA level. AAV-hTERT-TRAIL displayed cancer-specific cytotoxicity and induced tumor cell apoptosis. Moreover, in animal experiments, intratumoral administration of AAV-hTERT-TRAIL significantly suppressed the growth of xenograft tumors and resulted in tumor cell death. CONCLUSIONS AAVs in combination with hTERT-mediated therapeutic gene expression provide a promising targeting approach for developing effective therapy for human cancers. These data suggest that AAV-hTERT-TRAIL is a potent therapeutic agent for cancer therapy.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
22 |
6
|
Wang YG, Wang JH, Zhang YH, Gu Q, Liu XY. Antitumor effect of a novel adeno-associated virus vector targeting to telomerase activity in tumor cells. Acta Biochim Biophys Sin (Shanghai) 2004; 36:492-500. [PMID: 15248024 DOI: 10.1093/abbs/36.7.492] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] [Imported: 05/20/2025] Open
Abstract
Telomerase activity is a wide tumor marker. Human telomerase reverse transcriptase (hTERT), the catalytic subunit of the telomerase, is transcriptionally upregulated exclusively in about 90% of cancer cells. In this study, we constructed a novel adeno-associated virus (AAV) vector containing the human interferon-beta (hIFN-beta) gene under the control of hTERT promoter (AAV-hTERT-hIFN-beta) and investigated its antitumor effect against various human cancer cells in vitro. AAV-hTERT-hIFN-beta displayed cancer-specific hIFN-beta expression and cytotoxicity. The cytotoxic ratio was positively correlated with the time length of infection. AAV-hTERT-hIFN-beta-mediated apoptotic morphology was observed by transmission electron microscopy. Flow cytometry assay also revealed that the cytotoxicity of AAV-hTERT-hIFN-beta was mainly an apoptotic process. These data indicate that AAV in combination with hTERT-mediated therapeutic gene expression may open new possibilities for long-lasting and targeting gene therapy of varieties of cancers.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
9 |
7
|
Wang Y, Huang P, Hu Y, Guo K, Jia X, Huang B, Liu X, He X, Huang F. An oncolytic adenovirus delivering TSLC1 inhibits Wnt signaling pathway and tumor growth in SMMC-7721 xenograft mice model. Acta Biochim Biophys Sin (Shanghai) 2021; 53:766-774. [PMID: 33928346 DOI: 10.1093/abbs/gmab048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Indexed: 11/13/2022] [Imported: 05/20/2025] Open
Abstract
Tumor suppressor in lung cancer-1 (TSLC1) was first identified as a tumor suppressor for lung cancer, and frequently downregulated in various types of cancers including hepatocellular carcinoma (HCC). The Wnt pathway plays a critical role in tumorigenesis, migration, and invasion in HCC. However, the function of TSLC1 in modulating Wnt signaling in HCC is unclear. In this study, we evaluated the effect of TSLC1-armed oncolytic adenovirus (S24-TSLC1) on the Wnt/β-catenin pathway, cell viability, invasion and migration abilities of HCC in vitro and the growth of SMMC-7721-xenografted tumor in mice model. We detected the expression of TSLC1 in tumor samples and HCC cell lines. The results showed that TSLC1 expression was low in HCC, but high in pericarcinomatous tissue and normal cells, which implied that TSLC1 is a tumor suppressor of liver cancer. S24-TSLC1 exhibited an antitumor effect on HCC cell growth in vitro, but did little damage to normal liver cells. Overexpression of TSLC1 downregulated the transcriptional activity of TCF4/β-catenin and inhibited the mRNA or protein expression of Wnt target genes cyclinD1 and c-myc. S24-TSLC1 also inhibited the invasion and migration of HCC cells. Animal experiments further confirmed that S24-TSLC1 significantly inhibited tumor growth of the SMMC-7721-xenografted tumor. In conclusion, TSLC1 could downregulate the Wnt signal pathway and suppress HCC cell growth, migration and invasion, suggesting that S24-TSLC1 may be a potent antitumor agent for future clinical trials in liver cancer treatment.
Collapse
|
Journal Article |
4 |
5 |
8
|
Wang Y, Wang B, Liang J, Cui C, Ying C, Huang F, Ma B, Zhou X, Chu L. Oncolytic viro-chemotherapy exhibits antitumor effect in laryngeal squamous cell carcinoma cells and mouse xenografts. Cancer Manag Res 2019; 11:3285-3294. [PMID: 31114365 PMCID: PMC6489678 DOI: 10.2147/cmar.s196304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/17/2019] [Indexed: 01/01/2023] [Imported: 05/20/2025] Open
Abstract
Background: Oncolytic virus can specifically replicate in and then lyse tumor cells, but seldom in normal cells. Further studies have shown the significant therapeutic effect of oncolytic virotherapy combining with other strategies, such as chemo-, radio-, and immunotherapy et al. In this study, we investigated the combinational effect of oncolytic virus ZD55-TRAIL and chemotherapy drug doxorubicin (DOX) on human laryngeal squamous cell carcinoma (LSCC). Methods: The effect of ZD55-TRAIL combined with DOX on cell growth was assessed in LSCC Hep2 cells and normal cells by MTT assay. Hochest 33342 staining was performed to observe cell morphological changes. Western blot was used to detect the expression of apoptotic activation proteins. The in vivo antitumor efficacy of combination treatment was estimated in laryngeal cancer xenograft models. Results: The combination of ZD55-TRAIL and DOX exhibited enhanced inhibitory effects on laryngocarcinoma cell growth, and had few side effects to normal cells in vitro. Chemotherapy drug increased the inducement of tumor cell apoptosis mediated by oncolytic virus. In vivo experiment confirmed that the combination treatment significantly inhibited Hep2 laryngocarcinoma xenografts growth in mice. Conclusion: The oncolytic viro-chemotherapy is a potent therapeutic approach for in vitro cytotoxicity evaluation of Hep2 cells and xenograft growth in vivo.
Collapse
|
|
6 |
2 |
9
|
Wang Y, Huang F, Cai R, Qian C, Liu X. Targeting strategies for adeno-associated viral vector. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11434-007-0260-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] [Imported: 05/20/2025]
|
|
18 |
2 |
10
|
Wang Y, He L, He G, Kong Y, Liu X, Cai H, Liu X, Tan W. Enhanced antitumor effect of combining interferon beta with TRAIL mediated by tumor-targeting adeno-associated virus vector on A549 lung cancer xenograft. SHENG WU GONG CHENG XUE BAO = CHINESE JOURNAL OF BIOTECHNOLOGY 2010; 26:780-788. [PMID: 20815258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/29/2023] [Imported: 05/20/2025]
Abstract
Interferon beta (IFN-beta) and TNF-related apoptosis-inducing ligand (TRAIL) are effective anticancer agents. Adeno-associated virus (AAV) is one of the current most promising gene delivery vectors. Previously, we constructed tumor-targeting AAV-hTERT-IFN-beta and AAV-hTERT-TRAIL by inserting IFN-beta or TRAIL gene into AAV controlled by hTERT promoter. The studies showed that either single IFN-beta or TRAIL gene therapy exhibited a certain extent anticancer effect. Here, we report their inhibitory effects on A549 lung cancer cell growth in vitro and in vivo by combined AAV-hTERT-IFN-beta and AAV-hTERT-TRAIL. Expression of secreted IFN-beta in lung cancer A549 cells infected by AAV-hTERT-IFN-beta was detected by enzyme-linked immunosorbent assay (ELISA). The growth-suppressing effect of AAV-hTERT-IFN-beta in combination with AAV-hTERT-TRAIL on several cancer cell lines was assessed by MTT assay. Apoptosis of A549 cancer cells infected by AAV-hTERT-IFN-beta alone, AAV-hTERT-TRAIL alone, and their combination was evaluated by apoptotic cell staining and flow cytometry (FCM), respectively. The antitumor effect of the combination of AAV-hTERT-IFN-beta with AAV-hTERT-TRAIL in vivo was further evaluated through A549 lung cancer xenograft in nude mice. The results showed that the combinational treatment was superior to any alone and presented intensified tumor cytotoxic and apoptotic effect on A549 cancer cells. Most importantly, the combination of AAV-hTERT-IFN-beta with AAV-hTERT-TRAIL exhibited significant antitumor effect and eliminated all tumor masses in nude mice, which lay a foundation for exploring the molecular mechanisms of combined IFN-beta and TRAIL anti-tumor activity.
Collapse
|
|
15 |
|